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ABSTRACT
We consider a reach-avoid differential game, in which one of
the players aims to steer the system into a target set with-
out violating a set of state constraints, while the other player
tries to prevent the first from succeeding; the system dynam-
ics, target set, and state constraints may all be time-varying.
The analysis of this problem plays an important role in colli-
sion avoidance, motion planning and aircraft control, among
other applications. Previous methods for computing the
guaranteed winning initial conditions and strategies for each
player have either required augmenting the state vector to
include time, or have been limited to problems with either
no state constraints or entirely static targets, constraints
and dynamics. To incorporate time-varying dynamics, tar-
gets and constraints without the need for state augmenta-
tion, we propose a modified Hamilton-Jacobi-Isaacs equa-
tion in the form of a double-obstacle variational inequality,
and prove that the zero sublevel set of its viscosity solu-
tion characterizes the capture basin for the target under the
state constraints. Through this formulation, our method can
compute the capture basin and winning strategies for time-
varying games at virtually no additional computational cost
relative to the time-invariant case. We provide an imple-
mentation of this method based on well-known numerical
schemes and show its convergence through a simple exam-
ple; we include a second example in which our method sub-
stantially outperforms the state augmentation approach.

1. INTRODUCTION
Dynamic reach-avoid games have received growing inter-

est in recent years and have many important applications in
engineering problems, especially concerning the control of
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strategic or safety-critical systems: in many scenarios, one
must find a control action that will guarantee reaching a de-
sired state while respecting a set of constraints, often in the
presence of an unknown disturbance or adversary. Practical
applications include collision avoidance, surveillance, energy
management and safe reinforcement learning, in which tar-
gets typically describe desired waypoints or operating condi-
tions and constraints can model obstacles in the environment
or forbidden configurations.

In the two-player reach-avoid formulation, one seeks to
determine the set of states from which one of the players
(the attacker) can successfully drive the system to some tar-
get set, while keeping the state within some state constraint
set at all times, regardless of the opposing actions of the
other player (the defender)—this set is commonly referred
to as the capture basin, backwards reachable set or simply
reach-avoid set of the target under the constraints. In the
absence of state constraints, reachability problems involving
possibly time-varying target sets can be posed as a mini-
mum (maximum) cost game where the players try to opti-
mize the pointwise minimum over time of some metric to
the target. In this case, the backwards reachable set can be
obtained by finding the viscosity solution to the correspond-
ing Hamilton-Jacobi-Isaacs (HJI) equation in the form of a
variational inequality: this value function captures the min-
imum distance to the target that will be achieved by the
optimal trajectory starting at each point, so the capture
basin is characterized by the region of the state space where
this minimum future distance is equal to, or less than, zero.
Maximum cost control problems were studied in detail in
[3], and extended to the two-player setting in [2]; these prob-
lems require separate treatment and are in general harder
to analyze than ordinary Bolza problems with running and
terminal cost. While computationally intensive, Hamilton-
Jacobi approaches are practically appealing nowadays due
to the availability of modern numerical tools such as [14, 17,
19, 23], which are able to solve the associated equations for
these problems when the dimensionality is low.

If the game is played under state constraints, then the
value function generally becomes discontinuous [20, 21], which
leads to numerical issues. In the case of systems with time-
invariant dynamics, targets and constraints, the approach
in [6] characterizes the capture basin through an auxiliary
value function that solves a modified Hamilton-Jacobi varia-
tional inequality. Although the new value function no longer
captures the minimum distance from a trajectory to the tar-
get, the reach-avoid set is still given by the value function’s
subzero region. This makes it possible to effectively turn a



constrained final cost problem into an unconstrained prob-
lem with a maximum cost.

For problems with time-varying dynamics, targets and
constraints, the approach proposed in [5] as an extension
of [6] requires augmenting the state space with an addi-
tional dimension accounting for time; one can then trans-
form time dependence into state dependence and apply the
above methods to solve the fixed problem in the space-time
state space. Unfortunately, this approach presents a signifi-
cant drawback, since the complexity of numerical computa-
tions grows exponentially with problem dimensionality.

