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The Pursuit-Evasion-Defense Differential Game
in Dynamic Constrained Environments

Jaime F. Fisac

Abstract— Dynamic multi-player games are powerful ab-
stractions of important real-world problems involving multiple
interacting agents in both cooperative and adversarial settings.
This paper studies a three-player differential pursuit-evasion
game in which a pursuer aims to capture a fleeing evader
while a third player, the defender, cooperates with the latter by
attempting to intercept or delay the pursuer to avoid capture.
Our analysis considers time-varying dynamics and allows the
presence of possibly moving obstacles in the domain. We apply
a recent theoretical result to express the outcome of the game
through the solution of a double-obstacle Hamilton-Jacobi-
Isaacs variational inequality, and propose a novel approach
to break down the problem into two simpler two-player games
with dynamic targets and constraints, which can be solved at a
much lower cost. Although conservative, this method guarantees
correctness of the computed winning region and strategy for the
evader-defender team when a feasible escape solution is found.
We demonstrate both the full solution and the approximation
method through a numerical example.

I. INTRODUCTION

The study of dynamic reach-avoid games has developed
considerably in the last few decades and has played a crucial
role in many important engineering problems, including
collision avoidance [1],[2],[3], target surveillance [4], energy
management [5], and safe reinforcement learning [6],[7].
In the two-player reach-avoid formulation, one seeks to
determine the set of states from which one of the players can
successfully drive the system to a target set while remaining
inside some state constraints at all times, in spite of the
opposing actions of the other player: this set is referred to as
the reach-avoid set (or capture basin) of the target under the
constraints. Targets typically describe desired waypoints or
operating conditions and constraints can model obstacles in
the environment or forbidden configurations. A particularly
interesting class of reach-avoid games, originally studied in
detail by Isaacs [8], are the so called games of pursuit, in
which a pursuer aims to capture a fleeing evader by reducing
the distance between them. Both players are allowed to move
on the domain with given dynamics.

Although analytic solutions can be found in simple cases,
the complexity of these problems, which may present non-
linear dynamics, bounded domains and obstacles, generally
requires computing solutions numerically. In many important
cases, the reach-avoid set can be obtained through a dynamic
programming approach, by finding the viscosity solution to
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the corresponding Hamilton-Jacobi-Isaacs (HJI) equation in
the form of a variational inequality. While computationally
intensive, numerical solution methods for Hamilton-Jacobi
equations, such as [1], [9], [10], are able to accurately solve
problems with low dimensionality.

The classic two-player reach-avoid game has been rigor-
ously studied and solved using the Hamilton-Jacobi frame-
work, for the time-invariant case with static targets and
constraints. In [11], previous regularity difficulties at the con-
straint boundaries were overcome through the introduction of
an auxiliary value function (proposed in [12] for the single-
player optimal control setting). A first approach to extend
these results to time-varying systems was proposed in [13],
which required augmenting the state space with time, re-
ducing time-dependence to state-dependence; this, however,
entailed significant computational expense due to the curse
of dimensionality. In recent work with our collaborators,
we extended the Hamilton-Jacobi formulation to incorporate
time-varying dynamics, targets and constraints without the
need for such state augmentation [14]. This has opened
new possibilities including the study of games in dynamic
environments and the obtention of solutions for certain large-
scale problems like safe trajectory planning for multi-vehicle
systems [3]. These problems constitute highly current and
relevant challenges, such as the definition of an unmanned
traffic management (UTM) paradigm to enable safe operation
of autonomous aircraft in low-altitude civil airspace [15].

