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ABSTRACT

This article presents a framework for managing cyber-risks
in large-scale interdependent networks where cyber insur-
ers are strategic players. In our earlier work [13, 14, 12],
we imposed that breach probability of each network node
(player) is a function of two variables: player own security
action and average security of all players. In this article, we
formally derive the expression of breach probability from
standard assumptions. For a homogeneous interdependent
network (identical users), we provide a solution for user op-
timal security in environments without and with cyber in-
surers present. Then, we introduce a general heterogeneous
network (many user types), and derive the expression for
network security. Lastly, we consider the network with two
user types (normal and malicious), in which we allow one
user type (malicious users) to subvert monitoring by insur-
ers, even if the insurers perfectly enforce security levels of
normal users (at zero cost). Our analysis confirms a discrep-
ancy between informal arguments that favor cyber-insurance
as a tool to improve network security, rather than merely
manage risks. In particular, our results support the case
against cyber-insurance as the means of improving security.
Our framework helps to identify the crucial network param-
eters for improving incentives to provide secure networks.
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The question of security incentives and optimal security
risks is an integral part of studying the resilience of modern
networks. In this article, we are broadly concerned with the
question of how to mitigate interdependent risks to which
large-scale networks are exposed, mainly due to the present-
day ubiquitous connectivity. Our particular contribution is a
game theoretic model, which allows to introduce competitive
cyber insurers as players. The network security properties
are determined as an equilibrium of the game in which play-
ers (or networked nodes) make individually optimal strategic
choices, and player payoffs depend on player own choices, as
well as the choices of other players, which possibly include
cyber insurers. This game theoretic framework permits us
to study user security choices with and without availability
of cyber contracts.

Depending on the context, we will use the terms “node
player” and “user” interchangeably. This will also help us
to make the exposition more intuitive. Examples of nodes
in networked systems include sensors, actuators, computing
nodes, etc. In emerging cyber-physical networks, each node
can be considered a smart networked device that is capable
of making certain decisions; for e.g., a sensor deciding on
its measurement strategy, an actuator deciding on a local
control strategy, and a computing node choosing to perform
computations. The field of networked and embedded control
systems has made promising advances in designing optimal
decisions for these smart devices, both in centralized and
decentralized context. In this article, we assume that each
node has a decision making capability that has direct con-
notations for the node’s failure due to imperfect security of
the network, and primarily due to cyber insecurity.

From a practical viewpoint, one can imagine numerous
security choices for each smart node. Below we list some
examples of the choices available to nodes: i) which specific
device to install, whether to use encryption, and if so which
encryption method to follow; ii) frequency of communica-
tions with other nodes, and how powerful should each com-
munication signal, how many channels should be used for
transmission; iii) whether computations are local to a node,
or rely on data from other nodes; iv) whether the node lo-
cation is physically secure or security is software based; v)
whether node is permanently networked or could be placed
off-line for maintenance and patching; vi) how frequently
security updates are made, etc.

For the sake of simplicity, we do not consider multidimen-
sional security choices in this article. Instead, we aggregate
all these choices and work with one-dimensional security
metrics, i.e., we will index the security of each node by a



value, a so-called own security level of a node. This level
ranges between zero and one, with zero level meaning that
the node is insecure, i.e., it has certainty (hundred percent
chance) of a security breach, and thus, always incurs a loss.
At security level of one, the node is fully secure, and no loss
could occur. Such a one-dimensional security level assumes
that each player optimally allocates his resources among the
aforementioned security choices i) — vi). In other words, we
assume that each node is capable of making the best secu-
rity choices for self; i.e., the node’s reaches the highest pos-
sible security level conditional on total amount of security
resources that it expands.

The plan of the paper is as follows. In Section 2, we
consider a network consisting of n identical nodes. In Section
3, we solve homogenous network case without cyber insurers
present, and in Section 4 — with insurers. We derive an
optimal cyber insurer contract. In Section 5, we compare
equilibrium network security in different environments. In
Section 6, we generalize to a heterogeneous network case. In
Section 7, we discuss the extensions and conclude.

1.1 Literature

At present, risk management capabilities for ICT' are all
but nonexistent [2]. Three factors that hinder cyber risk
management via cyber-insurance are identified in [3]: corre-
lations, interdependence and information asymmetries. This
article combines the two latter factors and builds a frame-
work for the analysis and comparative evaluation of cyber
risk management solutions for large scale networks.

The widely held view among the researchers [2] is that
network insecurity primarily caused by misaligned incentives
as technology-based solutions are available, but not utilized.
[5] emphasizes that information deficiencies contribute to
the misaligned incentives and hence, hinder the adoption of
improved security practices.

