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Pricing Design for Robustness in Linear Quadratic Games 

Daniel J. Calderone, Lillian J. Ratliff, and S. Shankar Sastry 

Ahstract- We show that designing prices to induce a socially 
optimal Nash equilibrium that is robust to small parameter 
perturbations in a linear-quadratic game can be framed as 
a convex program. In addition, we use a similar analysis to 
develop convex conditions that guarantee that the induced 
equilibrium is stable with respect to small deviations in players' 
feedback strategies. 

I. INTRODUCTION 

Engineering problems involving decision making agents 
with competing interests are appearing more frequently in 
the literature as technology is integrated into infrastructure 
[1]-[4]. These types of problems can be modeled as dynamic 
games where competitive agents are strategic players seeking 
to optimize their own utility functions. In such scenarios, 
selfish agents often converge to Nash equilibria that are in­
efficient from a societal view point. As a result, it is desirable 
for a social planner to modify players' utility functions with 
pricing, taxation, or rewards so that the resulting equilibrium 
coincides with the socially optimal strategies. 

In the case of linear quadratic (LQ) games, Ratliff, et.a!' 
[5] showed that designing prices for coordination can be 
framed as a convex program. In this work, we show that 
a convex objective and a set of convex constraints can be 
added to this original program to design prices that induce 
an equilibrium that is robust to small perturbations in the 
game parameters. In general, perturbations in the parameters 
of an LQ game will cause the Nash equilibrium to shift and 
we seek to design prices to minimize this shift as much as 
possible. 

Designing control strategies which are robust to noise and 
parameter perturbations has been studied extensively in the 
literature (see, [6] and references therein). In addition, there 
is literature studying the stability of Nash equilibria (see, 
e.g. [7]-[9]). This work draws on these techniques and relies 
on a first-order perturbation analysis similar to that done 
in [10]. The program developed also serves to design prices 
that guarantee the stability of the induced equilibrium with 
respect to small deviations in the players' feedback strategies. 
This analysis could be considered an extension of the work 
presented in [7] to LQ games with more than two players. 

The rest of the paper is organized as follows. In Sec­
tion II, we review the pricing design problem for LQ games 
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presented in [5]. In Section III, we develop the theory for 
designing prices that are robust to parameter perturbations. 
We define a robustness objective and constraints that are 
incorporated into the optimization problem outlined in Sec­
tion II. In Section IV, we present numerical examples. In 
Section V, we show that similar theory can be used to 
guarantee that the Nash equilibrium is robust to perturbations 
in the players' strategies. In Section VI, we summarize the 
results and make remarks on future work. 

II. REVIEW OF PRICING DESIGN FEASIBILITY PROBLEM 

Consider a linear quadratic dynamic game with p players 
denoted as members of the index set I := {I, ... ,p}. Let 
Xi E jRni denote the state of the ith player (with dimension 
ni) and let Ui E jRmi denote the control input of the ith 
player (with dimension mi). Furthermore, let n := LiEI ni, 
m := LiEI mi, and 

X:= [xf u := [uf (1) 

The states are dynamically coupled and evolve under the 
following dynamics: 

(2) 

for some matrix A E jRnxn and Bi E jRnxmi for i E I. We 
assume that (A, [BI ... Bp]) is stabilizable. The ith player 
incurs the quadratic cost Ji given by 

where Qi E jRnxn, Qi ::: 0, and Ri E jRmxm is a symmetric 
matrix to be designed. We restrict player i's strategy space 
to be the set of causal, memory less state feedback controls 
(denoted by fi). A Nash equilibrium is a set of strategies 
{ui E fdiEI such that 

Ji(u;,U:'i) :s: Ji(Ui,U:'i) VUi E fi, Vi (4) 

where u:'i denotes the set of actions taken by players other 
than player i, i.e. -i := {I, . . .  , i-I, i+ 1, ... ,p}. When the 
players play a Nash equilibrium, no single one can achieve 
a lower cost by unilaterally changing his or her strategy. 

