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ABSTRACT

This article studies security decisions of identical plant-controller systems, when their security is
interdependent due to network induced risks. Each plant is modeled by a discrete-time stochastic linear
system, with the systems controlled over a shared communication network. We formulate the problem
of security choices of the individual system operators (also called players) as a non-cooperative game. We
consider a two-stage game, in which on the first stage the players decide whether to invest in security
or not; and on the second stage, they apply control inputs to minimize the average operational costs.
We characterize the equilibria of the game, which includes the determination of the individually optimal
security levels. Next, we solve the problem of finding the socially optimal security levels. The presence of
interdependent security causes a negative externality, and the individual players tend to under invest in
security relative to the social optimum. This leads to a gap between the individual and the socially optimal
security levels for a wide range of security costs. From our results, regulatory impositions to incentivize

System security

higher security investments are desirable.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

We approach the security of networked control systems (NCS)
from a game-theoretic perspective. While the usefulness of game
theory methods in modeling cyber-security issues in networked
systems is well-established (Alpcan & Basar, 2011), the novelty of
our approach is integration of ideas from economics of security
(Anderson, Bohme, Clayton, & Moore, 2008; Varian, 2004) and
networked control theory (Hespanha, Naghshtabrizi, & Xu, 2007).
In particular, we build on earlier literature that deals with the
interdependence of security-related risks (Heal & Kunreuther,
2004; Honeyman, Schwartz, & Van Assche, 2007; Miura-Ko,
Yolken, Mitchell, & Bambos, 2008b; Mounzer, Alpcan, & Bambos,
2010), and investigate security choices of the individual NCS
operators when security interdependencies are present due to
network induced risks.

Several factors exacerbate the severity of the losses caused by
security interdependencies. First, NCS are subject to information
technology (IT) insecurities due to the prevalence of commercial
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revised form by Associate Editor Hideaki Ishii under the direction of Editor lan R.
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off-the-shelf devices (sensors and actuators). These IT devices
are prone to correlated failures, including software flaws and
hardware malfunctions (Cardenas, Amin, & Sastry, 2008). Such
failures can result in the loss of NCS stability and performance
(Antsaklis & Baillieul, 2007). Second, since the NCS will soon govern
the operation of critical infrastructures, their interdependencies
can be exploited by cyber criminals. So far, such occurrences
have been recorded only a few times (e.g., Langner, 2011), but
the presence of cyber-security risks to NCS is well documented
(Owens, Dam, & Lin, 2009), and cannot be ignored. The risks of such
rare but extremely disruptive events are similar to risks of terrorist
attacks (Bier, Oliveros, & Samuelson, 2007), and it is established
that private mitigation of such risks fails (Heal & Kunreuther,
2004). Thus, government interventions are likely to be required.
We model the problem of operator’s security choice as a
non-cooperative two-stage game between m > 2 plant-controller
systems (or players). Each of these players is modeled in a stan-
dard NCS setting (Imer, Yiiksel, & Basar, 2006; Schenato, Sinop-
oli, Franceschetti, Poolla, & Sastry, 2007). In the first stage, each
player has a binary choice of investing versus not investing into
enhanced security measures at his plant. In the second stage, play-
ers choose optimal control inputs for their respective plants. Each
player’s objective is to minimize the average long-term cost, which
is comprised of the plant operating costs and the cost of secu-
rity measures. We compare the individually optimal choices with
that of the social planner, whose objective is to minimize the sum
of aggregate costs of all the players (which includes the costs of
security measures). The approach in this article compliments
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the existing and growing literature on strategies for security in-
vestments in networked systems (Alpcan & Basar, 2011; Cavu-
soglu, Mishra, & Raghunathan, 2005; Miura-Ko, Yolken, Bambos,
& Mitchell, 2008a).

We use a probabilistic failure model of packet losses in both
sensor and control channels of NCS. Earlier literature has consid-
ered independent and memoryless failure models to analyze NCS
stability and performance under unreliable communication net-
works (Gupta, Dana, Hespanha, Murray, & Hassibi, 2009; Imer et al.,
2006). In this article, we introduce an additional interdependence
term aiming to account for network insecurity. This term, which
reflects security driven failures, is dependent on security choices of
other systems. Our modeling of security interdependencies builds
on Heal and Kunreuther’s interdependent security model (Heal &
Kunreuther, 2003, 2004). We refer the readers to Hofmann (2007);
Mounzer et al. (2010) for similar approaches.