We introduce a modeling framework to investigate the
possibilities of mitigating cyber risks in large scale networks.
Thus, we consider the network with and without cyber-
insurance, and study the effects of insurance. Our frame-
work allows to study both problems that manifest in environ-
ments with information asymmetries: moral hazard (when
insurers are uninformed of user security levels) and adverse
selection (when insurers cannot distinguish different user
types). In this paper, we focus on formulation of a gen-
eral framework that allows to study both, adverse selection
and moral hazard effects. We combine the model of large
scale network, in which individual user security and network
security are interdependent with ideas of asymmetric infor-
mation literature, originated by Akerlof [1], Rothschild and
Stiglitz [11].”

Due to space restrictions, we will omit technical discussion
of existing cyber insurance literature. We refer an interested
reader to [3], and the most recent developments will be pre-
sented in our forthcoming technical report.

2. INTERDEPENDENT NETWORK

To start, we consider a network consisting of n identical
nodes (players / users). We will generalize to heterogeneous
network in Section 6.

'Here ICT stands for information and communication tech-
nology.

2See [4, 15] for the literature review.

2.1 Homogeneous network

Each player ¢ choice variable is his security level s; to
maximize his expected utility w;:

Elul]=B; -UW — L)+ (1= B;)-UW) — h(ss), (1)

where s; — user security, h(-) — user security cost function
for reaching his chosen security level, which we assume to
be twice differentiable, and h'(x), " > 0 for every x € [0,1],
and h(0) = 0, A'(0) = 0, and h(1l) = oco. The intuition is
that user security costs increase with security, and that im-
proving own security level imposes an increasing marginal
cost on the player, with h(1) = oo characterizing a hypo-
thetical “perfectly secure” system. Indeed, it is realistic to
assume that marginal benefit from higher security level is de-
creasing, whereas marginal cost of security improvements is
increasing with security. h(0) = 0 illustrates the ease of ini-
tial security improvement, and lim,_1 hA(z) = oo illustrates
the prohibitive expense of complete security. [An example

of such an h is h(z) = 1’;296]

Players are risk-averse: U'(-) > 0, U”(-) < 0, and W
denotes user initial wealth, L — his amount of loss, and B; —
the probability of loss (resulting from successful breach) for
player <.

The reasons for keeping security costs in (1) separately
from monetary wealth are two fold. First, this specification
reflects that security costs are in many cases non-monetary.
For example, it is hard to put a price tag on one’s efforts to
remember multiple passwords, and second, in today’s world,
security budget is frequently determined by the player’s ef-
forts to obtain the funds (or manpower) for a given, specific
security need, such as performance of security updates, or
increasing the frequency of backups (both these tasks require
extra resources, such as manpower and equipment).

We will start with an expression for B; standard for the
literature modeling security interdependencies, as in [, 6,

, 7,9, 3], and many others. To be concrete, let us borrow
the specification from [10], see p. 21, where breach proba-
bility B; = Bi(s1,...sn) for node 7 is defined as:

B;(s1,...5n) :1—51-—|—51-H {q(1 —s;)}, (2)

JF#i
Thus, player i face two types of attack threats, direct and
indirect. A direct threat attacks player i directly, while an
indirect threat results from attacks on other network nodes,
j # i. Each user i have to chose his security level to mitigate
against both these threats. From (2), for player ¢ with secu-
rity s;, success probability of direct attack is (1 — s;); and
success probability of indirect attack from others is ¢(1—s;),
j #1,and g € (0,1). parameter ¢ = ¢(n) is assumed to be
small; the magnitude of g(n) characterizes the strength of
node inderdependencies of the network, with more interde-

pendent networks having higher g(n).

We argue that for large scale networks, the coherent g(n)
must decrease with n, because if it does not, by adding suffi-
ciently many extra nodes to the network, B; will reach, and
then exceed 1. Therefore, such specification is unsuitable for
analyzing large scale networks. Moreover, we suggest that
for such networks, an assumption of ¢ = g(n) — 0 is sensi-
ble to assure that g, remains small for any given n, where
gn = q(n)n.

2.2 Breaches in large scale networks



We start with (2), and derive an expression of breach prob-
ability for large scale networks with security interdependen-
cies. As we suggested above, we assume that g(n)n decreases
with n, and that go := g(n)n|,_,  is small. Then, we can
ignore the terms non-linear in ¢, and re-write (2) as:

Bi(s1,...5n) = 1= s; + siq(n) Y _(1—s;), (3)
i

from which we can express as:

n

Bizl—si—i-siqn{(l— 5)—@}, (4)

where ¢, := ¢(n)n and 5 denotes average network security:

&
§ = I ]2 Sj.

When n is high, we can ignore the last term in curly brackets:

B; =B(si,8) =1—s;[1—qn+ 9], (5)

where § := go5. We will call s; own security of player i,
and § — network security. In the limit n — oo, user i breach
probability is:

Bi =1- Si(l — qoo) — Si§,
where
Goo := q(n)n|,_, . and §:= gooS.

