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Abstract. In this paper, we formulate a three-player three-stage Colonel
Blotto game, in which two players fight against a common adversary. We
assume that the game is one of complete information, that is, the play-
ers have complete and consistent information on the underlying model of
the game; further, each player observes the actions taken by all players
up to the previous stage. The setting under consideration here is similar
to the one considered in our recent work [8], but with a different infor-
mation structure during the second stage of the game; this leads to a
significantly different solution.

In the first stage, players can add additional battlefields. In the
second stage, the players (except the adversary) are allowed to trans-
fer resources among each other if it improves their expected payoffs,
and simultaneously, the adversary decides on the amount of resource
it allocates to the battle with each player subject to its resource con-
straint. At the third stage, the players and the adversary fight against
each other with updated resource levels and battlefields. We compute the
subgame-perfect Nash equilibrium for this game. Further, we show that
when playing according to the equilibrium, there are parameter regions
in which (i) there is a net positive transfer, (ii) there is absolutely no
transfer, (iii) the adversary fights with only one player, and (iv) adding
battlefields is beneficial to a player. In doing so, we also exhibit a coun-
terintuitive property of Nash equilibrium in games: extra information to

? The corresponding author for this article is Abhishek Gupta. Research was sup-
ported in part by AFOSR MURI Grant FA9550-10-1-0573, and in part by NSA
through the Information Trust Institute of the University of Illinois. The research
by Galina Schwartz is supported by NSF grant CNS-1239166, which provides funding
for a frontier project FORCES (Foundations of Resilient CybEr-Physical Systems),
NSF grant CNS-0910711, and by TRUST (Team for Research in Ubiquitous Secure
Technology), which receives support from the NSF (#CCF-0424422) and the follow-
ing organizations: AFOSR (#FA9550-06-1-0244), BT, Cisco, DoCoMo USA Labs,
EADS, ESCHER, HP, IBM, iCAST, Intel, Microsoft, ORNL, Pirelli, Qualcomm,
Sun, Symantec, TCS, Telecom Italia, and United Technologies.



a player in the game does not necessarily lead to a better performance for
that player. The result finds application in resource allocation problems
for securing cyber-physical systems.

1 Introduction

The Colonel Blotto game is a two-player complete-information static non-cooperative
game, in which two resource-constrained players fight against each other on a
fixed number of battlefields. The players decide on the allocation of resources
on each battlefield subject to their resource constraints. On each battlefield, the
player deploying the maximum resource is declared the winner of that battlefield
and accrues certain payoff. The goal of each player is to maximize the expected
total number of battlefields that he/she wins.

The setup of the Colonel Blotto game is found naturally in several engineering
and economic systems. Consider, for example, a data center with multiple servers
under attack from a hacker. Each server can be viewed as a battlefield with the
data center and the hacker viewed as the two players. Each player has limited
computational resource to deploy – the data center deploys resource for securing
the servers, and the hacker deploys resource for hacking the servers. The resulting
game is captured by the Colonel Blotto game. Similarly, the competition between
two research companies that are deploying their resources in different projects
can also be analyzed within the framework of the Colonel Blotto game.

The Colonel Blotto game in which both players have equal resources and
there are three battlefields was first solved in [3]. This result was later extended
to the case of symmetric resources and arbitrary number of battlefields in [7].
In the same paper, the authors computed the Nash equilibrium for the case
of asymmetric resources and two battlefields. However, Colonel Blotto game
with asymmetric resources and three or more battlefields remained open until
2006, when Roberson established the existence of a Nash equilibrium in mixed
strategies, and computed the (mixed) equilibrium strategies of the players in
[14]. A similar setup was also considered in [13], in which the resource levels of
both players were considered to be equal.

The work of Roberson sparked great interest in the field; numerous theoretical
extensions of the game followed after 2006. In particular, [11] and [12] considered
two-stage Colonel Blotto games. In [11], the authors identified situations in which
adding battlefields during the first stage of the game is beneficial to the players.
In [12], the authors considered a three-player Colonel Blotto game, in which
the first two players fight against a common adversary. They have identified
conditions under which forming a coalition could be beneficial to both players.
However, they do not obtain a Nash equilibrium of the game.

Applications of the Colonel Blotto game has also received attention. Refer-
ences [4] and [5] studied phishing attacks and defense strategies over the inter-
net. References [1] and [2] conducted experimental studies of the Colonel Blotto
game with human subjects, and proposed a novel decision procedure, which
the authors called multi-dimensional reasoning. Another interesting experimen-
tal paper is [10], where the authors study social interactions using a Facebook



application called “Project Waterloo”, which allows users to invite both friends
and strangers to play Colonel Blotto against themselves.