Multi-player reach-avoid games have also been subject to
growing attention in recent years. In [16] a decentralized
control scheme for multiple pursuers based on a Voronoi
cell decomposition was shown to guarantee capture in finite
time of a single evader in a bounded, convex polytope in the
plane; these guarantees were extended in [17] to domains
with an escape window for the evader, through a modified
scheme in which one of the pursuers guards the exit to
prevent the evader from escaping while the other pursuers
ensure capture. Games with multiple evaders have considered
different kinds of evader behavior: previous work in [18]
assumed random evader motion, while some recent work [19]
considered multiple selfish evaders in a heterogeneous herd,
each trying to avoid its own capture. Cooperation between
evaders to avoid a hidden pursuer has been studied in [20],
where the evaders aim to maximize the overall capture
time for the entire group. A cooperative setting inspired by
predator-prey behaviors in nature is investigated for one-
pursuer, two-evader games in [21], where the evader that
is not being targeted harasses the pursuer to increase its cost
in the hope of dissuading it from continuing the pursuit.
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Most recently, there has been particular interest in aug-
menting pursuit-evasion games with a third kind of player,
called the defender, whose aim is to prevent the pursuer from
capturing the evader by either intercepting it or delaying
it enough for the evader to escape. If the evader and the
defender are assumed to have perfect coordination, it is
possible to treat them as a single player with two separate
control inputs. A first approach in [22],[23] assumes a
particular type of feedback control scheme (pure pursuit and
proportional navigation) for the pursuer, while in [24] the
authors switch to a differential game setting that they refer to
as “active target defense”. Motivated by aircraft defense from
missiles, their analysis assumes unconstrained space with
isotropic, time-invariant dynamics. However, we find that for
many important real-world applications, including aerospace
scenarios like maneuvering in the proximity of other aircraft,
it is necessary to provide a more generalized treatment allow-
ing for the presence of possibly moving obstacles and time-
dependent dynamics. Given the latest theoretical advances
and the current relevance of these challenges, we feel that
the time is propitious for pursuing this line of research.

The present work makes two main contributions. First, we
provide a novel method, based on the recent theoretical re-
sults in [14], to compute the victory domains and guaranteed
winning strategies for both teams through the solution of a
new type of Hamilton-Jacobi-Isaacs variational inequality.
Next, we propose a principled approach to decompose the
full problem into two smaller two-player games that can be
solved at a much lower computational expense, allowing the
obtention of timely solutions that are conservative from the
point of view of the evader-defender team.

II. PROBLEM FORMULATION
A. System Dynamics

We formulate the pursuit-evasion-defense problem as a
differential reach-avoid game, where one of the players is
attempting to drive the system into some target set without
leaving a constraint set, while the other player attempts to
hinder it: in this setting, the first player is the pursuer, and
the second is comprised by the evader-defender team.

Let ¢ = 0 be the start time of the game and ¢t =T > 0 be
the end time. Let the state = := (e, p, d) encode the positions
of the evader, pursuer and defender in the n-dimensional
domain (typically n = 2 or n = 3); that is, e, p,d € R™ and
x € R3". Bach player i can choose an input signal u;(-) from
the set U; of measurable functions from [0, T'] to a nonempty
compact set U; < R™. Consider the system dynamics:

&(t) = f(z(t), ue(t), up(t), ua(t),t), ae. t€[0,T], (1)
where the flow field f : R3" x U, x U, x Uy x [0, T] — R3",
is assumed to be uniformly continuous, with

| f (2, te, up, ua, t)] < C,
|f (2, tes up, ua,t) — f(Z, e, up, ug, )| < Lz — Z|, (2)
for some C > 0,L > 0 and all t € [0,T],2,% € R3",

Ue € Ue,up € Uy, uqg € Uy. Under these conditions, system
trajectories are well defined and continuous.

Further, we assume that the dynamics of the different
players are in fact decoupled from each other. The dynamics
of the system can then be decomposed as:

€= fe(eaue7t)7 (33)
p = fp(paupvt)a (Sb)
d = fa(d,ua,1), (3¢)

where f., fp, fq inherit the boundedness and continuity of f.

B. Winning Conditions: Targets and Constraints

We will now introduce the appropriate framework to
describe the target and constraint sets for the pursuit-evasion-
defense game. Given a closed set M < R™, its associated
signed distance function daq : R™ — R is given by:

infyer |2 — ¥, z € R™WM,
dp(z) =4 .
- lnfyeRm\M |Z - y|a z€ Ma
where | - | denotes a norm on the vector space; we will let

this be the Euclidean norm throughout the paper.