In line with common sense, from (5), no-breach probability
$i(l — goo) + siS increases in both: own security (s;) of
player i, and network security (§ := goo5). Parameter goo
is small, For more interdependent networks, the effect of
interdependence on breach probability is stronger, and, by
the same token, network security is more important.

In contract with our earlier work [13, 14, 12], where we
imposed that for each player, breach probability is a function
of two variables: player own security action, and average
security of all players, in this paper we will formally derive
the expression of breach probability from a standard one (3).
The expression (4) is appropriate for large scale networks,
and we will especially focus on its limiting case of high n, as
given in (5).

This model of interdependence does not account for a pos-
sibility of correlated attack probabilities. That is, all attacks
are assumed to be independent, and simultaneous attacks
are ignored. In Section 7.1, we discuss the possibilities of
modifying our assumptions on distribution of network risks
to account for correlated (or cascading) risks. To account
for correlated breach probabilities at the level of the entire
network, we suggest to include an additional term high loss
term.

3. HOMOGENOUS NETWORK WITH NO
CYBER INSURERS: A SOLUTION

In this section, we will find individually optimal security
choices of each player (i.e., Nash equilibrium) when no cyber
insurers are present, and insurance contracts are unavailable.
Then, each player i choice variable is security level s; € [0, 1]
which he chooses to maximize (1) with breach probability
given by (3). Expected user ¢ utility (1), can be written as:

UW —L)+si [1—qn) Y (1—s;)| - Ao — h(s:),
J#1
where
Ag:= [UW)-UW —L)].
User 4 optimal action (from FOC wrt s;) is a solution of:

1—q(n) > (1—s;)| Ao —h'(s:) > 0. (6)
J#i
We rewrite FOC as:

[1 (1 -3) 4 %} Ao=H(s),  (7)

where Ag > 0, and we use gn > 7, (1 = 85) = ¢u(1 —3) —
@, and ¢, = 2 - Since user i SOC is negative, be-
cause from the proverties of the function h”(-) < 0) for any
si, and thus, a single interior optimum s; = s; (3) exists (for
any fixed 5), and from the properties of function h(-), the
boundaries of s = 0 and s = 1 cannot be optimal, thus, the
interior maximum is indeed the optimal.

Next, let there exists an equilibrium with §*, and let there
exist two players whose optimal actions s; # sj. Let wlg
s; > s3. Then, we can write FOC for player j as:

R SR Gt S R

and subtracting (8) from (7) (FOCs for players j from FOC
for player i) we obtain:

%"(s; — 7)Ao = h'(s) — W' (s]).
Since k' is increasing in s, for s} > s3, the right hand side is
positive while the right hand side is negative. We conclude
that s7 = s; and since ¢ and j were arbitrary, player equilib-
rium security is identical, i.e., only symmetric equilibrium
exists. This allows us to compute the equilibrium directly
by setting s = s; = s™ and using (7):

K (s)
n—1 )

[1 — (=D - )qn(l — s)]
which for the limit of large n can be written as

Ao = R(s), (10)

Ag = 9)

where

K (s)
[1—goo(1—5)]
Equilibrium is unique, if the solution of (9) is unique. A
sufficient condition for that is R’ > 0:

" _ _ /
g ) 1-a( 25)] __ NW(s)gn >0,
[1—gn(1-9)] (1 —aqn(1—s)]

R'(s) —qn [W(s) + (1 — s)h"(s)] > 0.

Further, to simplify the exposition, we will impose R’ >
0 and restrict our attention to the case of a unique Nash
equilibrium. For example, imposition of A/(-) > 0 results
in R’ > 0, which guarantees the uniqueness.

R(s) :=




4. HOMOGENOUS NETWORK WITH CY-
BER INSURERS: A SOLUTION

Let us consider security choices of networked players (nodes)
in the presence of (perfectly) competitive cyber insurers. We
will define a setting following Rothschild-Stiglitz [1976], who
examine equilibrium in insurance markets with adverse se-
lection. Each insurer offers a single insurance contract in a
class of admissible contracts, or does nothing. A Nash equi-
librium is defined as a set of admissible contracts such that:
i) all contracts offered at least break even; ii) taking as given
the contracts offered by incumbent insurers (those offering
contracts) there is no additional contract which an entrant-
insurer (one not offering a contract) can offer and make a
strictly positive profit; and iii) taking as given the set of
contracts offered by other incumbent insurers, no incumbent
can increase its profits by altering his offered contract.

The literature refers to such contracts as competitive con-
tracts, because entry and exit are free, and because no bar-
rier to entry or scale economies are present. We consider
risk neutral cyber insurers, who compete with each other.
In addition, following to Rothschild-Stiglitz, we assume no
individual insurer can affect the network security §; thus,
take each insurer takes network security as a given parame-
ter.