The main contribution of this paper is an extension of the
Hamilton-Jacobi reach-avoid formulation to the case where
the target set, the state constraint set and the dynamics are
all allowed to be time-varying, enabling computation of the
reach-avoid set at no significant additional cost relative to
the time-invariant case. To this end, we formulate a double-
obstacle HJI variational inequality, and prove that the zero
sublevel set of its viscosity solution characterizes the desired
reach-avoid set. We also provide a numerical scheme based
on [17, 18] and implementation based on [13] to solve the
variational inequality and verify the numerical solution using
a simple example. We finish by showing that our method
vastly outperforms techniques requiring state augmentation.

It should be noted that other authors have recently stud-
ied Hamilton-Jacobi equations with a double obstacle ap-
plied to different settings involving Bolza problems [7, 10].
To our knowledge, however, the present work constitutes the
first analysis of double-obstacle Hamilton-Jacobi equations
in the context of reachability problems. We also note that
the results presented in this paper for differential games are
readily applicable to optimal control problems.

2. PROBLEM FORMULATION

2.1 System Dynamics
Let A Ă Rna and B Ă Rnb be nonempty compact sets and,

for t ď T , let At and Bt denote the collections of measurable1

functions a : rt, T s Ñ A and b : rt, T s Ñ B respectively. We
consider a dynamical system with state x P Rn, and two
agents, player I and player II, with inputs ap¨q P At and
bp¨q P Bt respectively. The system dynamics are given by
the flow field f : RnˆAˆBˆr0, T s Ñ Rn, which is assumed
to be uniformly continuous, with

|fpx, a, b, tq| ă L,

|fpx, a, b, tq ´ fpx̃, a, b, tq| ď L|x´ x̃|, (1)

for some L ą 0 and all t P r0, T s, x, x̃ P Rn, a P A, b P B.
Then for any initial time t P r0, T s and state x, under input
signals ap¨q P At, bp¨q P Bt, the evolution of the system is
determined (see for example [9], Chapter 2, Theorems 1.1,

2.1) by the unique continuous trajectory φa,bx,t : rt, T s Ñ Rn
solving

9xpsq “ fpxpsq, apsq, bpsq, sq, a.e. s P rt, T s,

xptq “ x.
(2)

Note that this is a solution in the extended sense, that is,
it satisfies the differential equation almost everywhere (i.e.

1 A function f : X Ñ Y between two measurable spaces
pX,ΣXq and pY,ΣY q is said to be measurable if the preimage
of a measurable set in Y is a measurable set in X, that is:
@V P ΣY , f

´1
pV q P ΣX , with ΣX ,ΣY σ-algebras on X,Y .

except on a subset of Lebesgue measure zero). It will be

useful to denote by Xt the collection of all trajectories φa,bx,t :
rt, T s Ñ Rn that solve (2) for some initial condition and
input signals:

Xt :“
 

φa,bx,t : rt, T s Ñ Rn, for x P Rn, ap¨q P At, bp¨q P Bt |

φa,bx,tptq “ x,
d

dt
φa,bx,t “ fpφa,bx,tpsq, apsq, bpsq, sq a.e. s P rt, T s

(

.

2.2 Target and Constraint Sets
Let t “ 0 be the start time of the reachability game and

t “ T ą 0 be the end time. Following the notation in
[5, 6], let d : Rn ˆ 2Rn

Ñ R give the distance between a
point x and a set M under some norm | ¨ | on Rn, that is,
dpx,Mq :“ infyPM |x ´ y|. Further, for every M Ď Rn, let
dM : Rn Ñ R be the signed distance function to M:

dMpxq :“

#

dpx,Mq, x P RnzM,

´dpx,RnzMq, x PM.

A set-valued map M : r0, T s Ñ 2Rn

is upper hemicon-
tinuous2 if for any open neighborhood V of Mptq there is
an open neighborhood U of t such that Mpτq Ď V @τ P U .
We define the upper hemicontinuous set-valued maps T ,K :
r0, T s Ñ 2Rn

which respectively assign a target set Tt Ă Rn
and a constraint set Kt Ă Rn to each time t P r0, T s. Re-
quiring that Tt,Kt are closed for all t, we can construct the
space-time sets

T :“
ď

tPr0,T s

Tt ˆ ttu, K :“
ď

tPr0,T s

Kt ˆ ttu,

which are then closed subsets of Rnˆr0, T s by the following
lemma, stated as Lemma 2 in [5] (a proof, based on elemen-
tary topology, is presented here for completeness).