We define the upper hemicontinuous' set-valued maps
T.K : [0,T] — 2%°" which respectively assign a target
set 7, < R3" and a constraint set C; < R3" in the joint
state space to each time ¢ € [0,T]. Requiring that T;, KC; are
closed for all ¢, we can construct the space-time sets

T:= |J Tix{th, K= [J Kux{t}
te[0,T7] te[0,T7]
which are then closed subsets of R3" x [0, T] (see [14] for
a proof).

The closed sets T and K can then be implicitly charac-
terized as the subzero regions of two Lipschitz functions
[:R3 x[0,T] > Rand g: R3 x [0,T] — R respectively,
that is, 3L;, Ly > 0: V(z,t), (%,%) € R® x [0, T,

o)~ @0 < Llw) - DL
9(z, 1) = 9(Z, 1)] < Ly|(2, 1) = (2,1)],
so that
(x,t) €T < I(=,t) <0, 5)
(z,t) e K <= g(z,t) <0.

These functions always exist, since we can simply choose
the signed distance functions I(z,t) = dr(z,t) and g(z,t) =
dk (z,t), which are Lipschitz continuous by construction, i.e.
they are the infimum of point-to-point distances.

In an analogous fashion, we can define the set of possibly
moving obstacles in the domain by a closed upper hemicon-
tinuous map O : [0, 7] — 2%" and its associated space-time
set O € R™ x [0,T]. Note the different dimensionality in
this case, since this object is defined in terms of the domain
R™ and not the joint state space R3". It is important not to
confuse the obstacle set @ with the constraint set K, since,
as we will see, the obstacle O will contribute to both the
constraint K and the target T.

'A set-valued map M : [0,T] — 2R™ s upper hemicontinuous (also
called upper semicontinuous) if for any open neighborhood V' of M(t)
there is an open neighborhood U of ¢ such that M(7) € V V1 e U.
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The above definition of obstacles, targets and constraints
is flexible and allows for unconnected and non-convex sets
with a variety of behaviors, including changing topologies
over time (e.g. a target splitting into multiple separate sets
or disappearing entirely). We can use these sets to describe
the objective and restrictions of the game from the point of
view of the pursuer, namely the pursuer will win the game
if it succeeds in driving the system state to the target set at
some time ¢ € [0,7"] while avoiding leaving the constraint
set at any prior instant 7 € [0, t].

The set 7; must therefore capture all winning configura-
tions for the pursuer at time t. We define a capture radius
rc > 0 such that the pursuit is considered successful if the
pursuer and the evader ever come as close as this distance;
in addition, if the evader or the defender breach the domain
constraints (run into an obstacle) we will also consider the
game to be won by the pursuer; finally, the evader-defender
team loses if the evader and the defender come within a
distance of 4 or less of each other (we refer to this quantity
as the accident radius). The target set T; is thus given by

T :={(e,p,d) e R>" : e —p| < r¢}
U{(e,p,d)eR¥ :le—d| <ra}
u{(e,p,d) eR* 1 e € O,}

v {(e,p, d)eR*:de Ot},

(6)

which leads us to define the target function I(x,t) as

(z,t) :=min {|e — p|—rc,|e — d|—74,do(e, t), do(d, 1) }.
(7
The constraint set /C;, on the other hand, will be the com-
plement in R3" of all conditions that make the pursuer lose
the game instantaneously by failing to keep the necessary
separation with obstacles or with the defender. We define the
interception radius r; as the minimum separation between
pursuer and defender admissible to the pursuer. Let

Ky ::{(e,p7 d)eR3:|p—dl > rI}
(e d) e R ipg O},
and hence? we can define the constraint function g(z,t) as
g(z,t) = max{|p—d\ —TI,—d@(p,t)}. 9
Note that under these definitions [, g satisfy (4) and (5).

®)

C. Value of the Game and Player Strategies

Given a particular system trajectory z(-), the outcome of
the game can be characterized by the functional:

V(a()) = sla(r.)}.
(10)
Note that this value function is constructed to be negative
or zero exactly when the trajectory starting at (x,0) reaches

min max{l(x(t),t), max
te[0,T] T€[0,t]

o o
2Using the condition p ¢ O; (where Oy denotes the interior of O;) is
a minor technicality introduced to ensure that KC; is closed for O; closed;
this results in giving the pursuer the small advantage of being allowed to
be exactly on the boundary of the obstacle.

the target without previously breaching the constraints, as
desired. Therefore the pursuer wins the game for those
realizations x(-) for which V(z(-)) <0.