We assume the following timing of the game: First (ex
ante), network nodes (players) observe all contracts offered
by cyber insurers; second, each node chooses which con-
tract to accept (if any); third (ex post), the nodes choose
their security level(s), (in both cases, with cyber contract
or without). We assume that each cyber insurance contract
includes a stipulation prohibiting the insured node to buy
more than a single cyber security policy (contract).

At this point, some readers perhaps recognize that our for-
mulation of the game does not specify whether ex ante, the
players (the nodes and the insurers) have the information
about ex post network security §. Still, as we demonstrate
in Appendix, the game as we stated it could be solved. To
proceed we will divide the problem into three steps. In Step
1, we will derive optimal security choices by the nodes un-
der an assumption of buying contract (pc, Lc). In Step 2,
we will derive the contracts that are viable for cyber insur-
ers. By a viable contract we mean that expected profit is
non-negative, given that network nodes security choices are
optimal. In Step 3, we derive an equation which solution
gives equilibrium contract(s) (pf,L{). The derivation em-
ploys an argument that only the contracts that maximize
user utility will be purchased in equilibrium.

4.1 Step 1: Optimum with the contract (p., L.)

Let there exist some given cyber contract (pc, Lc) that is
offered, and consider the choices of user ¢. Each user decides
(i) which contract to purchase (in case if other, alternative
contracts are offered) and (ii) which security level to choose.
Since a decision to buy no insurance can be modeled as pur-
chase of a contract (0,0), we always can phrase user choice
as a choice between at least two alternative contracts.

Elui] = Bi-U(W ~L—pe+ Le)+(1- B)-U(W - po) — hs),

where in general, B; = B;(s1,...8n), but from the derivation
in Section 2.2, we have B; = B(s;, §).

User i expected utility with cyber-insurers present, AND
assuming that he entered into a contract (pc, Lc) could be

written as:
Bi-UW—=L—pc+Lc)+(1—B;)-UW —pc) —h(s;). (11)

From user ex post optimization (conditional on the pur-
chase of a contract), we know that if all users indeed buy
insurance, equilibrium is symmetric: the proof follows the
same steps as in no-insurance case above, see Section 3. User
1 FOC is:

Aco = R(S, 5), (12)
where
oo W)
R(s,8) := =g+ 3] (13)
and

Aco = [UW = pe) =UW = pe = (L = Lc))] -

We can formulate the following proposition:

PROPOSITION 1. For a network with a given security s,
for a user with a contract (pe, Lc), with L. > 0, individually
optimal security s = s'(3, pe, Lc) is strictly lower than his
optimal security s = s*(8,0,0) with no insurance coverage
L.=0:

s1(3, pe, Le) < s°(5,0,0).

We use symmetry of user optimum 5 = s = s, and
§=gqs:
/
Ao = &, (14)
[1—q(1—s)]

Differentiating (14) wrt s, with an assumption of A"’ > 0 we
obtain that the right hand side derivative is positive:

h'(s)[1 —q(1—s)] —h'gq
[1—q(1—s)

Thus, there exists a unique user symmetric optimum for a
given contract.

>0, if K > 0. (15)

4.2 Step 2: Properties of viable contracts

We will use the results of Section 4.1 , in which we de-
rive optimal user responses to a specific given contract to
investigate the properties of viable cyber contracts. We will
say that a contract is viable when expected insurer profit is
non-negative. To assure non-negative cyber insurer profit,
the following constraint has to hold

Pec = pc(SL...Sn,LC) Z BZLC

With perfect cyber insurer competition, each insurer’s ex-
pected profit is zero:

pe = pe(8i, 8, Le) = Bi(ss,8)Le, with a given §, (16)

where since each insurer is small, he treats network security
5 as given. A contract (pc, Lc) with a premium given by (16)
is called actuarily fair contract.

Consider some equilibrium in which § = 5", and assume
that in this equilibrium user actions are identical: §' = ¢, 5%,
and 57 = sI = s. In this case, any given viable contract
(pe, Le) offered for some insurers, will be accepted by all
nodes due to the symmetry of their optimal action. A for-
mal proof of symmetric optimal action mimics the proof of



Section 3. Let s;r (pe, Le, §) denote optimal response of user
i with contract (p., L.) when average security is 5'. Then,

si(pe, Le,5) = 5, (17)

because from zero profit condition (16) and (17) we can ex-
press pe(s1,...Sny Le) = pe(s, Le).

pl(s) = pl(s,LL) = B(s)Li(s), (18)
where
B(s)=[1-s(1—q)—(s)%q], (19)
T

If users buy the same contract (pl(s), Li(s)), and network
security is § = gn s, and (14) holds:

R(S) = AC().