Recently, we have formulated in [8] a three-stage Colonel Blotto game with
hierarchical information structure, in which two players fight against a common
adversary. In that paper, the problem formulation was as follows: At the first
stage, the players may add battlefields. At the second stage, the game has a
hierarchical information structure; the players may transfer some resources to
each other, and the adversary has access to the amount of resource transferred.
Based on this information, the adversary decides on its allocation of resources for
the battles against the two players. At the third stage, the adversary fights two
battles against the two players with the updated resource levels and battlefields.
We further assumed that this is a game of complete information, that is, at any
stage, all players including the adversary have access to all the information that
has been generated in the past stage(s), and this is common knowledge.

This paper also considers a similar setup as in [8], but with a different in-
formation structure. In [8], we have assumed that the adversary has access to
the information about the amount of resources that are transferred between the
players during the second stage. In this paper, on the other hand, we assume
that the adversary does not have access to that information. In other words, the
transfer between the two players and the resource allocation of the adversary
towards the two battles happen simultaneously3. This leads to a very different
Nash equilibrium. One of the primary goal of this paper is to underscore the
importance of information structure in the allocation of resources in a class of
Colonel Blotto games. Furthermore, this study also provides insight on “what
information about the formation of a strategic alliance should be made public”
in such games. The information that is made public in a strategic alliance be-
tween two cyber-physical systems may have severe repercussions on the security
and vulnerabilities of those systems if they are attacked by a strategic adversary.

1.1 Outline of the Paper

We formulate the three-stage three-player Colonel Blotto game problem and
identify several outstanding issues in Section 2. Thereafter, we recall the Nash
equilibrium and the equilibrium expected payoffs to the players in the classical
static two-player Colonel Blotto game in Section 3. The discussion in this section
is based on [14]. In Section 4, we compute the subgame-perfect Nash equilibrium
of the game formulated in Section 2 for three specific cases. We also discuss and
comment on the Nash equilibrium obtained in that section. We provide some
concluding discussions and state the future directions that the research can take
in Section 5.

Before we discuss the general setup of the game, we introduce a few notations
in the next subsection.
3 In decision problems, when decision makers act simultaneously, then it does not

necessarily mean that they act at the same time instant; it simply means that a
decision maker may not have access to the action of the other decision maker who
may have acted in the past. The two cases require the same analysis.



1.2 Notations

For a natural number N , we use [N ] to denote the set {1, . . . , N}. R+ and Z+

denote, respectively, the sets of all non-negative real numbers and non-negative
integers. Let Xi, i ∈ [N ] be non-empty sets. If x1 ∈ X1, . . . , xN ∈ XN are ele-
ments, then x1:N denotes the sequence {x1, . . . , xN}. Similarly, X1:N denotes the
product space X1 × · · · × XN .

2 Problem Formulation

In this section, we formulate a three-player three-stage Colonel Blotto game.
The first two players are fighting against an adversary, call it A, who is the third
player in the game. Henceforth, we use Player 3 and A interchangeably to refer
to the adversary. Each player is endowed with some resources at the beginning
of the game. We use βi and α, respectively, to denote the initial endowment of
the resources of Player i ∈ {1, 2} and the adversary. At the beginning of the
game, for every Player i ∈ {1, 2}, there are ni ≥ 3 battlefields, each with payoff
vi, at which the battle between Player i and the adversary will take place.

During the first stage of the game, each of the first two players may add
additional battlefields at some cost. During the second stage of the game, the
first two players may exchange resources among themselves if it improves their
payoffs, while the adversary decides on the allocation of resources to fight against
the first two players. At the final stage, the players fight against the adversary
with updated battlefields and resources. We consider here a game of complete
and perfect information.

2.1 Information Structures and Strategies of the Players

At the first stage of the game, the players know all the parameters and the model
of the game, and we assume that this is common knowledge. Player i ∈ {1, 2}
decides on mi ∈ Z+, the number of battlefields he/she wants to add to the
existing set of battlefields and pays a total cost of cm2

i . The adversary does not
take any action at the first stage.

At the second stage of the game, all players, including the adversary, observe
the number of battlefields (m1,m2) that were added. At this stage, the first two
players decide on the transfers: Player i chooses a function ti,j : Z2

+ → [0, βi]
which takes the number of battlefields added by the players, (m1,m2), as input,
and outputs the amount of resource he/she transfers to Player j 6= i, where
i, j ∈ {1, 2}. These functions have to satisfy the following constraint:

ti,j(m1,m2) ≤ βi, for all m1,m2 ∈ Z+, j 6= i.

The adversary does not observe the transfers among the players, and decides
on functions αi : Z2

+ → [0, α] with the constraint

α1(m1,m2) + α2(m1,m2) ≤ α, for all m1,m2 ∈ Z2
+.



We use ri to denote the amount of resource available to Player i ∈ {1, 2}
after the redistribution of resources. This is given by

ri := ri(t1,2, t2,1) = βi + (tj,i − ti,j) i 6= j, i, j ∈ {1, 2}.

