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ABSTRACT

Utility companies have many motivations for modifying en-
ergy consumption patterns of consumers such as revenue
decoupling and demand response programs. We model the
utility company—consumer interaction as a principal-agent
problem and present an iterative algorithm for designing in-
centives while estimating the consumer’s utility function.
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1. INTRODUCTION

Utility companies have many motivations for changing en-
ergy consumption patterns of users. Many regions are begin-
ning to implement revenue decoupling policies, whereby util-
ity companies are economically motivated to decrease energy
consumption [3]. Additionally, the cost of producing energy
depends on many variables, and being able to control de-
mand via demand response programs can help alleviate the
costs of inaccurate load forecasting [7].

In brief, the problem of behavior modification in energy
consumption can be understood as follows. Utility compa-
nies provide incentives to energy consumers, who seek to
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maximize their own utility by selecting energy consumption
patterns. Figure 1 depicts the abstract view of the behav-
ior modification problem. The design of incentives can be

Incentive

Figure 1: Behavior modification via incentives ab-
stractly is a control and estimation problem.

thought of as a control problem for utility companies. Fur-
ther, consumers do not report any measure of their satis-
faction directly to the utility companies. Thus, it must
be estimated. In this abstract, we formulate the problem
of designing incentives for behavior modification given util-
ity companies do not know consumers’ utility functions and
must learn them iteratively by issuing incentives in order to
gather information about how consumers respond. We pro-
pose an algorithm for iteratively solving the incentive design
and utility learning problem.

2. INCENTIVE DESIGN PROBLEM

A principal-agent problem occurs when the principal in-
teracts with the agent to perform a task, but the agent is
not incentivized to act in the principal’s best interests [5].
This conflict is often the result of asymmetric information
between the principal and the agent or a disconnect between
their goals and objectives. We cast the utility—consumer in-
teraction model in the framework of a principal-agent model
in which the utility company is the principal and the con-
sumer is the agent [9]. Both the principal and the agent
wish to maximize their pay—off determined by the func-
tions Jp(v,y) and Jq(v,y) respectively. The principal’s de-
cision is denoted v; the agent’s decision, y; and the incen-
tive, v : y — v where 7 € T and I" is the set of admis-
sible controls from Y to R. Let v and y take values in
V CR" and Y C R"*, respectively; Jp : R"” x R"* — R;
Jo : R™ x R™ — R. The incentive problem can be stated
as follows. Determine the desired actions

d dy _
(V% y") = arg max Jy(v,y)

(1)



where 7, and Z, are constraints on v and y respectively.
Then, solve the following problem:

PrROBLEM 1. Find~y:Y =V, v €I such that
)

Yy =" ®3)

where I is the set of admissible incentive mechanisms.

arg max Ja(v(y),y) = y*
yEZLy

3. ALGORITHM

The principal’s true utility is assumed to be given by

Ip(v,y) = g(y) —v (4)

where v is the value of the incentive paid to the agent and

g(+) is a function of the consumer’s energy usage y over a

billing period and may represent an objective derived from

revenue decoupling or demand response programs [3, 7].
The agent’s true utility is assumed to be

Ja(v(¥),y) = —py +v(y) + f(y) (5)

where p is the fixed price of energy known to both the agent
and the principal and v : Y — R is the incentive mecha-
nism. The principal does not know the agent’s satisfaction
function f(-), and hence, must estimate it as he solves the
incentive design problem. We will use the notation f for the
estimate of the satisfaction and J, and J, for the player’s
cost functions using the estimate of f.

We propose an algorithm for solving the incentive design
problem iteratively. We assume that the agent’s satisfac-
tion function is parameterized using the following finite—
dimensional, affine parameterization

N
f=> oifs
i=1

where f; are basis functions, o = (a1, -+ ,an) € A. We
can interpret A as the prior information we have about the
agent’s satisfaction function f.

The proposed algorithm is as follows. Find (v?,y%) by

solving the problem formulated in (4). Suppose we are given
(0)
~

(6)

Then, at iteration k, we execute the following steps:
1. Estimate f* using {y©, @ }5_,.

2. Determine fy(kﬂ) by solving Problem 1 replacing J,
with J& = —py + vV (y) + F® (y).

3. Issue v**Y and observe the agent’s response y*+1),
If y(kH) = y? stop. Otherwise, k < k + 1 and return
to step 1.

4. DISCUSSION

Preliminary results on discussed algorithm are presented
in [9]. We are able to show that if the satisfaction function
is the sum of polynomial basis functions up to a finite order
and under some mild assumptions on the linear dependence
of the incentives, then after a finite number of iterations
we know the satisfaction function exactly and at the next
iteration we can design an incentive to induce the desired
behavior.

We are currently working on using tools from non—linear
programming such as constraint qualification and second-—
order optimality conditions including Kharush-Kuhn-Tucker
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conditions to solve the estimation problem when we allow for
the agent to play an approximately optimal strategy at each
iteration [4]. In addition, we are developing an experimental
platform in which we deploy sensors to 12 homes and design
incentives to induce energy efficient behavior.

Another interesting direction for future work is device—
level feedback. Studies have shown that providing device—
level feedback on power consumption patterns to consumers
can modify behavior and improve energy efficiency [6, 8].
However, the current infrastructure only has sensors to mea-
sure the aggregated power consumption signal for a house-
hold. Additionally, deploying plug-level sensors would re-
quire entering households to install these devices. A low
cost alternative to the deployment of a large number of sen-
sors is mon—intrusive load monitoring (or energy disaggre-
gation) which refers to recovering the power consumption
signals of individual devices from the aggregate power con-
sumption signal [1]. Returning to Figure 1, we remark that
the estimation problem is extended to include energy disag-
gregation so that utility companies may design device—level
incentives. Again, preliminary results are reported in [9].
With an e—error bound disaggregation algorithm in place
[1], we are able to design incentives to induce a consump-
tion pattern that is approximately the desired behavior. We
are currently using fundamental limits on energy disaggrega-
tion algorithms [2] to derive rigorous bounds on the behavior
modification and utility learning problem.
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