Lemma 1. Let M : r0, T s Ñ 2Rn

be an upper hemicon-
tinuous set-valued map with Mptq “ Mt closed in Rn for
all t P r0, T s. Then the set M “

Ť

tPr0,T sMt ˆ ttu is closed

in Rn ˆ r0, T s.

Proof. We prove the lemma by contradiction, recalling
that a set is closed if and only if it contains all of its limit
points. Suppose M is not closed: then there exists a limit
point px, tq of M that is not in M, i.e. x R Mt. Since
Mt is closed, x R Mt cannot be a limit point of Mt, that
is, under any metric on Rn, there exists r ą 0 such that
Mt and the open ball Bpx, rq are disjoint. On the other
hand, as px, tq is a limit point of M, every open neighborhood
of px, tq must meet M. In particular, any neighborhood of
the form Bpx, r{2q ˆ U , with U any open neighborhood of
t, contains a point py, sq P M, i.e. y P Ms. But then for
the open neighborhood of Mt given by the Minkowski sum
V :“Mt`Bp0, r{2q, we have that for all open neighborhoods
U of t, Ds P U such that there is y P Ms X Bpx, r{2q, so
y R V and therefore Ms Ę V . This directly contradicts
upper hemicontinuity of the set-valued map M.

The closed sets T and K can then be implicitly characterized
as the subzero regions of two Lipschitz continuous functions
l : Rn ˆ r0, T s Ñ R and g : Rn ˆ r0, T s Ñ R respectively,

2Sometimes also called upper semicontinuous.



that is, DLl, Lg ą 0 : @px, tq, px̃, t̃q P Rn ˆ r0, T s,

|lpx, tq ´ lpx̃, t̃q| ď Ll|px, tq ´ px̃, t̃q|,

|gpx, tq ´ gpx̃, t̃q| ď Lg|px, tq ´ px̃, t̃q|, (3)

so that

px, tq P T ðñ lpx, tq ď 0, px, tq P K ðñ gpx, tq ď 0.

These functions always exist, since we can simply choose
the signed distance functions lpx, tq “ dTpx, tq and gpx, tq “
dKpx, tq, which are Lipschitz continuous by construction, i.e.
they are the infimum of point-to-point distances.

Note that this definition of targets and constraints is flex-
ible and allows one to formulate a variety of target and con-
straint behaviors, including changing topologies over time
(e.g. a target splitting into multiple separate sets or disap-
pearing entirely).

We say that a trajectory φ P Xt is admissible on rt, t` δs
for some δ ą 0 if for all t ď τ ď t` δ, it satisfies φpτq P Kτ .
The minimum value of l achieved by an admissible state
trajectory in the course of the game determines its outcome
(it will be zero or negative if the trajectory ever enters the
target Tt); we therefore refer to l as the payoff function. On
the other hand, the maximum value of g reached by any
trajectory determines whether or not it is admissible (it will
be positive if the trajectory ever breaches the constraints
Kt); we call g the discriminator function.

2.3 Value and Strategies
We will adopt the arbitrary convention that player I seeks

to minimize the outcome of the game, while player II tries
to maximize it: that is, I is trying to drive the system into
the target set, and II wants to prevent I from succeeding,
possibly by driving the system out of the constraint set; we
will refer to I as the attacker and II as the defender. For
each trajectory φa,bx,t P Xt we define the outcome of the game
as the functional

V
`

x, t, ap¨q, bp¨q
˘

“ min
τPrt,T s

max

"

lpφa,bx,tpτq, τq, max
sPrt,τs

gpφa,bx,tpsq, sq

*

.