For a given triple αi, ri ∈ R+ and mi ∈ Z+, let us define the sets

Ai(αi,m1:2) :=

{
{αi,k}ni+mi

k=1 ⊂ R+ :

ni+mi∑
k=1

αi,k = αi(m1,m2)

}
,

Bi(ri,mi) :=

{
{βi,k}ni+mi

k=1 ⊂ R+ :

ni+mi∑
k=1

βi,k = ri(t1,2, t2,1)

}
.

At the final stage of the game, Player i and the adversary play the usual static
two-player Colonel Blotto game on ni +mi battlefields, with Player i having ri
and adversary having αi amounts of resource. Thus, given the resource levels
ri of Player i, i = 1, 2, and αi of the adversary, the action spaces of Player i
and the adversary are, respectively, Bi(ri,mi) and Ai(αi,mi). If ni ≥ 3, then
there is no pure strategy Nash equilibrium of Player i and the adversary at
the final stage. Thus, given the resource levels of the players, Player i and the
adversary, respectively, decide on probability measures µi ∈ ℘(Bi(ri,mi)) and
νi ∈ ℘(Ai(αi,mi)) over their respective action spaces.

Henceforth, we use γi := {γi1, γi2, γi3} to denote the strategy of Player i ∈
{1, 2, A}, which is defined as follows:

γi1 := mi, for i ∈ {1, 2},
γ1

2(m1,m2) := {t1,2(m1,m2)}, γ2
2(m1,m2) := {t2,1(m1,m2)},

γA2 (m1,m2) := {α1(m1,m2), α2(m1,m2)}
γi3(m1,m2, t1,2, t2,1) := {µi}, i ∈ {1, 2},
γA3 (m1,m2, t1,2, t2,1) := {ν1, ν2}.

Thus, each γi is a collection of functions; we denote the set of all such γis by Γ i.

2.2 Payoff Functions of the Players

Consider the game between Player i and the adversary at the third stage of the
game. Let us use βi,k and αi,k to denote, respectively, the amounts of resource
Player i and the adversary deploy on battlefield k ∈ [ni+mi]. On every battlefield
k ∈ [ni + mi], the player who deploys maximum amount of resource wins and
receives a payoff vi. In case of a tie, the players share the payoff equally4. We

4 It should be noted that if players play according to the Nash equilibrium strategies on
the battlefields, then the case of both players having equal resource on a battlefield
has a measure zero. Therefore, in equilibrium, the tie breaking rule does not affect
the equilibrium expected payoffs.



let pi,k(βi,k, αi,k) denote the payoff that Player i receives on the battlefield k,
which we take to be given by

pi,k(βi,k, αi,k) =

vi βi,k > αi,k,
vi
2 βi,k = αi,k,

0 otherwise,

for i ∈ {1, 2} and k ∈ [ni + mi]. The payoff to the adversary on a battlefield k
in the battle with Player i is given by

pAi,k(βi,k, αi,k) = vi − pi,k(βi,k, αi,k).

We take the expected payoff functionals of Player i and the adversary as

πi(γ
1:3) = E

[
ni+mi∑
k=1

pi,k(βi,k, αi,k)

]
− cm2

i , i ∈ {1, 2},

πA(γ1:3) = E

[
2∑
i=1

ni+mi∑
k=1

pAi,k(βi,k, αi,k)

]
,

where the expectation is taken with respect to the probability induced on the
random variables {βi,k, αi,k}i,k by the choice of strategies of the players in the
game. The model of the game and the payoff functions are common knowledge
among the players. The Colonel Blotto game formulated above is referred to as
CB(n, β, α, v, c).

We now define the Nash equilibrium of the game formulated above. The set
of strategy profiles {γ1?, γ2?, γA?} is said to form a Nash equilibrium of the game
if it satisfies

πi(γ
1:2?, γA?) ≥ πi(γi, γ−i?, γA?), i ∈ {1, 2}

πA(γ1:2?, γA?) ≥ πA(γ1:2?, γA)

for all possible γi ∈ Γ i, i ∈ {1, 2, A}, where γ1:2 := {γ1, γ2}.
The set of all subgame-perfect Nash equilibria (SPNE) of a complete infor-

mation game is a subset of all Nash equilibria of the game, and they can be
obtained using a dynamic programming type argument (for precise definition,
see [6]). In Section 4, we compute the SPNE of the game formulated above.

2.3 Research Questions and Solution Approach

At the outset, it is not clear what kind of solution we would expect in such
a game. We are particularly interested in investigating the conditions on the
parameters of the game, under which the following scenarios are possible:

1. There is a positive transfer from one player to another. Since this is a non-
cooperative game, the transfer should increase or maintain the payoffs to
both players - the player who transfers resources and the player who accepts
the transfer.



2. There is no transfer among the players at the second stage.
3. The adversary allocates all its resource to fight only one player.
4. The players have an incentive to add new battlefields.