We work in a perfect information setting, assuming that
the system dynamics and state at each time are fully known
to all players. For the analysis in this paper we will allow
the pursuer to choose its instantaneous control input u,
after observing the action (ue,uq) played by the evader-
defender team. Formally, we define the set of nonanticipative
strategies for the pursuer as

F:={7:UedeHUp|
Vt e [0,T], Yue(-), te(:) € Ue, Yuqa(), @q(-) € Ug,
(ue(T) = Ue(7T) A ug(T) = Gg(7) ae. 7€ [O,t])

= (V[ue, ua](7) = Y[, ta](7) ae. 7€ [0,])}.

(1)
The above generally results in an advantage to the pursuer,
since it can adapt its instantaneous input to the one played
by the evader-defender team. However, in our particular
setting, Isaac’s condition [8] holds due to the decoupling
of the dynamics, and the order of the optimizations is
inconsequential; that is, we could have instead let the evader
and the defender use nonanticipative strategies, with identical
results. The value of the game is therefore well defined as:

V(x,t) := inf sup  V(z(+), (12)
YOEL 4 () e U,
ua(-) € Ug

where, for notational simplicity, we let z(-) denote the par-
ticular trajectory resulting from evader, defender and pursuer
control signals ue(-), uq(-) and y[ue, uq](+), respectively.

In the remainder of this section, we will give a charac-
terization of the winning region for the pursuer, that is, the
set of starting configurations at ¢ = 0 (or, more generally,
intermediate configurations at ¢ € [0,7]) from which the
pursuer has a guaranteed winning strategy to capture the
evader by the end of the game.

Definition 1: We say that a point in space-time (z,t) is
in the reach-avoid tube RA of the target T under constraints
K when the system trajectory z(-), with all players acting
optimally as above, reaches T at some time 7 € [t, T'] while
remaining in K for all time s € [¢t, 7].

RA :={(z,t) e R* x [0,T] : 3y(") e T,
Vue(') € Ue,Vud(-) e Uy,
Ir e [t,T],z(r) € Tr A Vse[t, 7], z(s) € Ks}.

Definition 2: At any fixed time ¢ € [0,7T], we say that a
point x is in the reach-avoid slice RA; if (x,t) is in the
reach-avoid tube RA.

RA, = {z e R’ : (z,t) e RA}, tel0,T]

Clearly, from the above definition, R.A; is the winning
region for the pursuer starting at time ¢. On the other hand,
as the game is played in a deterministic setting, if the system
state is outside of this set, then there exists some control
signal from the evader-defender team for which no possible
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strategy on the pursuer’s part will lead to capture. This means
that the complement of R.A; is the winning region for the
evader-defender team starting at time ¢.

We now characterize the victory domains in terms of the
value of the game. The following fact is easy to establish
from the above definitions.

Proposition 1: The reach-avoid tube of the space-time
target set T under constraints K is equal to the zero sublevel
set of the value function V.

RA = {(z,t) e R*" x [0,T]: V

<0}
Remark 1: As we will see in the next section, V is a

continuous function, and therefore R.A(-) is a closed set-
valued map with RA(t) = RA; for all ¢t € [0,T].

III. SOLUTION VIA DOUBLE-OBSTACLE HJI EQUATION

To find the value function V : R3" x [0,T] — R that
will characterize the victory domains for each team, we
make use of a theoretical result introduced in recent work
[14], which lends itself to a straightforward computational
implementation using available tools [25]. In this section
we consider the solution to the full problem, in which the
evader and the defender are assumed to communicate and
cooperate optimally. In the next section, we will propose
a decomposition method by which a guaranteed winning
strategy may be found for the evader-defender team playing
a suboptimal strategy based on partial cooperation.