The importance of network externalities for incentives to invest
in security has been noted and modeled by numerous researchers
(e.g., see Anderson et al., 2008, Bohme & Schwartz, 2010 and the
references therein). The relevance of these effects for critical infras-
tructures, and in particular, the provision of electricity was raised
in Anderson and Fuloria (2009). To the best of our knowledge, the
existing literature lacks a formal model of security interdependen-
cies in NCS. The closest models to ours are the application of secu-
rity interdependencies to Internet security (Lelarge & Bolot, 2008),
where the authors apply (Heal & Kunreuther, 2004), and present an
analytical model, which permits them to study the deployment of
security features and protocols in the sub-nets with different net-
work topologies. Also, Lelarge (2009) expands on Heal and Kun-
reuther (2004) to study economics of malware, i.e., the propagation
of computer viruses.

In our setting, individually optimal security choices differ from
socially optimal ones; this reflects the presence of externalities. In-
deed, in general, when player costs are affected by other player’s
choices, players impose externalities on each other. The externali-
ties manifest by the gap between the individually and socially opti-
mal security choices (Alpcan & Basar, 2011). In the case of negative
externalities, players tend to under invest in security. In the liter-
ature, several instruments have been proposed to induce individ-
ually optimal player choices to coincide with the socially optimal
ones (Alpcan & Basar, 2011; Heal & Kunreuther, 2004; Honeyman
etal., 2007).

This article is organized as follows: In Section 2, we formulate
the game between NCS when interdependencies are present. In
Sections 3 and 4 we present the analysis of the game of 2 and m
players, respectively. Concluding remarks are drawn in Section 5.

2. Problem setup

2.1. The game

We consider an m-player two-stage game. The players are de-
noted by P1, P2, ..., Pm, and the index set {1, ..., m} is denoted
by M. Player Pi operates the i-th NCS, and his plant and controller
communicate over a shared network; see Fig. 1.

In the first stage, each Pi(i € M) chooses to make a security
investment (S) or not (\). Let V' denote the security choice of Pi,
ie.,

Vi S, Piinvests in security,

" |N, Pidoes not invest in security,
and let v denote the set of player security choices, i.e.,
vi={ . Vm)

Once the player security choices are made, they are irreversible and
observable by all the players. The Pi’s first stage investment is given
by

V) =0-17), ieM, (1)

Plant 1 Plant 2 T Plant m
SIN SIN T SIN 1
Communication Network
Uy N Uy Y2 U Ym
Controller 1 Controller 2 S Controllerm

Fig. 1. Interdependent Networked Control Systems (NCS).

where 7' is the indicator function for Pi’s security choice, i.e.,

. Jo
Il = k]
i

and £ € R, is security investment (measures) incurred by Pi only
if he has chosen S, i.e., V' = S.

The plant of Pi is modeled as the discrete-time stochastic linear
system:

Vi=s

V=N, (2)

x’€+1 =iAx% + véBu’t + w, teNo icM. 3)
Ve =v O+
where xi € RY denotes the system state, ul € R™ the control input,
w! € R the process noise, y: € RP the measured output, v} € RP
the measurement noise, for Pi at the t-th time step. The matrices
A € R™ B e R™™ C e RP* are given. We assume that w!
(resp. vf), foranyi € M and t € Ny, are independent and identi-
cally distributed (i.i.d.) Gaussian random vectors with mean 0 and
covariance Q € R (resp. R € RP*P). The initial state x} is also
Gaussian with mean X, € R? and covariance P, € R?*9. We as-
sume uncorrelated x}, w!, and v!. For a fixedi € M and any t € Ny,
the random variables y[i (resp. v;) are i.i.d. Bernoulli with the fail-
ure probability 7' (resp. 7'), and model the packet loss in the sensor
(resp. control) communication channel.