Thus allows us to restate insurer problem as a problem
of one independent variable, i.e., network security § (or user
security s). We will use s as an independent variable, and
demonstrate that viable contract is unique, and can be de-
termined from user optimality (14) and insurer zero profit
(18). In Appendix, we prove the following result:

PROPOSITION 2. Due to user optimum choices, for any
given network security s, and if user optimal actions are
symmetric (identical), there exists a unique corresponding
viable contract (pe, Lc) = (pl(s), Li(s)), and the derivatives

f 1
ddLsC and djsc are negative.
. . . dL} dpl,
In Appendix, we obtain the expressions for ¢ and ¢,
see (32) and (31):
dL! [R'+ AaB'L]
= 0 20
G5 Bha UMW —p—LiL) % 0
and
de ’ drLl /
—< =BL.+B—<,and B 0. 21
ds + ds an < (21)

Alternatively, one can express the conditions for viable con-
tracts with L. as an independent variable (instead of s). In
some cases, such a formalization could be more intuitive, and
also preferable on computational grounds. We will include
it into a longer version of this paper (in preparation).

4.3 Step 3: User preferred contract(s)

Next, we derive an interior contract with which users
reach maximal utility. We can demonstrate that such a
contract exists (by construction). Consider an insurer a
choice of a contract, such that if user optimum is symmetric
(pe(s), Le(s)), this contract is viable for insurers, and also al-
lows user utility to reach its maximum. Using the results of
Section 4.2, to find such user preferred contract is equivalent
to finding s that corresponds to this contract:

mSaX{B-U(W—L—pC—FLC)—F(l—B)-U(W—pc)—h(s)}.

Then, insurer FOC, will determine equilibrium contract with
which user utility is the highest. Let equilibrium be interior
in s and user optimal actions be symmetric. Then,

{{=5(1 = q) = sq} Aco = I'(5)} — 5qAco (22)

dpl dL}
ds ds

+BAu—<+B-U(W —L~-p.+ L)

=0,

where
Act 1= [U' (W = pe = (L = L)) = U'(W = pe)] > 0.

We can combine (20) or (21) with user optimum and insurer
FOC (i.e., user preferred contract), to obtain connection of
L. and s in equilibrium:

sqR — BA.1B'L.
B[R+ AuB'L.]’

[BAu +U' (W — pe — L + L)]

[BAa —U'"(W — pc — L+ L¢)]

(23)
and we use (13),(19) (16) for R, B,and p.:
__ M)
O = gy

B=[1-s(1—q)—(s)%q],

Pec = BLC

to derive equilibrium contract(s) explicitly. Notice, that
with a simplifying assumption of quadratic U, equilibrium
equation (23) is analytically solvable: it is then quadratic in
L.

Lastly, we have to investigate whether asymmetric user
equilibrium could occur in some cases. In a longer version
of this paper, we demonstrate that due to perfect insurer
competition, no asymmetric user equilibrium exists. In this
version, we restrict our attention by symmetric user equilib-
ria only.

S. BENCHMARKS

5.1 Social optimum with no cyber insurers

To find a social optimum, we no longer consider and each
individual’s best responses, but instead find security level
that maximizes cumulative expected payoff of all the users
of the network. Let s denote security in social optimum.
As for Nash, one can demonstrate that social optimum is
symmetric. Under symmetry, social planner optimization
problem becomes:

Elu)]=UW —L)+s [1 —q(1—13s) (nr_z 1)} - Ag — h(s),
and from FOC, in social optimum, we have
{ {1 —q(1- s)@} + ZSqM} Ao — K (s) >0,
n n

and in interior optimum we:
K (s) _
{ [1 —q(1— 5)7(";1)] + QSqL;U }

Comparison of (9) and (24), gives that social optimum coin-
cides with Nash equilibrium only if n = 1. With more then
one player, in Nash equilibrium (individual optimum), secu-
rity is always lower than socially optimal, due to an extra
term in the denominator of social planner FOC (24).

Ao, (24)

PROPOSITION 3. In equilibrium, individually optimal user
security s* is strictly lower in social optimum:

s < 8",



From our analysis, Nash Equilibrium security is below so-
cially optimal, and the gap (and thus, inefficiency) increases
with network size (number of nodes) and for networks with
higher interdependencies.

5.2 Optimum with vs without insurers

From the results of Sections 3 and 4, we infer that for
homogenous networks the presence of insurers negatively af-
fects security incentives:

PROPOSITION 4. Let s' denote user optimal security choice
with a contract (pe, Le) purchased. In a symmetric inte-
rior equilibrium with non-zero coverage, user security s' is
strictly lower than user optimal choice with no insurance
coverage st < s*.

st <™.