The value function to the pursuit-evasion-defense game
posed in Section II has recently been shown to be the (con-
tinuous) viscosity solution to a double-obstacle Hamilton-
Jacobi-Isaacs variational inequality.

Proposition 2: The value function V(z,t) for the game
with outcome given by (10) is the unique viscosity solution
of the variational inequality

max { min {atv + H (2, DoV, 1), 1, 1) — V(x,t)},

g(z,t) — V(x,t)} =0, tel0,T],zeR*™, (13a)

with terminal condition

V(z,T) = max {l(ac,T),g(x,T)}, zeR3™  (13b)

where H is the Hamiltonian given at each (z,t) by the result
of the static game

H(z,p,t) = max min f(z,ue, Up, g, t) -p. (14)
Ue € U, UpEU,
udeud

The proof is provided in [14] and draws on viscosity solution
theory [26], [27].

The above result allows us to readily compute the value
function V(x,t) by a numerical grid-based method. Let
i € I denote the index of the grid point in a discretized
computational domain of a compact subset X = R3" and let
k€ {1,...,n} denote the index of each discrete time step in
a finite interval [0, 7T]. Since our computation will proceed
in backward time, we will let T' = tg > t; > ... > t,, = 0.

Algorithm 1: Numerical Double-Obstacle HJI Solution
Data: [(z;,tx), (1, tr,)
Result: V' (x;, tx)

Initialization
forie I do

Init L V (x5, t0) — max{i(x;, to), §(xi, to)};

Value propagation

for £ — 1 to n do

forie I do

Ul V(xi}tk) — V(xj, tg—1)

b—1 . .
+ J H (zi, DV (%3, 7), Dy V (21, 7), tp—1)dr;
tr

U2 V(xi,tk) Hmin{V(xi,tk),l(xi,tk)};
U3 V (w1, tr) “maX{V(ﬂfhtk%g(ﬂﬂi,tk)};

To numerically solve the variational inequality (13), we use

the procedure in Algorithm 1.
The method uses discretized values of the target function

I(x;,tx) and the constraint function §(z;, %), which can be
readily pre-computed by evaluating (7) and (9) for each
ik, given the information of the problem rc¢,ra,rr, 0.
V denotes the numerical approximation to V. D*V Dy 14
represent the “right” and “left” approximations of spatlal
derivatives. For the numerical Hamiltonian K , we use the
Lax-Friedrich approximation [28], [29]. For the results in
this paper, we use a fifth-order accurate weighted essentially
non-oscillatory scheme [10], [28] for the spatial derivatives
D;{ V and a third-order accurate total variation diminishing
Runge-Kutta scheme [10], [30] for the time derivative D; V.
The integral in the first update step (Ul) is then computed
numerically. These methods are implemented by means of
the computational tools provided in [25].

Once the numerical value function V is computed, the
winning set for the pursuer R.A; is approximated by its
zero sublevel set {x € R3" : V(x,t) < 0}, to an arbitrary
degree of precision determined by the discretization used.
In addition, the guaranteed winning strategies are implicitly
obtained in solving the minimax to compute the Hamiltonian
Hin step (U1). It follows from Proposition 2 and Algorithm
1 that, from either team’s computed winning region, applying
the optimizing action at each state as a time-varying feedback
policy yields a guaranteed winning strategy for that team,
again to an arbitrary degree of precision.

We stress that this methodology can find guaranteed win-
ning starting configurations and strategies in a wide variety
of problem settings, making no assumptions about linearity
of the dynamics, convexity or connectedness of the domain
or time-invariance of dynamics, targets or constraints. How-
ever, numerically solving the HIJI variational inequality on a
high-dimensional grid (typically 6-D for a two-dimensional
domain, 9-D for a three-dimensional one) can be computa-
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tionally impractical due to the curse of dimensionality. This
motivates the search for useful approximations of the full
solution through decomposition of the game into smaller
sub-problems: the second main contribution of this paper
is a principled approach to find one such approximation
exploiting the same theoretical framework.