We assume that the failure probabilities 7' and ' are inter-
dependent between the players due to the exposure to network
induced insecurities. To reflect security interdependencies, in our
model, these failure probabilities depend on the Pi’s own security
choice V! and on the other players’ security choices {\¥, j # i} (cho-
sen in the first stage). We denote the failure probabilities for Pi by
)71(\)) and lji(V), ie.,

7' =Py, =0 VI,

The security interdependencies in failure probabilities ;(V) and
v;(V) are modeled by (9) in Section 2.2.
In the second stage, each Pi (i € M) chooses a control input

D'(V) =P =0 VI].

sequence I = {u;, t € Np} for its plant based on the available
information defined as:
G=¢ Uiy}, ten (4)

with ¢ = {V, v}, ¥4}. This information set corresponds to the
packet acknowledgment behavior of TCP-like protocols (see Imer
et al,, 2006). The class of control policies considered here consist
of the sequence of functions 1y, i}, . . . such that each w; maps ¢/
intoR™, i.e.,
U =pleh, teNg, i=1...m. (5)
Let &/ denote the set of player control input sequences:

U=u"U---uu™.
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For given V and U, the Pi’s second stage cost is given by the average
Linear Quadratic Gaussian (LQG) cost:

4 1 | = o .
Jiv,u) = lim sup - [Z XG4 v;uiTHu’t:| , (6)
o t=0

where G > 0 (resp. H > 0)is a known matrix in R4*¢ (resp. R™*™).

To summarize, in the first stage, each Pi makes a security
choice V'. In the subgame that starts after the first stage, each Pi
chooses the control input sequence ¢/ to minimize the average
cost (6). The objective of each Pi is to minimize his total cost:

J o, U =) +Jiv,u),

where]li(v) (resp. Ji(V, U)) is given by (1) (resp. (6)). The solution
concept for the game is subgame perfect Nash equilibrium, i.e., the
strategy profile given by players’ optimal control input sequences
isaNash equilibrium in the subgame that starts after the first stage.
Next, we introduce the baseline case of a social planner whose
objective is to minimize the aggregate cost of all players:

ieM, (7)

o =Y Jv,w. ®)
i=1

2.2. Security interdependence

Let the shared network of NCS (see Fig. 1) be subjected to a
Denial-of-Service (DoS) attack, and let this attack be implemented
by a malicious attacker who floods the network with a large vol-
ume of packets to overwhelm the network resources. In general,
the effects of a given DoS attack on NCS will depend on the network
configuration.? Here we consider the case of an uninformed at-
tacker, who knows that the NCS are identical, but lacks information
about the network configuration and the player security choices.

We model the failure probabilities for Pi as follows:

PO =17+ 0 -TPamn™)
pi(v) = & + (1 =T)an™), (9)

direct failure indirect failure

where ™ == Zj ; 7/ denotes the number of players (excluding Pi)
who have chosen V. In (9), the first term reflects the probability of
a direct failure, and the second term reflects the probability of an
indirect failure. The second term in (9) reflects player interdepen-
dence due to being networked and subjected to communication
losses at each time step. We assume that the failure probabilities
are identical for all t € Ng.

Next, we relate the terms in (9) with reliability and security. We
suggest that the first term in (9) models the probability of reliability
failure for Pi. Here y (resp. v) is the failure probability of Pi’s sensor
(resp. control) communication channel when all other players
Pj (j # i) choose to secure (n~* = 0). Under this interpretation,
the failure probabilities in our model coincide with the existing
NCS literature (Imer et al., 2006; Schenato et al., 2007), i.e., no
interdependence. From (9), the probability of reliability failure
becomes 0 when Pi invests in security. However, our results easily
extend to cases when Pi’s investment reduces this probability to a
non-zero (residual) value.

Similarly, we suggest that the second term in (9) models the
probability of security failure. Here o (™) is the failure probability
of Pi’'s communication channels when 5~ players (excluding Pi)

2 1n using the term “network configuration”, we mean network topology, link
capacities, etc.

are insecure. We assume thata : {0,1,...,m — 1} —> (0, 1) is
a strictly increasing function, and define

a = a(0),

Thus, in our model, the probability of security failure increases
when more players are insecure. To justify this assumption, con-
sider our game with an additional stage, on which an attacker
chooses his flooding rates on each link of the shared network. Let
this attacker choose the flooding rate to maximize the average op-
erational costs of each NCS, minus his cost of mounting the attack.
In a symmetric attacker equilibrium, an uninformed attacker de-
scribed above will flood the network uniformly. Moreover, if the
cost of attack is continuous and monotone increasing in flooding
rate, a higher flooding rate is optimal for the attacker when the
network is more insecure (i.e., n is higher). This gives two distinct
(yet complementary) explanations for our model (9) of NCS secu-
rity interdependence:

o :=ao(m-—1).