As in [5], the goal of the linear quadratic pricing problem 
is to design a set of matrices, {Rd iEI, such that players 
are induced to use feedback gains, {KdiEI; that is, {ui = 
-Kix }iEI becomes a Nash equilibrium for the game defined 
by the dynamics given in (2) and the costs given in (3). 
In general, {KdiEI would be the set of optimal feedback 
controls for some team optimization problem. Consistent 
with this, we make the assumption that {KdiEI stabilize 
the system. For notation purposes, we partition each Ri into 
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blocks, R�k E IRmj xmk. Note that since Ri is symmetric, it 
·k k· must be that R� = (RiJ)T for all j, k E I. 

For each individual player, applying the definition of a 
Nash equilibrium, i.e. plugging the other players' controls 
into the dynamics and into the individual player's cost, and 
then writing down the optimality conditions for that player's 
individual LQR problem gives a set of convex constraints 
in {RdiEI and {PdiEI. These constraints define the set of 
prices that induce the desired set of feedback strategies. This 
is the main result of [5] and is reproduced below. 

Theorem 1 (Pricing Design Feasibility Problem). If there 

exists {RdiEI and {PdiEI such that the convex feasibility 

problem below is feasible for all i E I, then {ui = 
-Kix hEI is a Nash equilibrium of the linear quadratic 

game defined by (2) and (3). 

Pi t 0 

R�i � 0 

Hi ] � 0 Ri" -
- T - - T ii (Ai) Pi + Pi(Ai) + Qi - (Ki) Ri Ki = 0 

where 

T - T ii (Bi Pi + (Ni) ) = Ri Ki 

(5) 

(6) 

(7) 

(8) 

(9) 

Ai := A - L#i BjKj (10) 
- "k Qi:= Qi + L#i Lk#i(Kj)T R� Kk 
Hi := - L#i(Kj)T R�i. (11) 

We note that, in general, when such prices {RdiEI exist, 
they are not unique affording us the opportunity to add 
objective functions of the values of {RihEI and {PdiEI to 
the convex program defined above in order to choose prices 
with desirable properties. In [5], we propose several objective 
functions the most interesting of which is a convex objective 
to make the sum of the individuals' costs after pricing as 
close as possible to some societal cost. This is referred to as 
forcing the prices to be revenue neutral. 

In the current work, we present a new set of convex con­
straints and objective terms that when added to the program 
in Theorem 1 seek to minimize the effect of perturbations in 
the game parameters on the Nash equilibrium of the game 
and also make the equilibrium stable to small perturbations 
in the players' strategies. We first discuss pricing design for 
robustness to parameter perturbations. 

III. DESIGNING PRICES FOR ROBUSTNESS TO 

PARAMETER PERTURBATIONS 

A. Perturbations to the Solution Sets of Coupled Riccati 

Equations 

To simplify notation, we define three vector spaces, 

Z := IRnxn x IIiEIIRnxmi x IIiEIIRnxn x IIiEIIRnxn 
(12) 

that contains the parameters of p coupled Riccati equations, 

(13) 

that contains the cost-to-go matrices for each of the p players 
in the game, and 

(14) 

that contains the gain matrices for each of the players. Let 
Z := [A BI ... Bp QI ... Qp RI . . .  Rp] denote an element 
of Z, P := [Pl ... Pp] denote an element of P, and K := 
[KI . . .  Kp] denote an element of K. For a subset Ia � I, 
we will use Pa to denote the subspace of P corresponding 
to the players in index set Ia and Pa to denote an element 
of that subspace. Similarly for Ka and Ka. 

We use the standard arrow notation -;' to denote the vec­
torized form of each of these objects stacked column-wise 
in the usual way. We now define a Riccati operator for each 
player, Fi : Z x P x K -7 IRnxn, as 

Fi(Z,P,K) := (A- LBjKjfpi+Pi(A- LBjKj) 
#i #i 

+ Qi - (PiBi - LKJR�i)(R1i)-I(BTpi - LR�jKj) 
#i #i 

+ L L KJ R�k Kk for i E I (15) 
#i k#i 

and a gain operator for each player, Gi Z x P x K -7 
IRmixn, as 

Gi(Z, P, K) := R�i Ki + L R�j Kj - BT Pi for i E I. 
#i 

(16) 

