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Abstract— Human operators are involved in many real
world systems such as automobile systems. Traditional human-
assistance features such as warning systems in the aircraft
and automatic braking systems in automobile only monitor the
states of the machine in order to prevent human errors and
enhance safety. We believe that next generation systems should
be able to monitor both the human and the machine and give
an appropriate feedback to them. Although having human in
the control loop has its advantage, it lacks a unified modeling
framework to manage the feedback between the human and the
machine. In this paper, we will present how partially observable
Markov decision process (POMDP) can be used as a unified
framework for the three main components in a human-in-the-
loop control system—the human model, the machine dynamic
model and the observation model. We use simulations to show
the benefits of this framework. Finally, we outline the key
challenge to advance this framework.

I. INTRODUCTION

Most traditional manual control systems such as automo-
bile systems belong to a low level of autonomy in Parasura-
man’s taxonomy[7]. In such systems, there is nothing to do
when the human makes error, which may result in accidents.
Therefore, a system with a higher level of autonomy is
necessary in which the controller can monitor the human and
the state of the machine and then give appropriate feedback
to them. Traditional human-assistance features only monitor
the state of the machine in order to prevent human errors
and enhance safety. We believe that next generation systems
should not only monitor the states of the machine but also the
states of the human. Moreover, the automatic controller could
take over human control in emergent cases. Suppose you aim
to maintain a car in a single lane and your physiological state
could be drowsy or awake, the system should give you alarm
signals when you are drowsy. If the alarm cannot wake you
up, the controller could take over your steering wheel to
maintain the car in the middle of the lane. We refer to such
system as human-in-the-loop (HITL) control system where
there is a mechanism of interaction between the human and
the controller.

From the above motivating example, we know that in
order to determine when to give feedback to the human and
machine, we have to estimate the human’s intent and her
physiological state. However, we have no way of knowing
what human thinks directly. Since actually measuring the
human’s brain activity is too restrictive and intrusive, we
want to estimate the human’s intent by observing her actions.
In order to design effective controls for HITL systems, we
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would want to use a modeling framework that have the
following properties: first, the model should be probabilistic
because it is impossible to measure the human’s intent
or physiological state exactly. This can be achieved by
maintaining a probability distribution over the state of the
human by observing what the human has been doing; second,
it should be a sequential process that represents the long-term
planning of the whole system; lastly, it should be able to
handle the observation error. Given these facts, we propose to
cast a HITL system as a partially observable Markov decision
process (POMDP). We will show how POMDP is capable
of integrating the human model and the machine model as
well as their interaction in a probabilistic framework.

Pentland et al. proposed that many human behaviors can be
accurately described as a set of dynamic models sequenced
together by a Markov chain, called a Markov dynamic model
(MDM)[8], in which they defined multiple dynamic models
as internal states. Takano et al. [14] modeled the driving pat-
tern primitives consisting of states of the environment, vehi-
cle and driver as a hidden Markov model (HMM). Although
HMM is popular for human behavior modeling [17][5][19]
given the fact that it provides a stochastic framework for
intent reasoning and is able to handle the uncertainty from
observation, it fails to unify the effect of feedback for the
human or machine. We will show that POMDP makes up
for this drawback.

Most researchers used a shared control scheme to incorpo-
rate human and machine control. Chipalkatty et al. directly
modified the human inputs to make the actual inputs not
only conform with the human’s intent but also satisfy the
dynamic constraint based on a sequence of predicted human
inputs[3]. Vasudevan et al. measured safety of a driving
vehicle [16] to determine when to intervene. Anderson et
al. used model predictive control to find a safe and optimal
vehicle path and then control the vehicle via a weighted
sum of human input and controller input based on threat
assessment [1]. The common factor in these approaches is
that they plan for future states and use a shared control
scheme to make the future states satisfy certain criterion like
safety and dynamic constraints along the future plan. These
controllers only make use of the feedback to the machine, but
do not consider incorporating the feedback to the human such
as warnings. We will show that how our POMDP framework
can incorporate the feedback to the machine and feedback
to the human to do future planning.