(i) In general, if a player invests in security, the security levels
of other players sharing the same network improve as well.3
Thus, with a higher number of secure players, probabilities of
security failure are lower. This corresponds to our assumption
that a(n™") increases with n7', and a(n~") depends on the
number of insecure players (and not on their identities).

(ii) In addition, since in an equilibrium of the game with an
uninformed strategic attacker, a higher flooding rate is optimal
for the attacker when the network is more insecure, the term
a(n™") increases with n ™" even faster than if one assumes that
flooding rate is constant (does not change with n™").

Thus, although our model does not explicitly consider a strategic
attacker, our assumption on «(n~") in (9) is aligned with a formal
model which includes a strategic attacker as an additional player.

2.3. Second stage LQG problem

For any fixed security choices V, the problem of minimizing Pi’s
expected second stage cost Ji(V,U') over u; = u;(¢/) becomes
an infinite horizon LQG problem defined by (3)-(6). We assume
that (A, B) and (A, Q'/?) are controllable, (A, C) and (A, G'/?)
are observable, and the maximum failure probabilities are below
certain thresholds, as derived in Schenato et al. (2007).% That is, for
(9):
7+ (-9 <7,
where the threshold probability y. (resp. V) depends on A, C, Q,
and R (resp. A, B, G, and H). In general, the minimum second stage
cost cannot be analytically expressed; however, Theorem 5.6 of
Schenato et al. (2007) provides analytical expressions for the upper
and lower bounds of this cost. To simplify the exposition, we
restrict our attention to the case of invertible C and R = 0, which
allows us to analytically express the minimum cost:

*V) = min JiV,u) =tr(S'(V)Q)

Ulsul=pl (z})
+7' Wt (ATSSWA+ G =S W)P'(Y)), (10)

where the matrices S'(V) and P!(V) are the respective positive
definite solutions of the following equations:

Siv) = ATSS(WA+G— (1 =7 (V)
x ATS'(V)B(BTS'(V)B + H)"'BTS'(V)A, (11)
P'(v) = P'(WAPI(WAT + Q.

b+ (1—D)a < i,

3 Examples of such security measures are intrusion prevention systems, switches
with packet inspection, firewalls, etc.

4 InSchenato et al. (2007) these expressions are given for the arrival probabilities
(1 — 7) and (1 — v;), while we work with y; and V.
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P2
S N

S | hdS,Sh+¢6 [US, SH+L | JUS ND + £ [AN, S
N | N, SD, TGS, N + ¢ JiGN,ND, AN, N

P1

S N
S 20;4S, Sh+0) JiS,ND + [{GN, SH+ ¢
N | S, ND + iGN, SH+ ¢ 2J; (AN N

Fig. 2. Objectives: 2-player game (top) and social planner (bottom).

In a general case, an estimate of minimum cost ]]}'*(V) can be
obtained via Monte-Carlo simulations. The following lemma shows
that Ji* (V) is strictly increasing in the failure probabilities:
Lemma 1. Let | < 7, and ¥} < 5. Then, J* < Ji%.

Proof. From (11) we note that S| < S} and P} < PJ. The proof
follows from (10). O

Example 2. Consider (3) for the scalar setting withd = 1,B = 1,
C = 1.Then Q, R, G, H are scalars. For |A] > 1,y = V. = A2,
From (10)-(11), the minimum cost J;*(V) can be expressed as:

V) =QS'V) + 7 WP OW)T' (V) (12)

(A2H+G—H)+\/(A2H+G—H)2+4GH(1—A2 bi(V))
A 2(1¢A261<V))
and T'(V) = ((A* = DS'(V) + G).

where Si(V) = JPI(V) =

Q
1-A27i(v)’
3. Equilibria for two player game

Consider a 2-player game, where the interdependent failure
probabilities are given by (9). For any fixed security choices V, each
Pi’'s minimum expected cost in the second stage j]f*(v) is given
by (10)-(11). Following (7), the player objectives for the second
stage subgame are presented in Fig. 2 (top). Following (8), the social
planner objectives are presented in Fig. 2 (bottom).