We also define several combined operators for the entire 
system, FO := [FlO·· . FpO], GO := [GI 0 ... GpO], 
and LO := [FO GO]. By definition, the Nash equilib­
rium of a linear quadratic game for a given set of parameters, 
Z, is implicitly defined as the solution, (P, K), to the 
equation 

L(Z, P, K) = o. (l7) 

In general, finding solutions to (17) for a given parameter 
set Z is a difficult problem and a topic of ongoing research. 
However, in the case of the pricing design problem, we 
are guaranteed a solution since we are given K and we 
design {Ri} iEI (and thus {Pi} iEI) such that (17) is satisfied. 
Thus in this context, it is reasonable to ask how does the 
Nash equilibrium shift with perturbations in the problem 
parameters and how can we design prices to mitigate this 
shift. In order to do this, we will invoke the implicit function 
theorem, and to this end, we enumerate the partial derivatives 
of the operators defined above. 

We denote the matrix form of the partial derivative of 
Fi with respect to some subset X � Z x P x K as Fi,x. 
Similarly, we denote the partial derivatives of Gi, F, G, and 
L with respect to X as Gi,x, Fx, Gx, and Lx respectively. 
The partial derivatives of Fi and Gi with respect to various 
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In 0 pt + (Pt 0 In)IIp 
-(Pi 0 KnIIp - KJ 0 Pi 
In 0In 
KT0KT 
K'{ 0KJ 
KT0KJ 
KJ0KT 

;X=A 
;X=Bj,Vj 
;X =Qi, 
;X =Rli -(Pt 0 ImJIIp 

KT 0Imi 
;X=Bi 
;X=R1i ; X = Rik, j, k =J- i 

;X = Ri\j =J- i 
KJ 0Imi 
-In 0 BT 

; X = R? ,j =J- i 
;X=Pi 
;X=Ki 

In 0 A�L + A�L 0 In 
; X = R? ,j =J- i 
;X=Pi In 0 Rli 

In 0 R;j ; X = Kj, j =J- i 
; otherwise In 0 (-PiBj + KT R�j + �k7'i K'{ R7j) o 

+ ( -PiBj + KT R�j + �k7'i K'{ R7j) 0 InIIp 
o 

; X = Kj, j =J- i 
; otherwise 

subspaces are given in Equation (18). We also have that 

and similarly for FK and GK. We also define LpK and Lz 
as 

LKJ = [Fp 
Gp 

FK] [Fz] GK ,Lz:= Gz . (20) 

Note that Fp and G p are block diagonal since Fi,Pj = 0 
and Gi,?; = 0 for j -I- i. (IIp is defined as the permutation 

matrix of appropriate dimensions such that (XT) = IIpX 
for X E ]Rnxm.) 

Given an initial set of parameters, Z, and the resulting 
equilibrium, (P, K), a small perturbation in the parameters, 
Z + aZ, will lead to a perturbation in the equilibrium, (P + 
a P, K + a K) . Up to first order, (a P, a K) can be calculated 
using the implicit function theorem as 

[a�] = _ [Fp 
aK Gp 

FK] -1 [Fz] ai GK Gz (21) 

assuming that Lp K is invertible. (See Theorem CAO in [l1] 
for details.) To design prices to induce feedback strategies, 
K, and make them robust to perturbations, we need to ensure 

that there exists a bound 1i such that laKI < 1i lail and 

to minimize 1i as much as possible. (Enforcing a bound on 

laKI will also ensure that lapi is bounded though we will 

not focus on minimizing lapl.) 
To this end, we review the matrix inversion lemma. 

Lemma 1. For a block matrix 

L:= [� �] (22) 

where A is square and invertible, L is invertible if and only 

if D - CA-1 B is invertible. 

Assuming that ACL is stable, we have from Equation (18) 
that Fp is invertible. Thus Lemma 1 applies to LpK. In 

(18) 

addition, we can calculate 

aK = - [?K - GpF;;1 FKJ -1 [?z - GpF;;1 FzJ ai. 
y v 

:= Hpz 

(23) 

(See Section 9.1.5 of [12] for details). Thus to control the 
size of aK, we need to ensure that HpK is invertible and to 
minimize IHill and IHpzl . We first consider how to bound 
I Hill· (We use 1·1 to represent the 2-norm of a vector or 
the induced 2-norm of a matrix depending on context.) 