We first recall some relevant results on the two-players static Colonel Blotto
game from [14]. Solving the general problem formulated above is somewhat diffi-
cult due to the discontinuity of the expected payoff functions in the endowments
of the players in the static game. Therefore, we restrict our attention to a sub-
set of all possible parameter regions in order to keep the analysis tractable. We
compute the parameter regions which feature the scenarios listed above.

3 Relevant Results on the Static Two-Player Colonel
Blotto Game

In this section, we recall the two-player Colonel Blotto game considered in [14].
The setting is that of two agents, and for clarity, we call them agents in this
section. Agent i ∈ {1, 2} is endowed with certain amount of resources, denoted
by ri ∈ R+. There are a total of n battlefields over which the agents fight. Define
Ri := {a ∈ Rn+ :

∑n
k=1 ak ≤ ri} and let ∂Ri be the boundary of the region Ri.

The action space of Agent i is Ri. Each agent decides on a mixed strategy over
its action space, that is, a probability distribution over its action space, denoted
by µi ∈ ℘(Ri).

On each battlefield, the agent who deploys maximum resources wins, and
accrues a payoff denoted by v ∈ R+

5. In case both agents deploy equal amount
of resources, then each accrue a payoff of v

2 .

For a strategy of Agent i, µi, let Prk#µi denote the marginal of µi on the

kth battlefield. Since any agent winning a battlefield is dependent only on the
amount of resources deployed by both agents, for a given strategy tuple of the
agents (µ1, µ2), the expected payoff to Agent i on battlefield k ∈ [n] is dependent
solely on the marginal distributions (Prk#µ1,Prk#µ2).

For this game, we assume that all the parameters defined above is common
knowledge among the agents. Let us denote this game by SCB({1, r1}, {2, r2}, n, v).
We now recall the following result from [14].

Theorem 1. For the static Colonel Blotto game SCB({1, r1}, {2, r2}, n, v) with
n ≥ 3, there exists a Nash equilibrium (µ?1, µ

?
2) with unique payoffs to each agent.

The set of all Nash equilibria of the game SCB({1, r1}, {2, r2}, n, v) is de-
noted by NE(SCB({1, r1}, {2, r2}, n, v)). Note that we do not claim uniqueness
of Nash equilibrium of the game SCB({1, r1}, {2, r2}, n, v). However, for any
i ∈ {1, 2}, there exists a unique measure ν ∈ ℘([0, ri]) such that if µ?i and µ̃?i
are two Nash equilibrium strategies of Agent i, then Prk#µ

?
i = Prl#µ̃

?
i = ν for all

l, k ∈ [n]. In other words, the marginals on any two battlefields under any two
equilibrium strategies for a agent are the same, and this marginal is unique.

5 Typically, v is taken to be 1
n

in the static Colonel Blotto game.



We have the following result on the expected payoffs of the agents when play-
ing under Nash equilibrium strategies in the game SCB({1, r1}, {2, r2}, n, v).

Lemma 1. Consider the static Colonel Blotto game SCB({1, r1}, {2, r2}, n, v)
with n ≥ 3. Let P i(SCB({1, r1}, {2, r2}, n, v)) denote the expected payoff to
Agent i when both agents act according to Nash equilibrium strategies. If r1 and
r2 are such that 1

n−1 ≤
r1
r2
≤ n− 1, then the expected payoffs to the agents under

Nash equilibrium strategies (µ?1, µ
?
2) are

P 1(SCB({1, r1}, {2, r2}, n, v)) =



nv
(

2
n −

2r2
n2r21

)
if 1

n−1 ≤
r1
r2
< 2

n

nv
(
r1
2r2

)
if 2

n ≤
r1
r2
≤ 1

nv
(

1− r2
2r1

)
if 1 ≤ r1

r2
≤ n

2

nv
(

1− 2
n + 2r1

n2r22

)
if n

2 <
r1
r2
< n− 1

,

P 2(SCB({1, r1}, {2, r2}, n, v)) = nv − P 1(SCB({1, r1}, {2, r2}, n, v)).

If r1 = 0, then P 1(SCB({1, 0}, {2, r2}, n, v)) = 0.
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Fig. 1. For a fixed resource r2 = 1 of Agent 2, the payoff to Agent 1 is a concave
function of its endowment of resources r1. Here, n = 11 and v = 1

n
.

Remark 1. Note that for fixed r2, n and v, r1 7→ P 1(SCB({1, r1}, {2, r2}, n, v))
is a concave monotonically increasing function in the parameter region 1

n−1 ≤
r1
r2
≤ n − 1. This is also illustrated in Figure 1 for a specific set of parameters.

Furthermore, r1 7→ P 1(SCB({1, r1}, {2, r2}, n, v)) is a non-decreasing function
on R+ (note that here we do not restrict the range of r1). This is a consequence
of the result in [14]. �



This completes our revisit of the results for two-player static Colonel Blotto
game from [14].