To derive optimal player actions in the first stage (security
choices V'), we will distinguish the following two cases:

If (13) holds and a player invests in security, the other player’s gain
from investing in security increases. However, if (14) holds, each
player’s decision to secure decreases the other player’s gain from
investing in security. In Sections 3.1 and 3.2, we present equilibria
for different £, and compare with social optima.

3.1. Increasing incentives

Let (13) hold, and let us define
o= AN ND = F S, D,

6= JF AN, 8D — JF (S, SD.

From Fig. 2 (top), we infer that if £ < ¢, (resp. £ > £;), {S, S}
(resp. {N, N'}) is unique Nash equilibrium. Thus, £, (resp. £7)is the
cut-off cost below (resp. above) which both players invest (resp.
neither player invests) in security. However, if £; < £ < £4, both
{s, S} and {N/, N} are individually optimal, i.e., the game has two
pure strategy Nash equilibria. From Fig. 2 (bottom), if £ < £3°, the
socially optimum choices are {S, S} with

6 =JF AN ND = JF (S, S). (15)

Case 1 social optimum
S SN

{S, S} (S, S} & (NN} [IN N}

61 El f-fb 5
Case 2(i) social optimum

(S, S},{S, NI&IN, S}HN, N}

(s.81 (SN & IN,S) | IN NI

A 7, 50 750 ¢
Case 2(ii) social optimum

(5,31 (S NI&IN, S) IN, N}

(8,811 (SN &UN.SI [N N L

A 5;0 7, 630 €

Fig. 3. Nash equilibria and social optima for different £.

For ¢ in the range 0 <t < £, individually optimal choices
are {N, N}, while the socially optimal choices are still {S, S}. If
¢ > £3, the individually and socially optimal choices coincide at
{N, N}. Case 1 of Fig. 3 summarizes pure strategy equilibria for dif-
ferent £. _

For £ in the range £, < £ < {4, a mixed strategy equilibrium
exists. Let 0! (resp. (1 — 6})) denote the mixing probability with
which Pi chooses S (resp. A). Then, P1’s mixing probability 6] is
such that the P2’s expected costs for both choices S or A are equal,
ie,

01 Fs, sh+ ]+ —-o) [Jrds, /) +¢]
= 017 (I, S + (1= DI (I, AD).
Simplifying the above equation, we obtain
-1 -
0l = ——=L fort e (£, ¢4).
1 51 — ﬁl L] 1)

By writing a similar equation for P1, it is easy to check that 912 = 911 .
Thus, mixed equilibrium is symmetric.

3.2. Decreasing incentives

Let (14) hold, and let us define

b = JF (AN, N = JF (S, AD).

Using Fig. 2 (top), we infer that if ¢ < £, (resp. £ > ¢5) then {s, S}
(resp. {N, N}) is unique Nash equilibrium. However, if £, < £ <
25, both {S, A} and {WV, S} are individually optimal. From Fig. 2
(bottom), if £ < €3 (resp.£ > £3°), the socially optimum choices
are {S, S} (resp. {N, N'}) with

& =N SH+IFds, ND =27 (s, s,

_ 16

Note that £5° can be either above or below £,. If £ < € < £,
both {S, N} and {N, S} are socially optimum choices. Case 2(i)
(resp. Case 2(ii)) of Fig. 3 summarizes the pure strategy equilibria
for different £ when ¢, < £5° (resp. £, > £3°).

Finally, a symmetric mixed strategy equilibrium exists for £ in
the range £, < £ < £, where each player invests in security with
probability:

6} =02 = ot
27

for € € (£,, €5).

We now provide an example system for each case of Fig. 3.



190 S. Amin et al. / Automatica 49 (2013) 186-192

Example 3. Case 1.let A = 0.80,G = Q = H = R = 1, and
y =V =« = a = 0.1. From (12), this system satisfies (13).
Case 2(i).LetA=12,G6=H=Q =R=1,y =v=0.1,a =
@ = 0.25. This system satisfies (14) and £, < £5. Case 2(ii). Let
y = v = 0.25 and all other parameters be as in Case 2(i). This
system satisfies (14) and £, > £5°.

In both increasing and decreasing incentive cases for the 2-player
games of Sections 3.1 and 3.2, the individual and socially optimal
security choices differ for a range of security costs. From Fig. 3, we
observe that players tend to under-invest in security relative to the
social planner. This reflects the presence of negative externalities.