B. Convex Constraints for Bounding IHill 
Lemma 2. Let A be a square block matrix of the form 

A = 
[A

:
ll 

AnI 
where Aii are also square. If 

CTmin(Aii) > nt + L IAijl 
#i 

Vi 

(24) 

(25) 

for t > 0, where CTmin is the minimum singular value, then 

CTlIlin(A) > t. (26) 

Consequently, A is invertible and lA-II < t. 
This could be considered a block matrix extension to the 

Gerschgorin Circle Theorem (Theorem 3.2.1 in [13 j). 

Proof First note that for A square 

CTmin(A) = min IAxl . (27) 
Ixl=1 

We prove the contrapositive. Suppose not (26). It follows 
that there exists a non-zero vector x of unit norm such that 

IAxl ::; t. (28) 

We decompose x into components that agree with the di­
mensions of the blocks of A 

x:= [xi·· .x�f· (29) 
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Let i be an index such that 

Vj -1= i. 

Calculating Ax and considering the i-th piece gives 

t;::: I(Ax) il ;::: IAiiXil - L -AijXj 
#i 

(30) 

(31) 

;::: O",nin(Aii) IXil - L IAijllxjl (32) 
#i 

;::: (O"min(Aii) - L IAijl ) IXil · (33) 
#i 

Noting that IXi I ;::: � gives (25). 
Since O"'nin(A) > t > 0, A is obviously invertible and 

since 
1 lA-II = O"max(A-

I) = 
O"min(A) 

, (34) 

we have that lA-II < t. • 
Since F p and G p are block diagonal, calculating H p K from 
Equations (18) gives that the i,jth block of HpK is given 
by 

We note that Fi,K; = 0, and thus [HpKLi = Gi,K;. Thus 
we can apply Lemma 2 to get the following theorem. 

Theorem 2. If 

O"lIlin (Gi,KJ ;::: nt + L I Gi,K.; - Gi,p, (Fi,pJ-I Fi,Kj I 
#i 

(36) 
for all i, then H p K is invertible and I Hp II < t· 

Proof The proof is a straight forward application of 
Lelmna 2 to Equation (35). • 
Since Gi,K; is positive definite and O"min ( - ) is concave on the 
set of positive definite matrices, the LHS of (36) is concave. 
Since Gi,Pi and Fi,Pi are constant and Gi,Kj and Fi,Kj 
are affine in the optimization variables, the RHS of (36) is 
convex in the original optimization variables and t. Thus the 
conditions in (36) form a set of convex constraints that can 
be added to our optimization program to control I Hp ll. 
e. Convex Objective for Minimizing IHpzl 

We note from (18) that G P and Fp are constant given 
the problem parameters, and F z and G z are affine in the 
optimization variables. Thus IHpzl is a convex function and 
can be added to our program as an objective. 

D. Convex Program for Robust Pricing Design 

In order to reduce IHplllHpzl , we can add the following 
objective and constraints to our original program. 

1 
min -t IHpzl 

t,{Ri,PdiEI 
(37) 

s.t. (36) satisfied, t > O. 

To obtain a convex objective function, we substitute the 
objective in (37) for the convex objective 

min 
t,{R"Pd'EI 

s.t. 

1 2 tlHpzl 
(36) satisfied, t > O. 

(38) 

We do not make a rigorous argument for doing this. The 
objective in (38) is only an upper bound on the objective in 
(37) when IHpzl ;::: 1; however, the two objectives behave 
similarly for IHpzl > 0 and t > O. 

The addition of (38) to our original convex program 
ensures that H p K is invertible and helps to reduce 
I Hp II I H p z I· We can also add a weighting matrix, W z � 0, 
to the objective function in (38), i.e. 

1 2 
- IHpz Wzl , t (39) 

to account for any prior we have on the size of likely 
parameter perturbations. 

IV. NUMERICAL EXAMPLES 

In this section, we construct several numerical examples 
to demonstrate the robustness objective and constraints. We 
solve the convex program using code written in MATLAB 
that employs YALMIP [14]. For the examples that follow, 
we consider the dynamical system defined by 

[��l = [0�235 �� °O�55l [��l + hX3 [��l 
X3 0.5 0.5 -1 X3 U3 

(40) 

where hX3 is the identity matrix in jR3X3. Each player has 
a nominal cost defined as follows: for each i E {I, 2, 3}, 
Qi = Q where 

[Qljk := { 
0.1, 0, 

and Ri = R where 

1, 0.1, 0, 

if k = j 
otherwise 

if k = j 
if k -1= i, j -1= i 
otherwise. 