To prove Proposition 4, we compare (14) with (9) due
to the fact that the right hand side of both, (14) with (9)
increases with s, and left hand side is smaller with positive
insurance coverage than without any coverage:

Aco < Ag.

Notice, that we have not yet considered a (theoretically
possible) asymmetric equilibrium where only some fraction
of the nodes has positive coverage, while other nodes choose
zero coverage. Then, in expectation, users with and without
coverage must be indifferent between these two options. In a
longer version of this paper, we prove that such configuration
never occurs, and thus, equilibrium is always symmetric.

6. HETEROGENEOUS NETWORKS

Next, we consider network with n nodes / players, who
can be heterogeneous. For such heterogeneous network, we
will say that two players have the same type if their objec-
tive function (1) is identical, and (ii) both players employ
identical equilibrium action(s).” We will assume that for
each type k, the number of nodes is large. An alternative
definition of a player type is to require (i). When for players
of the same type equilibrium is symmetric, these definitions
coincide. Requirement (ii) is especially appropriate for en-
vironments with multiple network nodes owned by the same
player, which could result in asymmetric equilibria.

In this paper, we are limiting our attention to the case
when each node chooses its action as a separate (individual)
player. Let nj be the number of type k& nodes. Then:

m m
Nk
Eakzl,nzgnkandak::—,
n
k=1 k=1

where m > 1 is the number of different types of the network;
the network with m = 1 is homogeneous network consisting
of identical nodes. Each player i of type k players maximizes

3An alternative definition of a type could require that any
two nodes of the same type to have identical expected utility
function. When in equilibrium players with identical utilities
make identical equilibrium choices, i.e., for players of the
same type the equilibrium is symmetric, both definitions
coincide. But our definition will be especially convenient
when multiple network nodes are owned by the same player.
In this paper, we will limit our attention to environments in
which each node chooses its actions as a separate player.

his expected utility:
E(usk) = Bik - Ug(Wy — Ly, — pe + Le)+ (25)
(1 = Big) - Ue(Wg — pc) — ha(s4,).

From (25), users of different types, may vary by their risk
aversion (i.e., the shape of function U = Ui(+)), security cost
function h = hg(-), initial wealth W = Wy, and L = L.
Also, cyber contracts available for different types can differ
by type: offered In addition, available cyber insurance con-
tracts (Sec, pey Le) = (Sck, Peks Lek) could differ with player
type, and possibly, be non-zero contracts could be offered to
certain user types only, but not for all the types. The types
for whom cyber insurance is unavailable can be modeled as
constrained to a contract with zero coverage (0,0, 0). Also,
cyber insurance could be mandated for some (or all) types.
In heterogeneous network, breach probabilities are defined
by (2), and By for player i of type k can be simplified (as
for homogeneous network (2)), and wlg B;rx = B, and for
t=1land k=1:

B1:1—81
m N !
to (D ary (I—sp)+ay (1—s)|,
k#£1  j=1 G#1

where gi denotes indirect effect of node of type k on all other
nodes; we assume that type k& nodes have the same indirect
effect on all others. We rewrite Bix = B;1 = B as:

Bi=1—-s1+s ZQk(nk)nk(l — 3k)

k#1
_ 1-s
+ s1q(n1)na {(1 - &1)— g}
ni
where 5, = i Z’;il s;, is average security of type k nodes

(i-e., only type k nodes securities are averaged to obtain 5).

Bi=1—si+sy qlne)ne{(1— 5}
k=1

— sig(n)m {M} .

n1

For high n, we ignore the last term in curly brackets:
np
B =1-—s (1 —q) —Slzqulm
k=1

1

where 5, = o ;’il sj, and

23
qr = q(ng)ng, q == ZQk,
k=1

and § := Z:il qk Sk, and we will call § network security for
heterogeneous network.

Bk =1- Sk (1 — q) — Skg. (26)

Thus, we have shown that breach probability for the network
with heterogeneous users could be expressed very similar to
breach probability in the network of identical (homogeneous)
users. Interestingly, when interdependence term (gx = ¢q)
is the same for all types k, breach probability is identical
for homogeneous and heterogeneous networks. This allows



remarkable simplification of the analysis for networks with
heterogeneous types of nodes.

With identical players, we already derived breach proba-
bilities B; = B;(s;, 5 = s; ), when players security is optimal
six = s(u, W, L, h,5 = s;). These choices depend on player
i risk-aversion, wealth, cost of security, and the amount of
his loss. Similarly, breach probabilities B; for a network
with heterogeneous nodes can be derived from player se-
curity and network security, i.e., from player characteristics
Uk (+), hx(+), Wi, Li, g, and network security §. Superficially
(5) and (??) look the same, but for heterogeneous network,
network security reflects the effects of different node types,
by accounting their influence on others via interdependence
(via gqx) and overall frequency of occurrence (via 5).