4 SPNE of the Game

We now consider the three-stage Colonel Blotto game formulated in the Sec-
tion 2. To ease exposition, let us write t := t1,2 − t2,1, which denotes the net
transfer from Player 1 to Player 2. This can be negative if Player 2 transfers
more resources than Player 1. We further define r1 := r1(t) = β1 − t and
r2 := r2(t) = β2 + t to denote, respectively, the resource levels of Player 1
and Player 2 after the transfer is complete.

As stated previously, we are interested in computing the subgame-perfect
Nash equilibrium for the three-stage game. At the final stage of the game, all
players know the resource levels of all players and the resource allocation of the
adversary for the battles against the other two players. All players also know the
updated number of battlefields over which the battle is to be fought. Thus, the
game at the final stage comprises two instances of the static Colonel Blotto game
recalled in the previous section. This insight results in the following lemma.

Lemma 2. At the final stage, Player i ∈ {1, 2} and the adversary will play a
static Colonel Blotto game SCB({1, ri}, {A,αi}, ni + mi, vi). Thus, the SPNE
strategy pair of Player i and the adversary at the third (last) stage is (µ?i , ν

?
i ) ∈

NE(SCB({1, ri}, {A,αi}, ni +mi, vi)).

In the light of the lemma above, to compute the SPNE of the game, we need
to compute (i) at the second stage, the allocation functions of the adversary
{α?1, . . . , α?N}, the transfer functions {t?1,2} and {t?2,1} of the first two players,
and (ii) at the first stage, the battlefields added by the first two players m?

1 and
m?

2.
As noted in the previous section, the expected payoff functions of the play-

ers in the static Colonel Blotto game are computed in four different parameter
regions. Thus, for the game at hand, we have a total of 64 different cases to
consider. To ease the exposition, we consider here only four of these cases. These
cases comprise games in which, when players act according to Nash equilibrium
at the first stage (so that m1,m2 are fixed and common knowledge), the ratio of
the adversary’s allocation of resource for the battle with Player i and Player i’s
resources after the transfer is complete lie in the interval ( 2

ni+mi
, ni+mi

2 ). This
simplification leads us to the following four cases:

1. 2/n1 < α1/r1 < 1 and 2/n2 < α2/r2 < 1
2. 2/n1 < α1/r1 < 1 and 2/n2 < r2/α2 < 1
3. 2/n1 < r1/α1 < 1 and 2/n2 < r2/α2 < 1
4. 2/n1 < r1/α1 < 1 and 2/n2 < α2/r2 < 1

It should be noted that the second and third cases are essentially the same
with the only indices of the first two players interchanged. Thus, we only focus



on three cases, Cases 1, 2 and 4, with the understanding that the result for Case
3 can be obtained from the result of Case 2.

In the next subsection, we compute the reaction curves of the players (also
called best response strategies) for the game at the second stage. Thereafter, we
compute the SPNE of the game in the sequel for all the three cases.

4.1 Reaction Functions of the Players

In this subsection, we compute the best response strategies of the players in the
game.

Preliminary Notations: We use the following notations to describe the allo-
cation strategy of the adversary for various cases:

a1(m1,m2, t) :=
α

1 +
√

(n2+m2)v2(β2+t)
(n1+m1)v1(β1−t)

,

λ1(m1,m2, t) :=

√
(n2 +m2)v2(β1 − t)(β2 + t)

(n1 +m1)v1
,

d(m1,m2, t) :=


α if (n1+m1)v1

β1−t > (n2+m2)v2
β2+t

0 if (n1+m1)v1
β1−t < (n2+m2)v2

β2+t

α w.p. p ∈ (0, 1) if (n1+m1)v1
β1−t = (n2+m2)v2

β2+t

.

Note that in the definition of d(m1,m2, t), the value of probability p can take
any value in the interval (0, 1). The next lemma computes the reaction curves
of the players at the second stage of the game.

Lemma 3. Consider a game CB(n, β, α, v, c). For a t ∈ [−β2, β1], let r1 = β1−t
and r2 = β2 + t. Fix m1,m2 ∈ Z+. The reaction curves of the players at the
second stage are given by the following expressions in various cases:

1. If 2
n1+m1

< α
β1−t < 1 and 2

n2
< α

β2+t < 1, then

α∗1(m1,m2, t) = d(m1,m2, t).

2. If 2
ni+mi

< ri
ai(m1,m2,t)

< 1, i = 1, 2, then

α∗1(m1,m2, t) = a1(m1,m2, t).

3. If 2
n1+m1

< α−λ1(m1,m2,t)
β1−t < 1 and 2

n2+m2
< β2+t

λ1(m1,m2,t)
< 1, then

α∗1(m1,m2, t) = α− λ1(m1,m2, t).

In all cases, if α1 is a constant (or dependent only on m1,m2), then

t∗1,2(m1,m2, α1) =

{
0 if α1 > 0,
t1,2 ∈ [0, β1] if α1 = 0.

t∗2,1(m1,m2, α1) =

{
0 if α1 < α,
t2,1 ∈ [0, β2] if α1 = α.