4. Equilibria for m player game

We now extend the analysis of Section 3 to m-player games
(m > 2), where the interdependent failure probabilities are given
by (9). Consider the security choice of S or N for Pi (the pivot
player), and let the security choices of all other players be fixed.
Without loss of generality, let us assume that P1, ..., P(i—1) (resp.
P(i + 1), ..., Pm) have chosen S (resp. N). Let Vs, (resp. V)
denote the set of player security choices when the pivot player Pi
chooses S (resp. N') and the number of other players who have
chosen NVis .’ i.e.,

Vs, = {V|V1:"':Vi:S;Vi+1: ":Vm:,/\/’}7
VNJ? = {Vlvl:.":Viil:S;Vi:"'zvm:/\/}’
wherei =m — 1.

Let A(n) denote the gain of a player from investing in security
when 7 other players are insecure, i.e.,

Am) = OWny) =l Wsy), nef0,....m— 1} (17)
To derive optimal player security choices, we will distinguish
the following two cases (which generalize the increasing and

decreasing incentive cases for the 2-player games of Sections 3.1
and 3.2):

A(m) < A(n—1), forallne{l1,2,...,m— 1}, (18)
and
A() = A(n—1), forallne{l,2,...,m—1}. (19)

Thus, similar to (13), (18) corresponds to the case when the
decision of an extra player to invest in security increases the other
players’ gains from investing in security. Also, similar to (14), (19)
corresponds to the case when a player’s gain from investing in
security decreases as more players invest in security.

To derive the socially optimal security choices, letJ**°(n) denote
Fhe social.planner cost when n := ZjeM T players (in total) are
insecure, i.e.,

I = (m =) [Jf Vs.n) + €] + 0 Vnn-), (20)
wheren € {0, 1, ..., m}. Then, social optimumis {S, ..., S} (resp.
(N, ..., N} if€ < £5°™ (resp. £ > £5©™), where
eso,m
m —n)J*(Vs.n) — mJ*(V,
—  min { ( i Vs n) Ji' (Vs.0) +]]?<(VN,nfl)} ,
ne(l,....mj n
and
_ *Warm=1) — NFVarn—
Fsom _ max {mju ( N,m 1) H.[H( N.n l) _];(V.S,n)} )
ne{0,...,m—1} m-—n

Note that the thresholds £°>™ and £5>™ are such that

£ 5 A0), ™ > A(m—1). (21)

We now characterize the equilibria of the m player game, which
includes the determination of optimal player security choices.

5 We omit the superscript —i from ! = Zj#]- 7/ for notational simplicity.

4.1. Increasing incentives
Analogous to Section 3.1, we have:

Theorem 4. In the m player game (m > 2)with (18)imposed, a pure
strategy equilibrium exists, and is symmetric. Depending on the mag-
nitude of £ € R, the equilibrium is

{s,...,8 ife<en!

NV, .. N ifes> 8 (22)
{S,....8} or {N,... N} ifeMT <l <,

where ¢! := A(m — 1) and €9 := A(0).

Proof. First, with (18) imposed, the existence of symmetric pure
strategy Nash equilibrium (22) follows from adopting the construc-
tion of Section 3.1. Indeed, if £ < Eﬁ“‘l < A(n) forallnp € {0, ...,
m — 2} (resp. £ > £% > A(n) forally € {1,..., m — 1}), each Pi’s
dominant strategy is S (resp. N). Thus, {S, ..., S} (resp. {VN, ...,
N}) is unique Nash equilibrium. If £ < Z? (resp. £ > ZT”),
{s,...,S}(resp.{N, ..., N})is a Nash equilibrium. Hence, if ¢ is
in the range ¢ " < ¢ < %, both {S, ..., S} and {N, ..., N} are
equilibria.