(41) 

(42) 

We determine the desired equilibrium, {KdiEI, by solving 
the centralized LQR problem with cost given by the sum of 
the players' nominal costs. 

A. Perturbations in the Dynamics 

In this first example, we consider perturbations in the 
system dynamics given in Equation (40). We calculate pric­
ing matrices with various combinations of the robustness 
constraints and the robustness and revenue neutral objectives. 
For the robustness objective, we use a weighting matrix, W z , 
(as shown in Equation (39)) given by 

WA = diag(cIvec(IAI)) 
WE = In2xn2. 

(43) 
For this example, we chose CI = 1.5. 
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Fig. l. Bound on perturbations in K (N) resulting from varying Cl in the 
prior W A. The results depicted are from solving the pricing optimization 
problem with the revenue neutral objective. 

wi Robustb wlo Robust 

wi Revenuec 
wlo Revenue 

aN:= IHpJ,.IIHpzWzl 
bRobustness objective and constraints 
cRevenue neutral objective 

TABLE I 

PERTURBATIONS IN K UNDER DIFFERENT PRICING OPTIMIZATION 
PROBLEM SOLUTIONS. THE TABLE INCLUDES THE VALUES OF N FOR 
THE DIFFERENT COMBINATIONS OF OBJECTIVES AND CONSTRAINTS. 

We define 1i := IHp](I IHpzWzl . In Table I, we report 
1i under the various combinations of constraints and objec­
tives. It is clear that the robustness objective and constraints 
greatly improve (by at least an order of magnitude) the bound 
on the perturbations in the feedback gains. 

B. Varying Weighting Matrix W A 

We vary the constant C1 to show the effect of changing 
the ratio between expected perturbations in the system matrix 

A and expected perturbations in B and plot 1i for different 
values of C1. The results in Figure 1 are with the revenue 
neutral objective and the results in Figure 2 are without 
the revenue neutral objective. From the figures, one can 
see that the robustness objective and constraints improve 
the robustness bound in both cases, but in particular from 
Figure 1, we see that without the robustness objective and 
constraints, the revenue neutral objective can lead to prices 
with a very poor robustness bound. 

V. DESIGNING PRICES FOR ROBUSTNESS TO 

PERTURBATIONS IN PLAYERS' FEEDBACK STRATEGIES 

In addition to allowing us to design prices against the 
possibility of perturbations in the problem parameters, we 
can extend this analysis to design prices for robustness to 
perturbations in various players feedback controls. If a subset 
of players plays a set of feedback strategies different from 
their Nash strategies and then the other players play Nash 
in response, the set of players' strategies will shift away 
from the Nash equilibrium. However, unlike in the case of 
parameter perturbations after one such iteration, the game 

Fig. 2. Bound on perturbations in K (N) resulting from varying Cl in the 
prior W A. The results depicted are from solving the pricing optimization 
problem without the revenue neutral objective. 

will no longer be at a Nash equilibrium because any subset 
of the players who deviated originally could re-optimize 
and improve their strategies. Thus a deviation in a subset 
of players' feedback strategies could lead to a back and 
forth iterative process where at each step some subset of 
players is playing Nash with respect to each other while 
the other players' controls remain fixed. We can extend the 
above analysis to cover this case of perturbations in {KdiEI 
by treating the controls of the players that played Nash at 
the previous step to be problem parameters for the players 
playing Nash at the current step. We consider a simplified 
case where the players are divided into two groups denoted 
by index sets 'La and'Lb where 'La U'Lb = 'L and 'La n'Lb = 0. 
The first group initially deviates from their Nash strategies, 
the second group then plays Nash in response, the first group 
then plays Nash in response to the second group, and so on. 
We can approximate the deviation in group a's controls in 
response to a deviation in group b's controls as 