Proof: The proof is available in [9, Lemma 4, p. 13], but we recall it here for
the convenience of the reader.

Since Player i and the adversary are going to play a static Colonel Blotto
game SCB({i, ri}, {A,αi}, ni + mi, vi) at the final stage of the game, the ex-
pected payoff functions to the players are given by the result of Lemma 1 (that
are dependent on the ratio ri/αi).

The reaction function for the adversary is the best response strategy of the
adversary given the strategy of the other two players. Towards this end, fix m1:2

and t and define ei := (ni + mi)vi for i = 1, 2. The expected payoff function to
the adversary as a function of the adversary’s allocation α1 to the battle with
Player 1 for the three cases, respectively, are

Case 1: πA(α1) =
e1α1

2(β1 − t)
+
e2(α− α1)

2(β2 + t)
,

Case 2: πA(α1) = e1

(
1− (β1 − t)

2α1

)
+e2

(
1− (β2 + t)

2(α− α1)

)
,

Case 3: πA(α1) =
e1α1

2(β1 − t)
+ e2

(
1− (β2 + t)

2(α− α1)

)
.

In Cases 2 and 3, the payoff to the adversary πA is a concave function of α1,
since the second derivative of πA with respect to α1 is strictly negative. One can
set the first derivative of πA to zero to get the optimal value of α1 as a function
of m1, m2, and t. The fact that d(m1,m2, t) maximizes the payoff πA in Case 1
can be verified easily. This completes the proof of the lemma.

Having now computed the reaction functions of the players at the second
stage of the game, we now compute the SPNE strategies of the players below.

4.2 The Case of Weakest Adversary

We now turn our attention to computing SPNE of the game for Case 1, in which
the adversary has the least amount of resources among all players.

Preliminary Notation for Theorem 2 Let m̄1 = arg maxm1∈Z+
m1v1− cm2

1

and m̄2 = arg maxm2∈Z+ m2v2 − cm2
2. Define

t̄1,2(m1,m2) =
(n2 +m2)v2β1 − (n1 +m1)v1β2

(n1 +m1)v1 + (n2 +m2)v2
,

t̄2,1(m1,m2) =
(n1 +m1)v1β2 − (n2 +m2)v2β1

(n1 +m1)v1 + (n2 +m2)v2
,

ζ1 = t̄2,1(0, m̄2) ζ2 = t̄1,2(m̄1, 0).



Theorem 2. Consider a game CB(n, β, α, v, c) with α < min{β1, β2} and 2
ni
<

α
βi

for both i ∈ {1, 2}. If the parameters of the game satisfy either

(n1 + m̄1)v1

β1
<
n2v2

β2
,

(
1− α

2(β2 + ζ2)

)
v2 < c,

2

n1 + m̄1
<

α

β1 − ζ2
< 1,

2

n2
<

α

β2 + ζ2
< 1,

or
n1v1

β1
>

(n2 + m̄2)v2

β2
,

(
1− α

2(β1 + ζ1)

)
v1 < c,

2

n2 + m̄2
<

α

β2 − ζ1
< 1,

2

n1
<

α

β1 + ζ1
< 1,

then there is a family of SPNEs for this game, given by

α?1(m1,m2) = d(m1,m2, 0),

t?1,2(m1,m2) =

{
t ∈ [0, t̄1,2(m1,m2)) if (n1+m1)v1

β1
< (n2+m2)v2

β2

0 otherwise

t?2,1(m1,m2) =

{
t ∈ [0, t̄2,1(m1,m2)) if (n1+m1)v1

β1
> (n2+m2)v2

β2

0 otherwise

m?
1 =

{
m̄1 if (n1+m̄1)v1

β1
< n2v2

β2

0 otherwise
,

m?
2 =

{
m̄2 if n1v1

β1
> (n2+m̄2)v2

β2

0 otherwise
.

Proof: The reaction curves of the players are given as in Lemma 3. It is easy
to see that for given m1 and m2, the (family of) Nash equilibria stated above are
the best response strategies of each other. Now, maximizing the cost functional
of Players 1 and 2 over m1 and m2 given α?1, t

?
1,2 and t?2,1, we get the result.

The sufficient conditions on the parameters ensure that Players 1 and 2 and the
adversary’s allocation have appropriate ratios if all players act according to the
SPNE.

Remark 2. Along the equilibrium path, one player has an incentive to add bat-
tlefields and transfer some (or none) of its resource to the other player. �

Remark 3. In the theorem above, if v1 < c, then m̄1 = 0. Similarly, if v2 < c,
then m̄2 = 0. �

4.3 Other Cases

We now consider other scenarios, where the adversary may have comparable or
large endowment of resources as compared to any other player in the game.