POMDPs have been used in a variety of real-world sequen-
tial decision processes, including robot navigation, assistive
technology, and planning under uncertainty. POMDPs have
been shown to be successful in many kinds of human-



machine systems. Williams et al. used a POMDP to model a
spoken dialog system and demonstrated significant improve-
ment in robustness compared to existing techniques[18].
Hoey et al.[4] used a POMDP framework to implement
assistance to people with dementia and showed its ability
to estimate and adapt to user psychological states such
as awareness and responsiveness. Broz et al.[2] modeled
human-robot interaction as a time-indexed POMDP and
showed that it achieves better results than simpler models
that make fixed assumptions about the human’s intent[2].

In this paper, we aim to address one of the three challenges
for employing HITL control proposed in [6]: determining
how to incorporate different models into a formal method-
ology of control. We propose a novel POMDP framework
for human-in-the-loop control systems. We present the basic
structure of HITL control system and show how the POMDP
framework can incorporate all the components in a HITL
control system—the human model, machine dynamics model
and observation model—to determine an optimal feedback
policy for when the controller should give feedback to the
human (such as warning) and take over control from the
human.

This paper is organized as follows. Section II begins with
a review of POMDP and describes how a HITL system is
modeled as a POMDP with factorized transition probability
and observation probability. Section III shows the advantages
of POMDP framework using a case study with simulation
results. Finally, we conclude and highlight the key challenge
of this framework in Section IV.

II. POMDP FOR HUMAN-IN-THE-LOOP SYSTEM

As mentioned before, reasoning about a human’s intent or
physiological state is important in a HITL system. Instead
of hacking into the human brain, we would want to estimate
their intents by observing their actions. As shown in Fig. 1a,
conventional HMM models decouple the state estimation
process and the decision making process. They model the
human behavior as a HMM and estimate the internal states of
the human from observations[19]. Based on the estimation,
a controller will give feedback to the human. As shown in
Fig. 1b, POMDP estimates the probability distribution over
the human’s possible state b(sh) rather than just giving a
single state estimation. A decision is then made based on
the distribution of the hidden states. This allow the system
to decide to take an action to reduce uncertainty in the
human’s state or provide assistance to the human. In the
conventional HMM framework, the decision is made from
single estimation so it will not reduce the uncertainty in
the human’s state. POMDPs provide an integrated model to
incorporate hidden states, observations, and control actions,
which perfectly describes the nature of a HITL system. The
following will show how we model a HITL system as a
POMDP.

A. Review of POMDP

Definition 1: A POMDP is defined as a tuple
(S,U ,O,T ,Ω,R), where S is a set of hidden states;

(a) Conventional (b) POMDP

Fig. 1: Conventional HMM model and POMDP model for
human-machine interaction

Fig. 2: Block diagram of a human-in-the-loop system

U is a set of actions or controls; O is a set of observations;
T defines the conditional transition probability P(s′|s,u);
Ω defines the conditional observation probability P(o′|s′,u)
and R : S ×U → R is the reward function.

Definition 2: A belief state b is a probability distribution
over S. We let b(s) denote the probability of being in a
particular state s ∈ S.

Definition 3: A policy π is a mapping from belief state to
the set of controls π(b) ∈ U .

At each time step, the world is in some hidden state s∈S .
The agent chooses a control u ∈ U according to her policy
u = π(b), receives a reward R(s,u), and then the world state
transitions to s′ ∈ S with an observation o′ ∈ O. The belief
is then updated as follows:

b′(s) = P(s′|o′,u,b) = P(o′|s′,u,b)P(s′|u,b)
P(o′|u,b)

=
P(o′|s′,u)∑s∈S P(s′|s,u)b(s)

P(o′|u,b)

(1)

where P(o′|u,b) can be treated as a normalizing factor.
Given a policy π , the expected cumulative reward starting

from belief state bt is:

V π(bt) = E[
∞

∑
n=t

γ
(n−t)R(sn,un)]

where 0 ≤ γ ≤ 1 is a discount factor. The goal of POMDP
is to find an optimal policy π∗ to maximize V π . Solving
POMDP is often computationally intractable but there exist
techniques[9][13][12] to obtain an approximate solution in
practice.



B. Human-in-the-Loop Modeling

Figure 2 is the block diagram of a HITL system. The
variables are defined as follow:
• sh ∈ Sh, the set of internal states of the human, which

can be the human’s intent (e.g. turn right, turn left) or
physiological state (e.g. fatigue, awake.)