[8Pa] [Fa P Fa,Ka] -1 
[Fa,Pb Fa,Kb] [8�b ] . 8Ka = 

- Ga',p: Ga,Ka Ga,Pb Ga,Kb 8Kb 
(44) 

Since Fa,Pb and Ga,Pb are both 0, we only need to consider 
the perturbations in Ka and Kb . Thus similar to Equation 
(23), we can calculate 

� 1 � 8Ka = 
-
(HpaKJ- (HPaKb) 8Kb (45) 

where 

(46) 
(47) 

If 8Kb was initially a response to a previous perturbation in 
8Ka, we can calculate the total effect of one back and forth 
iteration on group a's controls, 8K;}: , as 

� + (-1 ) ( -1 ) � 8Ka = HPaKaHPaKb HpbKbHPbKa 8Ka· (48) 
We want to find a condition such that this update map from 
8Ka to 8K;}: is a contraction. To this end, we state the 
following lemma. 
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Lemma 3. For a block matrix 

A:= [All A21 
IAI;::: IAlll· 

(49) 

(50) 

The proof is trivial and is omitted. The result states that the 
norm of a matrix cannot increase by removing any number 
of rows or columns. 

Theorem 3. If H P K satisfies the conditions of Theorem 2 

and 

(5\) 

then HPaKa is invertible and 

C I HPalKaHPaKb I < t (52) 

for any two index subsets Ia, Ib <;;; I. 

Proof A simple calculation shows that the blocks of 
HPaKa have the same form as Equation (35) except for i E 
Ia and j E Ia. Thus applying Lemma 2 to HPaKa' we have 
that it is invertible and the norm of its inverse is bounded by 
.! if t 

'" ICiK. - CiP( FiP)-l FiKI � ' J  , t. , t , J jEIa,ji.i 
(53) 

for all i E Ia. Clearly, if HpK satisfies (36), then HPaKa 
satisfies (53). Since HPaKb is a subblock of HpK by Lemma 
3, I HPaKbI :s; IHpKI :s; C and Equation (52) holds. • 
We now state a condition that guarantees that two groups of 
players iteratively playing Nash in response to each other 
after an initial perturbation in one group's controls will 
converge back to the Nash equilibrium. 

Theorem 4. Let Ia <;;; I and Ib <;;; I be index sets such 

that Ia U Ib = I and Ia n Ib = 0. If H P K satisfies 

the conditions in Theorem 3 for t > 1 and C < 1 (and 

thus IHp](IIHpKI < 1), then for small enough initial 

perturbations in Ka or Kb, players Ia and Ib iteratively 

playing Nash in response to each other will eventually 

converge back to the original Nash equilibrium. 

Proof We show that the update map in Equation (48) 
is a contraction. By Theorem 3, both 

and I Hp&lK& HP& Ka I < 1 

(54) 

and thus laK:1 < a laKal for some a < 1. The same holds 

true for aKb. • 
This result is similar to the one presented in [7] and could be 
considered an extension to LQ games where there are more 
than two players. 

Numerical techniques for calculating Nash equilibria of 
LQ games are limited (i.e. the only methods proven to 
converge are limited to the two player case where the Ri's 

are diagonal.) We conjecture that if the R/s are forced 
to be diagonal, the set of pricing matrices that induces a 
desired equilibrium K is unique which does not give us 
freedom to select between prices. In addition, from running 
the simulations for Section IV, we also conjecture that non­
zero off-diagonal terms in the R;'s are critical for designing 
prices that achieve stability of desired Nash strategies. For 
these reasons, we leave numerical simulations of the results 
in Section V for future work. 

VI. CONCLUSION 

In this paper, we presented additions to the convex pricing 
design program presented in [5] that can be used to design 
prices that reduce the effect of parameter perturbations on 
the Nash equilibrium of the game as well as ensure that the 
Nash equilibrium is stable with respect to small perturbations 
in the players' strategies. In the future, we plan to explore 
the trade-oft·s between the various objectives such as the 
revenue neutral objective and the robustness objective, better 
characterize the feasible set of prices that achieve different 
levels of robustness, explore better numerical techniques 
for calculating Nash equilibria of LQ games, and possibly 
explore designing prices that induce global stability of Nash 
equilibria in LQ games as opposed to just local stability. 
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