Below we will consider an important extension to two
player types. It is straightforward to generalize this analysis
to networks with multiple node types. For cases of multiple
types of network nodes, computational algorisms based on
our initial analysis should be developed. Once these steps
are undertaken, these models can be fitted (parametrically)
to investigate security of real cyber physical systems. In
this case, the parameters of the model should be taken from
data, and / or from simulations. Thereafter, with the help
of testbeds the recommendations could be made for targeted
(optimal) node security.

6.1 Network with two node types: A solution

We consider the network populated by two types of users,
and within each type, users are identical, and for each player
type, the effect on network security § is negligible. Each user
of first type, which we will call normal user type, maximizes
(1) with breach probability given by (26):

Users of a second user type, whom we will call malicious,
face no damage, even if attacked successfully. An example
of a malicious user is a disgruntled employee. Or, malicious
user could be criminal, aiming to game the system and milk
the insurers.We will assume that type two users have the
capabilities of subverting insurer monitoring of their secu-
rity level, even when insurers could perfectly monitor (at
zero cost) security levels of the normal users. Realistically,
insurer monitoring is not perfect and costless. Thus, even if
insurer requires the insured party to invest in security, she
cannot assure that her insurees do maintain the required se-
curity level at all times. We assume that normal users are
law-obedient. That is, they do not, or cannot subvert the
insurer monitoring. For example, the subversion could be
too costly for first user type.

Real networks undoubtedly has many users who do not
care about security. These users typically have meager (or
zero) losses and find it too costly to implement any security
measures. We assume that a certain (fixed) fraction oo > 0
of network users belong to second type. Expected utility for
type 2 is:

Bof(W) + (1 — B2) f(W) — h(s) = f(W) — h(s), (27)
where
32:1782(17(])7825,

From (27), for type 2, expected utility does not depend on
Ba, and zero security is optimal for such users, which entails
s2 =0 (and h(0) = 0):

EUik=2] = f(W) = h(s) = f(W),

and
Bs =1,
and
31:1,31(1,(]),3157
where
N
§:= Z%§k =q(1 - a)s1,
k=1

where to simplify the exposition we let g1 = g2 = ¢, which
gives
B1 =1- S1 (1 — q) — slq(l — Oé)gl.
For type 1 users optimal security is the same for all i sj7 =
s1*, in which we use the fact that optimal action is symmetric
(as demonstrated in Section 3). Optimal security s7* = 57"
can be found as a solution of FOC for type 1 users:
W (s1")

[(1—g +q(1 —a)sT)]
From comparison with (10) which gives for s* for the case
of homogeneous network of normal users:

= Ao (28)

h (s
e
and (28) we infer
s* < 8T,
and
5" < st

§"=q(l —a)sT" < §".
To prove the last equation, consider a model of identical
users with different (lower) interdependence parameter equal
to ¢* = ¢(1 — ). In this case, optimal security s** solves
B (s%)
(1 —q(1 —a)+q(1 — a)s?]

and comparison of (10) and (29) gives

= Ao, (29)

s* < s™ and 5 = ¢s* < ¢s™*.

When no malicious users are present, i.e., « = 0, network is
populated by identical normal users, (10) and (28) coincide,
and s = s*, the higher is the fraction a of malicious users,
the higher is normal users optimal security investment rel-
ative to a = 0, but network security §™ . Thus, we have
shown:

PROPOSITION 5. With malicious users present [ # 0],
in equilibrium, network security is lower, and normal users’
security s™ — higher than the respective values for a = 0.

Similarly, from comparison with a socially optimal alloca-
tion we infer:

PROPOSITION 6. With malicious users present [ # 0],
in social optimum, network security is lower, and normal
users’ security — higher than with o = 0.

From Propositions 5 and 6, we infer that although the
presence of malicious users forces higher security of normal
users, with malicious users explicitly included into setting,
network security decreases.



7. CONCLUDING COMMENTS

Our analysis provides a rigorous derivation of cyber se-
curity contracts in a general setting, yet we demonstrated
that our derivation requires only a limited amount of infor-
mation. as we discuss in Section 6, our methodology gener-
alizes to heterogeneous networks. Still, there remain several
important issues that our model so far neglects. Below we
briefly talk of three important avenues that we are planning
to address in our future research.

Our analysis confirms a discrepancy between informal ar-
guments that favor cyber-insurance as a tool to improve net-
work security, rather than merely manage risks. Specifically,
we observe that that in presence of cyber insurers, equilib-
rium network security is lower than if no cyber coverage is
available. Thus, our results support that in isolation, avail-
ability if cyber-insurance does not allow to improve network
security. Our framework helps to identify the crucial net-
work parameters for improving incentives to provide secure
networks.