• ah ∈ Ah, the set of the human’s actions (e.g. head pose,
control to a joystick.)

• sm ∈ Sm, the set of states of the machine(e.g. velocity,
position.)

• ãh ∈Oah , the set of observations of the human’s actions.
• s̃m ∈Osm , the set of observations of the machine’s states.
• uh ∈Uh, the set of control feedbacks for the human (e.g.

warning, augmenting information.)
• um ∈Um, the set of control feedbacks for the machine

(e.g. emergency brake, turning the steering wheel.)
We assume all the above sets are finite. In the diagram in
Fig. 2, the human has an internal state, sh, which could be her
intent or the goal she wants to achieve, or her physiological
state like fatigue, anger, being drunk, etc. Depending on
her internal state, she will take an action, ah to achieve
her intent. The human, for example, may turn her head to
check the left lane and then turn the steering wheel if she
wants to switch to the left lane. Some human actions are
control inputs to the machine and therefore the state of the
machine sm will change over time. One should note that
not all human actions are control inputs of the machine.
Some actions, like checking the left lane, may just be
common behaviors for a specific task. There will be sensors
to measure both the human’s action and the state of the
machine. We denote the measurement of the human’s action
as ãh and the measurement of the state of the machine as
s̃m. The human-in-the-loop planner uses the measurements
and its previous feedback as inputs, estimates a probability
distribution over the hidden states, sh, ah and sm and then
decides an optimal feedback uh to give to the human, and a
control feedback um to apply to the machine.

The above process iterates for each time step and therefore
the whole process can be viewed as a POMDP with a set
of hidden states Sh × Ah × Sm, a control set Uh ×Um, an
observation set Oah ×Osm and a transition probability

P(s′h,a
′
h,s
′
m|sh,ah,sm,uh,um)

=P(s′h|sh,ah,sm,uh,um)×P(a′h|s′h,sh,ah,sm,uh,um)×
P(s′m|s′h,a′h,s′h,ah,sm,uh,um)

The above factorization is simply based on the chain rule in
probability. Although the transition probability seems to be
complicated, we can simplify it by making some reasonable
conditional independence assumptions.

The first conditional independence assumption is that the
internal state of the human only depends on her previous
internal state, the state of the machine, and the feedback to
the human. That is:

P(s′h|sh,ah,sm,uh,um) = P(s′h|sh,sm,uh) (2)

Fig. 3: Dynamic Bayesian Network representation of the
HITL POMDP

which we will call it the human internal state model. The
human internal state model describes how the human’s state
changes over time. One may note that the human’s intent
does not have to change at all time steps. For example, while
controlling a robotic arm to take one of the objects on the
table, the target object the user intents to take rarely changes
during the whole process.

The second assumption is that the human’s action is only
based on her own internal state, the state of the machine and
the feedback to the human, i.e.

P(a′h|s′h,sh,ah,sm,uh,um) = P(a′h|s′h,sm,uh) (3)

which we will call it the human action model. The human
is taking action in order to achieve her own goal given the
current machine state and our feedback.

The final assumption on the transition probability is that
the state of the machine only depends on the human’s action,
previous machine state and the feedback to the machine, i.e.

P(s′m|s′h,a′h,s′h,ah,sm,uh,um) = P(s′m|a′h,sm,um) (4)

which we will call it the machine dynamic model. The ma-
chine dynamic model may come from machine’s kinematic
model or dynamics model.

In summary,

P(s′h,a
′
h,s
′
m|sh,ah,sm,uh,um)

=P(s′h|sh,sm,uh)P(a′h|s′h,sm,uh)P(s′m|a′h,sm,um) (5)

Equation (5) defines the transition probability in the HITL
POMDP.

In the observation model, we assume that the observa-
tions of the human’s action and the state of the machine only
depend on the actual action of the human and the actual state
of the machine respectively:

P(ãh
′, s̃m

′|s′h,a′h,s′m,uh,um) = P(ãh
′|a′h)P(s̃m

′|s′m) (6)

Figure 3 summarizes the HITL POMDP model as a dynamic
Bayesian network.