Preliminary Notation for Theorem 3

si :=
√
viβi

(√
njvjβj

)
, i, j ∈ {1, 2}, i 6= j,

c1 := v1

(
1− α

2β1

)
+
(√
n1 + 1−

√
n1

) √n2v2β2v1

2
√
β1

c2 := (
√
n2 + 1−

√
n2)

√
v2β2n1v1

2
√
β1

.

Theorem 3. Consider a game CB(n, β, α, v, c) ∈. The SPNE of the game is
given as:

1. If 2
ni+mi

< βi

ai(m1,m2,0) < 1, i = 1, 2 and

c >
1

2α
max
i∈{1,2}

(
viβi +

(√
ni + 1−

√
ni
)
si
)
,

then α?1(m1,m2) = a1(m1,m2, 0).

2. If α > λ1(m1,m2, 0), 2
n1+m1

< α−λ1(m1,m2,0)
β1

< 1, 2
n2+m2

< β2

λ1(m1,m2,0) < 1,

and c > max {c1, c2}, then

α?1(m1,m2) = α− λ1(m1,m2, 0).

In both cases, t?1,2(m1,m2) = t?2,1(m1,m2) = 0 and m?
1 = m?

2 = 0.

Proof: Given the best response strategies of the players in Lemma 3, one can
just check that the given strategies indeed form a SPNE of the game. Further-
more, the sufficient conditions on c merely ensures that adding any battlefield
gives a lower payoff to the first two players.

Remark 4. In the statement of both cases in Theorem 3 above, the sufficient
conditions on c are not hard constraints. If the value of c is small, then adding
battlefields may be beneficial to one or both players. The Nash equilibrium at
the second stage of the game remains unchanged (as long as the restrictions on
the parameters are met). �

4.4 Discussions on Equilibrium Strategies

In Theorem 2, we see that the amount of resource one player transfers to another
could take any value in a set. This is due to the fact that the adversary does
not attack the player who makes the transfer (hence, his payoff is not affected
by making the transfer) if everyone plays according to the equilibrium.

Figure 2 shows that for a specific set of parameters, a transfer takes place
from one player to another in certain regions of β1 and β2. It is interesting to
note that there is a transfer from Player 1 to Player 2 even when the resource
level of Player 1 is significantly small as compared to the resource level of Player
2.
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Fig. 2. For fixed parameters v1 = 2, v2 = 1, c = 3, n1 = 8, n2 = 20, and α = 2, Player
1 transfers to Player 2 in the red region, whereas Player 2 transfers to Player 1 in the
blue region. There is no addition of battlefield by any player (see also Remark 3) in
the colored region. In the white region, transfer may or may not occur. See Theorem
2 for a complete characterization. This figure is taken from [8].

On the other hand, in Theorem 3, where the adversary has comparable or
more resources than other players, the SPNE is unique, and there is no transfer
among the first two players. There are two reasons why we see no transfer among
the players as SPNE strategies in both cases. The first reason is because the
adversary divides its resources into two positive parts, and allocates each of the
two parts to the battle with one of the other two players. Since both players
are fighting against the adversary, the best response strategies of the first two
players are to not transfer their resources to the other player (see Lemma 3).
The second reason, which is more subtle, is that the adversary does not observe
the value of the transfer among the other two players (or in other words, all
players act simultaneously in the second stage). If we allow the adversary to
access information on the amount of resource transferred between the players,
then the SPNE may feature a transfer even if the adversary allocates positive
resources to fight both players. A few such cases are investigated in [12] and our
earlier work [8]. However, [12] does not compute the Nash equilibrium strategies
(or SPNE) of the players under such a setting.

In all cases, if the cost for adding battlefields is sufficiently high, then the
first two players do not add any battlefield.

We now outline the differences in the behavior of the players in this game as
compared to the one studied in [8]. For the case when the adversary is weakest



(that is, have the least amount of resources among all players), the players act
according to the same behavior as proved in [8]. This is because the adversary
deploys all its resource to fight against only one player in this case. So, whether
or not a transfer occurs, the behavior of the adversary remains unchanged. Thus,
giving the adversary access to the information about the transfer does not result
in any change in its behavior.

To compare the results in this paper with that in [8] for other cases, when the
adversary has comparable or more resources than other players, we will recall
the result for [8] for those cases. However, to ease exposition, we introduce the
following definition.

Definition 1. Consider the three-stage Colonel Blotto game formulated in Sec-
tion 2. We say that the information structure of the three-stage game is N if at
the second stage, the adversary does not observe the transfer between the first
two players. We say, on the other hand, that the information structure of the
three-stage game is T, if at the end of the second stage, the adversary has access
to the transfer between the players. �

We now reproduce the result from [8] below for the case when adversary has
comparable or more resources as compared to other players.