Second, we show that no asymmetric equilibrium exists. As-

sume on the contrary that {S, ..., S, V..., N} is an equilibrium,
——
my players
i.e, whenP1, ..., P(m — m;) invest in security and Pmy, ..., Pm
do not. For P(m — m; + 1),
A(m; —1) < £, (23)

and for P(m — m;),

£ < A(my). (24)
Combining inequalities (23) and (24), we obtain

A(my — 1) < A(my),

which contradicts (18) for = my. The same contradiction can be
shown for any other asymmetric equilibrium. Thus, no asymmetric
equilibrium exists. O

From Theorem 4 and noting (21), we conclude that the individual
players tend to under-invest in security relative to the social opti-
mum. For € in the range £ < ¢ < £°°™, the individually optimal
choices are {V/, ..., A}, while the socially optimal choices are still
{s,..., S}

4.2. Decreasing incentives

Analogous to Section 3.2, we have:

Theorem 5. In the game of m players with (19) imposed, a pure
strategy equilibrium exists. Depending on the magnitude of £ € R,
equilibrium is {V!, ..., V™|V € {S, N'}}, where the number of in-
secure players is given by

0 ife<é
n={m ife>e3"! (25)
k oif s <e<el, ke{l,...,m—1},

and &, .= A@), j€{0,....,m—1}.
Proof. First, with (19) imposed, the existence of equilibrium fol-
lows by adopting the construction of Section 3.2. If ¢ < £° (resp.

{ > E'{H), all players invest (resp. no player invests) in security,
and {S, ..., S8} (resp. {N, ..., A})is an equilibrium. However, for
any k € {1,..., m — 1}, if £ is in the range

Ak —1) <l < A®K),
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the asymmetric equilibrium {S,...,S, N ..., N} exists where
——

k players
(m—k) players choose S and k players choose V. Thus, the number
of insecure players in any equilibrium is given by (25). O

From Theorem 5 and noting (21), we conclude that for £ in the
range 6’2“’1 < £ < £°*™ the individually optimal choices are {\/,
..., N}, while the socially optimal choices are not {N, ..., N},
i.e., at least some security investment is made.

Theorem 4 (resp. Theorem 5) characterizes the pure strategy
Nash equilibria for the case of increasing (resp. decreasing)
incentives. Since the m player game in both cases is symmetric,
a symmetric mixed equilibrium exists and can be computed
according to the following proposition:

Proposition 6. In the game of m players, an equilibrium mixing
probability 0 € (0, 1) is a solution of the equation:

m—1

(mj_ 1>(z—Au)) X ™11 — 9y = 0. (26)

=0

Proof. Any equilibrium mixing probability € is such that any Pi’s
expected costs for both choices S or A are equal. Player expected
costs for choosing S is

gm-1 (/H*(Vs,o) + g) + (T) O™ 2(1 —0) (]f(Vs,l) + Z)

R (m"_‘ 1) 0(1—0)"2 (i Vs.m-2) + £)

+(1 =)™ (F(Vsm1) +£).

Similarly, player expected cost for choosing NV is

o™ (7 (Vo) + (T) 0™ 2(1 - 0) () (V1))

m
+ ot (m B 1) 0(1 — )™ 2 (I (Vn.m—2))

+A =)™ (FVrm-1) -

Equating the above expressions and noting (17), we conclude that
mixing probability 6 € (0, 1) is a solution of (26). O

5. Discussion and concluding remarks

In this article, we investigated the incentives to invest in secu-
rity for players which operate interdependent and identical NCS.
We presented a new model of interdependent NCS, where the com-
munication failure probabilities faced by each player are depen-
dent on the security investments of other players. Due to network
induced externalities, the individual players tend to under-invest
in security (relative to the social planner).

We hope that our findings are relevant for analyzing the risks
of DoS attacks on the NCS governing critical infrastructures. It is
well accepted that in the near future, a large number of commodity
IT solutions will be deployed in critical infrastructures. A wider
deployment of smart devices is likely to result in a higher number
of players (higher m), a higher degree of interdependence between
the players (a higher second term in (9)), and also a higher
security cost £ due to the increased configuration (and overall
system) complexity. Thus, we expect that with the NCS becoming
increasingly IT-based, the magnitude of negative externalities, and
therefore the gap between the individually and socially optimal
outcomes only widens.

Security underinvestment in the presence of interdependencies
raises the possibility of major breakdowns, which would create
losses (due to higher costs) far beyond the NCS losses considered

here. Our model does not incorporate these extra losses, which
makes our estimates of security investments, including the socially
optimal ones, rather conservative.

An interesting extension of our work would be to explicitly
model a strategic attacker. Then the question would be to study
how the players’ security choices are affected by the attacker’s ob-
jective (e.g., maximizing the average operational costs of all the
NCS, or destabilizing a single NCS), and the constraints (e.g., avail-
able resources to mount the attack, and information about the net-
work configuration and the NCS parameters).
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