In order to obtain the models, we can either learn the
models from data or handcraft them based on prior knowl-
edge. The human internal state model and the human action
model can be estimated from annotated data of sequence
of interactions[11]. The machine dynamic model can be
either obtained from system identification, or directly from
first principles. For example, we could assume the resulting
machine dynamics have the form

s′m = f (sm,ah,um)+w

where w is the noise. Finally, the observation model comes
from the accuracy of the senor system.

The design of the reward function R(sh,ah,sm,uh,um)
depends on our objective. For example, if the objective is
to enhance safety, the reward in safe states should be high
while the reward in unsafe states should be small. Of course
a similar machinery can be applied when we would like
multiple objectives in a HITL system. In our simulations
next section, for example, we want to both promote safety
and minimize interferences so we penalize interference from
uh and um while giving high rewards in safe states.

III. SIMULATION RESULTS

In this section we present simulation results to illustrate
the application of our proposed framework. According to the
AAA Foundation for Traffic Safety, an estimated 13.1% of
crashes that resulted in a person being admitted to a hospital,
and 16.5% of fatal crashes involved a drowsy driver[15]. In
this example, we assume the objective is to keep a car in a
single lane, but the driver may be drowsy.

A. HITL POMDP for drowsy driver

The driver has two internal states:

Sh = {Awake, Sleepy}.

Depending on these two states, the driver’s eyes could be
open or closed. At the same time, the driver is driving the
car to maintain the car in the middle of the lane, so we define
the human actions as Ah = Ah1×Ah2, where

Ah1 ={Eyes open, Eyes closed}
Ah2 ={Steer left = -1, Steer right = +1,

Steer straight = 0, Do nothing}.

We discretize the horizontal position of the car on the lane:

Sm = {-2, -1, 0, +1, +2, Off the lane}.

where −2 is the left most, 0 is the middle and +2 is the right
most of the lane. The feedback to the human is a warning
signal reminding the human to wake up or be careful,

Uh = {Warning on, Warning off}.

Assume the car has a driver assisting function that can take
over the control of the steering wheel and therefore, the
feedback to the machine is:

Um = {Steer left = -1, Steer right = +1, Do nothing = 0}.

There are sensors to detect the human’s actions and the
machine states, so the observations are

Oah ={Eyes open, Eyes closed}×
{Steer left, Steer right, Steer straight or do nothing}

and Osm = {-2, -1, 0, +1, +2, Off the lane}.
As shown in (5), the transition probability depends on the

human internal state model, the human action model and
the machine dynamics model. For the sake of simplicity,
we handpick the probabilities in this simulation. Although
it would be more realistic to learn the models from data,
the learning process is not trivial and we leave it to our
future work. The human internal state model and the human
action model is illustrated in Fig. 4. The nodes in Fig. 4
represent the states while the numbers on the edges represent
the transition probabilities conditioned on their parent nodes.

The machine dynamics model is:

s′m = Maneuver(sm,ah2,um,w)

=


sm +ah2 if ah2 6= Do nothing
sm +um if ah2 = Do nothing & um 6= Do nothing
sm +w otherwise

where ah2 ∈ Ah2 is the human’s input and
um ∈ Um is the feedback to the machine. w ∈
{Steer left, Steer right, Do nothing} with probability
{0.2,0.2,0.6} is acted as noise. Any sm /∈ [−2,+2] is
considered as ”Off the lane”. In function Maneuver(·, ·, ·, ·),
ah2 has a higher control priority than um and w. To make
the simulation more realistic, we use an estimation of ah2
from the system instead of the true ah2, which is actually
hidden. w takes effect as the time both the driver and
controller are not maneuvering the car, where the road may
have a left curve or a right curve. For example, the car
entering a left curve without maneuver has the same effect
as w = “Steer right”.

In the observation model, we assume all sensors have
accuracy Pacc = 0.9

According to the safety condition, we define the reward
function as

R(sm,uh,um) = R1(sm)+R2(uh)+R3(um)

where R1(sm) is as follow:

-2 -1 0 +1 +2 Off
R1(sm) 5 10 20 10 5 0

We also penalize the intervention to human and machine:

Warning on Warning off
R2(uh) -5 0

Steer left Steer right Do nothing
R3(um) -5 -5 0

We solve the above POMDP problem with the Symbol-
icPerseus package[10]. Then we use the optimal policy π∗

in our simulation. At each time step, we decide the optimal
control u∗t = π∗(bt), sample the next state and observations



Fig. 4: A diagram representation of the transition probability of human internal state model and human action model

based on the transition function and observation function,
and then update the current belief bt+1 using Eq. (1).