IV.SEQUENTIAL TWO-PLAYER DECOMPOSITION METHOD

We now propose a method to decompose the three-player
pursuit-evasion-defense problem discussed so far into two
smaller two-player problems than can be solved sequentially
to obtain a conservative approximation of the solution from
the point of view of the evader-defender team, assuming
suboptimal cooperation between the two players. The pro-
posed approach lets the evader execute its best open-loop
evasion strategy assuming that the pursuer is playing opti-
mally against it, and neglecting the presence of the defender,
until the pursuer is intercepted or a viable escape route
is otherwise opened by the defender. The strength of this
approach, letting aside its relevance as a model of real-world
situations (an evader with limited sensing capabilities), is that
it provides a lower bound on the performance of the evader-
defender team: indeed, if an escaping strategy is found under
these pessimistic assumptions, the team can always execute
it and win the game.

1) Pursuit-Evasion with no Defender: We first consider
the two-player pursuit-evasion game with no defender; since
we are allowing moving obstacles, we use the time-varying
reach-avoid formulation in [14], as we did in the full prob-
lem. The state of the system is z1 := (e,p) € R?" with
dynamics given by (3a),(3b). Given the dynamic obstacle O,
we define

l1(21,t) := min {|e —pl—rc, d@(e,t)}7
g1(r1,t) := —do(p,t).

We can readily solve (13) for this system (numerically, by
Algorithm 1) and obtain the value function V; (z1,t), whose
zero sublevel set RA; is the victory domain for the pursuer
in the absence of the defender. Importantly, the complement
RAY is the set of configurations (e,p,t) from which the
evader can avoid capture without the defender’s aid. In
particular, if (eg,po) ¢ R.A1(0), the evader can execute its
best strategy as given implicitly by (14) in Proposition 2 and
win the game, in which case there is no need to solve the
second game, as the defender is not required to intervene.
2) Pursuit-Defense with Hybrid Open-Loop Evader: The
basic approach now is to fix the trajectory of the evader, as
determined by the first game, and transform it into a moving
target for the pursuer, as well as a moving obstacle for the
defender. The second reach-avoid game is played with state
Z9 := (p,d) and dynamics (3b),(3c). Let the initial position
of the evader be e and let u*[po](-) be its optimal control
signal for the first problem with the pursuer starting at py.
Definition 3: We say that the evader is playing a hybrid
open-loop strategy in the following sense: the evader ini-
tially executes the fixed trajectory €op[po](t) corresponding
to its optimal open-loop control signal u¥*[po](-), which

(15a)
(15b)

assumes that the pursuer starts at position pg and pursues
optimally with no defender; if at any time 7 € [0,7],
Vi(€o[po](7),p, ) > 0 for the true position p of the pursuer,
the evader will become aware of p and switch to its optimal
evasion trajectory &.[p](¢) from its current position.
Proposition 3: Using the above hybrid open-loop strategy,
the evader is guaranteed to win the game if a switch happens.
Proof: Let the switch take place at time 7 € [0, T], with
Vi(e,p, 7)>0: the result then follows from Proposition 1. W
A caveat under our formulation, of course, is that in
switching to this winning strategy the evader may blindly
run into the defender. To ensure that this does not happen,
we can, somewhat conservatively, forbid switching if the
defender lies in conflict with the potential path of the evader
after the switch. To do this, we need to define additional sets.
Given the initial evader trajectory ég(7), let e,[p](t) for
t € [1,T] be the trajectory followed by the evader if it were
to switch at exactly time 7 with the pursuer at p. This induces
a danger region for the defender

Elp)(r) =7 :={e-[p](t) + rau: t € [, T], [ul = 1}. (16)

If the defender lies in this set, then the switch may lead a
collision, if the defender cannot get clear of the evader in
time. The evader will only attempt to switch if the pursuer
leaves its winning region for the first game. Hence define:

A {(pv T) e R" x [O,T] : Vl(éo(T)vpv T) = 0}7 (17a)

E:= | {p}x& x{r} <R x [0, T]. (17b)
(p,7)EA

From continuity of V;(z1,t) we have upper hemicontinuity
of £['](+) and closedness of A, hence E is closed. Note that
(p,d,t) e E < de€ &P A (p,7) € A. With this we can
finally define

la(xa,t) = min{|éo(t)—p|—rc, |eo(t) — d|—ra,do(d, t)},
(18a)

g2(x2,t) := max {|p — d| — r1, —do(p, t),
min{vl(é()(t)7p7 t)7d]E(p7 d7 t)}}

The minimum in (18b) captures the fact that the pursuer loses
if a switch takes place, but this only happens if the pursuer
leaves its winning region for the first game and the defender
is clear of the evader’s optimal evasion path.