7.1 Modeling correlated risks

Finally, some (or all) types could be subjected to addi-
tional loss(es) caused by correlated network risk (for ex-
ample, risk of natural disasters (earthquakes), or risk or
a terroristic attack). Such risks have very low probability
br < B; of a very high loss L, > L.,.and even L, > W.
Such risks are called “catastrophic risks” or “rare events”,
and typically they are ignored by individual agents. Still,
these risks have to be addressed at the societal level. In-
cluding these risks in utility allows to design mechanisms
improving the management of these risks.

7.2 Modeling more detailed contracts

It is difficult to model multiple strategic insurer choices,
and literature is dominated by the models that assume mo-
nopolistic insurers, which is not particularly realistic. An-
other extreme (that we pursuing in this paper) is to assume
perfectly competitive market of cyber insurers, that makes
insurers non-strategic due to complete lack of market power.
Even papers that assume required return (load factor) do
not model strategic insurer choices.

We will consider different assumptions on observability
of player security and network security. And, we will con-
sider two types of contracts: with (s, pe, Lc), and without
(pe, Le), imposition of required user security, where p. — pre-
mium, L. — amount of loss covered, and s. a minimal secu-
rity level required by the contract.

7.3 Modeling the causes of breaches

CPS risks can be broadly divided in two categories, strate-
gic (that is driven by intended human actions), and non-
strategic (that is driven by natural causes). Security poli-
cies, laws and regulations could affect both categories, albeit
technical tools for the analysis are somewhat different. Your
model permits to introducing attacker(s) as special player
types, and examine the effects of various regulatory imposi-
tions on attacker incentives.

8. APPENDIX

Derivations for Sections 4.2 and 4.3

To prove Proposition 2, consider user FOC in a symmetric
case:

Ac = R(s,8) = R(s),
where
Ao := [UW = pe) =UW — pe — (L — Le))] ,
and we use (13) ,(19) (16) to have R, R',B, B’ and p.:
K (s)

R&) =g a1

R(s) = h"(s)[1 —q(1 —s)] — h'q
[1—q(1—s) ’

B=[1-s(1-q) —(s)°q], B'= —(1—q) — 2sq,

pe = BLe..
We differentiate user FOC (12) wrt s to derive the expres-

. dart
sion for —<
S

dpl
ds

dL}
ds’

R =Aa —~U'(W —pe— L+ L) (30)

where

Acr = [U'(W = pe — (L — L)) = U' (W — pc)] >0,

and
dpl _ B'L. + BdLI and B’ < 0 (31)
ds ¢ ds’ ’
, , dL} , dL}
R =Aa |B'L.+B —~U'(W = pe — L+ L)
ds ds
R = AcledL; +U' (W = pe— L+ L) ddLsc + Aa B L

AaB—U' (W —pe — L+ L)
=(B~=1)Aa —U' (W —p) <0

A [1=s(1—q)—(s)’q] —=U'(W = pe — L + L)
=—s(1—q) — (s)’qAcr —U' (W — pc)

[R'— AaB'L.]
(+]

dL}

ds

dL}

=AuaB )
! ds

—U' (W = pe— L+ L)

and we have

dLl [R'+ AuB'L,)
ds  BAa —UW —p.— L+ L)

<0, (32)

and combining with (31) provides that Proposition 2 is proven.
For Step 3, we can combine (20) with the best user con-
tract (user preferred), which we find from:

m?xx{B~U(W—L—pc+Lc)
+(1=B)-UW —pc) —h(s) },



which gives (under the assumptions of interior solution and
symmetry of user equilibrium)

{{=s(1 —q) — 5} Aco — h'(s)} — 5qAc0

and thus:

(33).

dpt , dL}
BAy——=+B-U(W—-L—p.+ L <
+ 1 s + ( pe+ Lc) ds
=0
where the first curly bracket is zero (due to user optimality),
dp} : dL}
—8qAc0+BAq—=+B-U'(W—-L—pc+Lc.)—= = 0. (33)
ds ds
t
Next, we use (31) to get rid of direct dependence on d;; in
bt
- SchO + BAcl |:B/Lc + deLL:|
s
i
+B-U’(W—pc—L+Lc)ch
ds
=0.
B*A dLi +B-U(W —p.—L+1L )dLg
s pe “ ds
= Scho — BAC1B/LC
; dL}
B[BAa +U (W — pc — L + L)] s

And

=sqR — BAuB'L,

i
e into (33) to

then, substitute an explession (20) for

obtain equation connecting equilibrium L} and s

[BAc +U'(W — p. — L+ L))
[BAq —U'(W — pe — L+ Lo)|
_ sqR— BAuB'L.

T BIR 1 AuB L)

(34)

With a simplification to a quadratic U, equilibrium equation

(34) is analytically solvable (quadratic in L.).
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