Figure 5 shows the simulation results. Figure 5a is the
actual hidden internal state of the human and Fig. 5f shows
the marginal belief of the human’s internal state at each
time step. Though there are false alarms because of the
measurement error as shown in Fig. 5b and 5c, the prob-
ability P(sh = Awake) decreases whenever the actual state
is “Sleepy”, which means the system is able to reason
about the internal state of the human. Figure 5d shows the
optimal feedback to the human, uh, which conforms with
our intuition that when P(sh = Awake) goes down to some
threshold, the warning system will turn on in order to keep
the driver awake. Again, there are some false alarms due to
the measurement error, but they are less than using a policy
only based on the measurements. In this simulation, we only
got 2 false alarms, whereas if we estimate the internal state
of the human just relying on the sensor measurements, we
will get 25 false alarms. Figure 5e shows one of the human
actions, ah2, and the feedback to the vehicle um. We can see
that the optimal feedback to the vehicle obtained from our
optimal policy drives the vehicle back to the middle of the
lane in order to maintain safety. We can also see that given
this POMDP framework, we can solve an optimal policy that
automatically balances between when to give feedback to the
human and when to give feedback to the machine.

This framework also allows us to keep track of the proba-
bility of unsafe state, which is PUnsa f e = ∑st∈Unsa f e bt(st),
where st = (st

h,a
t
h,s

t
m) and the unsafe set Unsa f e =

{(sh,ah,sm)|sm = Off the lane}. Figure 5g shows the proba-
bility of the unsafe state, remaining low in the whole process.

To show the benefit of POMDP in long-term planning, we
compare the optimal policy with two other policies. One is a
greedy policy: when the controller observes the driver’s eyes
closed, the warning will be turned on. At the same time, the
feedback to the vehicle will be generated to drive the vehicle
towards the middle according to observed vehicle state s̃m.
The other one is a minimal unsafe probability policy:

u∗ = argmin
u ∑

st+1∈Unsa f e
P(st+1|st ,u)bt(st)

(a) Human internal state

(b) Human action

(c) Vehical state

(d) Feedback to human

(e) Machine control input

(f) P(sh = Awake)

(g) PUnsa f e

Fig. 5: Simulation results



Fig. 6: Comparison of different strategy with POMDP policy

Figure 6 shows the average reward for the three differ-
ent policies corresponding to the accuracy of sensors. The
POMDP policy outperforms the other two policies. The
difference between these policies are more in low sensor
accuracy than in high sensor accuracy. This result is not
surprising because the greedy policy is optimal when all
states are observable, i.e. Pacc = 1. The reward of the minimal
unsafe probability policy is the most conservative policy that
the warning signal is turned on frequently to remind the
driver, resulting in a low reward. The reward of the minimal
unsafe probability policy, however, is larger than the greedy
policy in low Pacc cases. It is because when the sensor is
not accurate, it is very likely to make wrong decision just
based on observations and therefore leading the vehicle into
unsafe states and resulting in a low reward. POMDP policy
enhances safety and minimizes intervention at the same time
so it has the highest reward.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a novel POMDP frame-
work for human-in-the-loop control systems. It is an initi-
ating work in formalizing HITL control systems. We have
shown that by imposing some reasonable conditional in-
dependent assumptions, we can succinctly unify stochastic
models for the human and machine—the human internal
state model, the human action model, and the machine
dynamic model—into a single framework supporting global
optimization for long-run planning. This paper has shown
various benefits of using POMDP in HITL modeling: (1)
the abilities of reasoning human internal state; (2) handling
the error from observations; and (3) balancing the trade-off
between the feedback to the human and the feedback to the
machine.

The key challenge of advancing this framework is that
POMDP can only deal with discrete states, while most
machine states are described in a continuous state space. One
way to handle it is to discretize the continuous state space.
However, when the state space is too large or the discretizing
resolution is too small, discretization is not practical because
it makes solving POMDP intractable. We would like to find

a method to solve the HITL POMDP problem with hybrid
state in the future.
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