Again, we can solve (13) (using Algorithm 1) to find the
solution of this second reach-avoid game through the value
function Va[eq, po](x2,t), which will depend on the open-
loop trajectory fixed for the evader, given its initial position
eo and the initial position it has assumed for the pursuer
Do. If the true initial position py of the pursuer is known, we
obtain the set of initial positions for the defender from which
escape can be achieved through this suboptimal cooperation
scheme as the set {d € R™ : Va[ep,po](po,d,0) > 0}.
More generally, since we are not forced to assume that the
pursuer starts at any fixed position, the zero sublevel set of
Valeo, Po](x2,t) characterizes the set RAs of configurations
(p,d,t) from which the pursuer will win the game if it plays
optimally against the defender given the evader’s hybrid

(18b)

4553



strategy. Importantly, a guaranteed winning strategy is always
available to the evader-defender team (and indeed com-
putable from (14)) if (p, d, t) ¢ RA,, regardless of the actions
of the pursuer. This fact makes the decomposition scheme
presented here attractive, since it can enable computation of
a viable escape strategy much faster than solving the full
problem. Note that, in intrinsically boolean “games of kind”
like ours, one does not care about finding a strategy that is
optimal as much as one that guarantees winning the game.

V. NUMERICAL EXAMPLE

In this section we show the results of implementing our
proposed method for a simulated pursuit-evasion-defense
game played on a two-dimensional domain.

We consider a game of duration 7" = 1 played on a square
domain D = [—1,1] x [—1,1] in the plane, with a central
obstacle @ that moves vertically as O(t) = [—0.2,0.2] x
[—0.6 + b(t),0.6 + b(t)], where

—2t, 0<t<0.2,
—0.4 0.2 <t < 0.6,

b(t) = ’ =
—2.844t, 0.6<t<0.8,
+0.4, 0.8<t<1

The pursuer can move freely on this domain at a maximum
velocity that decreases with time as v,(t) = 3(1 — t/2),
while the evader and defender have their motion limited
to fixed paths (this allows us to study the problem on a
four-dimensional grid rather than a six-dimensional one): the
evader can move at a maximum speed v, =2 ona l1.2x1.6
rectangle centered at the origin, and the defender can move
at a maximum speed vg = 2.5 on a horizontal segment at
ya = 0.3. We set the capture, interception and accident radii
tore =0.1, r; = 0.15, r4 = 0.1.

The solution to the full game is computed over 127 time
steps on a 313 x 86 grid, the larger dimension corresponding
to the path of the evader (longer than the side of the square).
Computation using the MATLAB Level Set Toolbox [25]
took 2 hours and 4 minutes on a 2013 MacBook Pro with
a 3 GHz Intel Core i7 processor and 8§ GB 1600 MHz
DDR3 memory. Fig. 1 shows four different cross-sections
of the computed four-dimensional reach-avoid set for the
start of the game, at four different defender abscissae x40 =
+0.8,+0.4, and a fixed evader position eg = (0.4, 0.8). The
region enclosed by the curve is therefore the set of initial
positions from which the pursuer can successfully capture the
evader by the end of the game while avoiding interception.