Preliminary Notation for Theorem 4

t̄1(m1,m2) :=
(β1 − β2)

2
− (β1 + β2)

2

√
(n1 +m1)v1

(n1 +m1)v1 + (n2 +m2)v2
,

w1(m1,m2) := (n1 +m1)v1 +
√

(n1 +m1)v1((n1 +m1)v1 + (n2 +m2)v2),

m̄1 := arg max
m1∈Z+

m1v1

(
1− α

2(β1 + β2)

)
− cm2

1,

ζ1(m1,m2) :=
4(n1 +m1)v1α

2

(n2 +m2)v2(β1 + β2)2
.

Theorem 4 ([8]). Consider a game CB(n, β, α, v, c) with information structure
T in which the adversary has access to the information about the transfer of
resources among the first two players at the second stage of the game. The SPNE
of the game is given as:

1. Assume c > β1+β2

4α max {w1(1, 0)− w1(0, 0), v2} and let t̄1 := t̄1(m1,m2). If
2

ni+mi
< ri(t)

ai(m1,m2,t)
< 1, i = 1, 2, then

α?1(m1,m2, t) = a1(m1,m2, t),

t?1,2(m1,m2) =

{
t̄1 if β1−β2

2β1β2
>
√

(n1+m1)v1
(n2+m2)v2

0 otherwise

t?2,1(m1,m2) = 0, m?
1 = m?

2 = 0.



2. If c > (β1+β2)v2
4α , 2

n1+m1
< α−λ1(m1,m2,t)

(β1−t) < 1, and 2
n2+m2

< (β2+t)
λ1(m1,m2,t)

< 1,

then

α?1(m1,m2, t) = α− λ1(m1,m2, t),

t?1,2(m1,m2) =

{
β1−ζ1(m1,m2)β2

ζ1(m1,m2)+1 if β1+β2

2α >
√

(n1+m1)v1β2

(n2+m2)v2β1

0 otherwise.

t?2,1(m1,m2) = 0, m?
1 = m̄1, m?

2 = 0.

An interesting distinction in the behavior of the players between the games
with two different information structure is as follows: In the game with infor-
mation structure N, the players do not transfer resources among themselves. In
contrast, the game with information structure T features a transfer. The reason
for this behavior is the following. With information structure T, the adversary,
after observing the transfer, allocates more resource to fight against Player 2 as
compared to what it allocates in the game with information structure N. Thus,
in game with information structure T, the transfer makes both Players 1 and 2
better off6, while the adversary loses in terms of the expected payoff78.

Remark 5. The analysis above exposes a very counterintuitive feature of games.
One may be led into thinking that the extra information about the transfer to
the adversary should make him better off, but this, clearly, is not the case in
the game with information structure T. In games, extra information to a player
does not necessarily result in a better performance for that player! �

5 Conclusion

We formulated a three-stage three-player Colonel Blotto (non-cooperative) game
in which the first two players fight against a common adversary. The first two
players could add battlefields at some cost and they can form a coalition and
transfer resources among each other if it improves their expected payoffs. We
computed subgame-perfect Nash equilibria of the game. We found that if the
adversary is weakest, that is, has the least endowment of resources, then it

6 Note here that since this is a non-cooperative game, if the transfer does not improve
the expected payoffs to both Players 1 and 2, then either the receiving player will
not accept the transfer, or the donating player will not initiate a transfer. The fact
that a positive transfer is a Nash equilibrium implies that the transfer increases or
maintains the expected payoffs to both players.

7 We assume that the parameters of the game are such that the sufficient conditions
on parameters are satisfied, enabling us to make this comparison.

8 Since the Colonel Blotto game is a constant-sum game, the sum of total expected
payoffs for all the players (including the adversary) is a constant. Thus, if Players 1
and 2 increase their expected payoffs, then it decreases the expected payoff to the
adversary.



attacks only one of the two players (when playing under Nash equilibrium). The
player who does not suffer an attack can transfer some of its resources to the
other player. If the adversary has comparable or more resources than the other
players, then there is no transfer of resources among the first two players when
playing under Nash equilibrium. In all cases, additional battlefields are created
by the first two players if the cost for adding them is sufficiently low.

The result gives a qualitative picture of how players should behave in order to
secure cyber-physical systems. In case the cyber-physical systems under attack
have significantly more resources (computational or physical) as compared to
the attacker, then it is in their best interest to share their resources to secure
themselves. On the other hand, if the adversary is as mighty as the systems,
then it is in the best interests for the systems to use all their resources to secure
themselves.

Furthermore, we see that adding battlefields could result in a better payoff.
Consider, for example, a data center which acts to reduce the threat of data
compromise. If adding additional servers for storing data is cheap, then it is in its
best interest to keep small amount of data in different servers. In doing so, even
if certain number of data servers are compromised, the amount of compromised
data will be less.

In the future, we would like to extend the analysis to a general N -player
game. Incomplete information static Colonel Blotto game is also an important
problem that requires further investigation, in which the existence of a Nash
equilibrium has not been established yet.
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