We now compare these results to the ones obtained by
the decomposition method described in Section IV. We will
consider the initial evader position ey = (0.4,0.8). We first
solve the pursuit-evasion game with no defender, considering
the moving obstacle 0. Solving this problem on a three-
dimensional 312 x 86 grid took 3 minutes and 14 seconds
on the same machine. We obtain the winning set RA; for
the pursuer, which can be seen for the initial time ¢t = 0
in the top left plot of Fig. 2. The evader has a guaranteed
escape strategy if the pursuer starts outside of this region,

1 -1
0 1 0 1
1 1
[ ] ]
~.” ~.7
0 0
-1 -1
-1 0 1 -1 0 1
e Evader
m  Defender
Obstacle

— — Capture Circle
— - —- Interception Circle
Reach-Avoid Set

Fig. 1: Reach-avoid set at the start of the game for different
defender positions and fixed evader position. The paths along
which the evader and defender are allowed to travel are
marked in light gray.

in which case the presence of the defender is not required;
instead, we will assume that the pursuer starts at position
Po = (—0.5,0), well inside the computed capture basin.
Next, we simulate the game in forward time for these initial
conditions to determine the evader’s open-loop trajectory.
It should be stressed that in this first game, the evader is
fleeing from a virtual pursuer (whose initial position p, may
be the known initial position py of the true pursuer or a
best guess made by the evader). Snapshots of the simulated
trajectories of the evader and the pursuer from these starting
conditions are shown in Fig. 2 (this step took roughly 10
seconds of computation). Although capture is achieved at
t = 0.56, we let the game continue, with the evader trying to
gain separation from the pursuer, who is gradually becoming
slower; a second capture takes place near the end of the game
resulting from a corner in the evader’s constrained path.

We can then study the second game between the pursuer
and the defender, incorporating the evader’s trajectory as a
moving target for the pursuer (with r¢) and an obstacle for
the defender (with r 4), and additionally requiring the pursuer
to stay inside the reach-avoid set for the first game in order
to be able to achieve capture. Computation of this second
game on a 313 grid took just under 2 minutes. The resulting
winning region for the pursuer is plotted in Fig. 3 at the
initial time for the fixed evader position ey and the same
four defender positions dj as in the full game analysis.

Note that the result given by this method, although con-
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Fig. 2: Evolution of the reach-avoid set and simulated evader
and pursuer trajectories. The reach-avoid cross-section shown
at each time represents the set of points from which the
pursuer will succeed in capturing the evader if both play
optimally for the remainder of the game.

servative for the evader-defender team, produces a close
approximation to the true reach-avoid set, especially in the
neighborhood of the initial pursuer position py assumed by
the evader: in the perfect information setting, the starting
conditions are known, and the use of this method seems ap-
propriate for a reliable assessment of the game. It should be
stressed that computation of this conservative approximation
took less than 6 minutes, in contrast to the more than 2 hours
taken by the full computation, which is a speed-up of over
20 times. We believe that this approach can be implemented
efficiently on more powerful processors to enable close-
to-real-time decision making with guarantee certificates in
strategic and safety-critical scenarios involving collaboration
in adversarial or uncertain environments.

VI. CONCLUSION

We have presented here an analysis of the three-player
pursuit-evasion-defense differential game, allowing for dy-
namic obstacles and time-varying system dynamics. Formu-
lating the problem as a reach-avoid game, we have shown
how to compute the winning regions and strategies for each
team through the solution to a double-obstacle Hamilton-
Jacobi-Isaacs variational inequality, and have provided a

Second Game Reach-Avoid Set

Fig. 3: Comparison of the reach-avoid sets at the start of
the game computed through full reachability analysis and the
sequential decomposition method. The 2-D cross-sections are
shown for different defender positions. The starting position
for the evader is fixed in the decomposition approach.

numerical implementation scheme for our algorithm.

We have further proposed a decomposition-based approach
that enables relatively fast computation of an inner approx-
imation of the winning region for the evader-defender team
and the corresponding guaranteed winning strategies. To our
knowledge, this is the first result enabling the obtention
of winning strategies for a three-player game of pursuit
of this complexity, involving a bounded domain that is
effectively nonconvex and time-varying due to the presence
of dynamic obstacles. Our methods have been demonstrated
on a numerical example.

In future work we will study the possibility of approach-
ing the full optimal solution to the three-player game by
establishing a principled iteration procedure based on the
two sub-games analyzed here. We also hope to exploit this
framework to study collaboration in human-robot teams, in
which the evader is human-controlled and the automation-
governed defender adapts its strategy to the intent declared
by or inferred from the human agent.
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