(4)

The above expression is considering, for each time τ , the
maximum between the current value of l and the greatest
value of g reached so far by the trajectory; therefore this
term will be less than or equal to zero for a given τ if and
only if the system is in the target at time τ without ever
having left the constraint set on rt, τ s. If this situation takes
place for any τ P rt, T s, player I wins the game; therefore,
the minimum for all τ reflects whether player I wins at any
point between t and the end of the game. We summarize
this through the following proposition.

Proposition 1. The set of points x at time t P r0, T s

from which the system trajectory φa,bx,tp¨q under given controls
ap¨q P At, bp¨q P Bt will enter the target set at some time
τ P rt, T s without violating the constraints at any s P rt, τ s
is equal to the zero sublevel set of V

`

x, t, ap¨q, bp¨q
˘

. That is:

tpx, tq P Rn ˆ r0, T s : Dτ P rt, T s,

φa,bx,tpτq P Tτ ^ @s P rt, τ s, φa,bx,tpsq P Ksu
“ tpx, tq P Rn ˆ r0, T s : V

`

x, t, ap¨q, bp¨q
˘

ď 0u. (5)

Note that this value function is negative when the trajec-
tory starting at px, tq reaches the target without previously
breaching the constraints: it is agnostic to whether con-
straints are breached after the target has been reached. One

could formulate an alternative problem requiring that tra-
jectories remain feasible for the entire duration of the game:
in that case the game’s outcome would instead be

W
`

x, t, ap¨q, bp¨q
˘

“ max

"

min
τPrt,T s

lpφa,bx,tpτq, τq, max
τPrt,T s

gpφa,bx,tpsq, sq

*

.

(6)

This alternative problem is not the object of this paper, and
we will restrict our attention to the problem described by
(4).

Following [11, 12, 22, 25], we define the set of nonantici-
pative strategies for player II containing the functionals
Λt “ tβ : At Ñ Bt | @s P rt, T s, @ap¨q, âp¨q P At,

`

apτq “

âpτq a.e.τ P rt, ss
˘

ñ
`

βraspτq “ βrâspτq a.e.τ P rt, ss
˘

u. By
allowing II to use nonanticipative strategies, we are giving
it a certain advantage, since at each instant it can adapt
its control input to the one declared by I. This information
pattern leads to the upper value of the game, given by:

V `px, tq :“ sup
βp¨qPΛt

inf
ap¨qPAt

V
`

x, t, ap¨q, βrasp¨q
˘

. (7a)

Analogously, we can decide to give I the advantage by defin-
ing its set of nonanticipative strategies as Γt :“ tα : Bt Ñ
At | @s P rt, T s, @bp¨q, b̂p¨q P Bt,

`

bpτq “ b̂pτq a.e.τ P

rt, ss
˘

ñ
`

αrbspτq “ αrb̂spτq a.e.τ P rt, ss
˘

u. This determines
the lower value of the game as:

V ´px, tq :“ inf
αp¨qPΓt

sup
bp¨qPBt

V
`

x, t, αrbsp¨q, bp¨q
˘

. (7b)

Naturally, it follows that V ´px, tq ď V `px, tq everywhere.
In those cases in which equality holds, the game is said to
have value and V px, tq :“ V `px, tq “ V ´px, tq is simply
referred to as the value of the game.

Given an information pattern, we say that a point px, tq
is in the capture basin (or reach-avoid set) CT,K of the tar-

get T under constraints K when the system trajectory φa,bx,t ,
with both players acting optimally, reaches T at some time
τ P rt, T s while remaining in K for all time s P rt, τ s. In
particular, when player II uses nonanticipative strategies,

C`T,K :“ tpx, tq P Rn ˆ r0, T s : Dap¨q P At,@βp¨q P Λt, (8a)

Dτ P rt, T s, φ
a,βras
x,t pτq P Tτ ^ @s P rt, τ s, φ

a,βras
x,t psq P Ksu,

and similarly, when player I uses nonanticipative strategies,

C´T,K :“ tpx, tq P Rn ˆ r0, T s : Dαp¨q P Γt,@bp¨q P Bt, (8b)

Dτ P rt, T s, φ
αrbs,b
x,t pτq P Tτ ^ @s P rt, τ s, φ

αrbs,b
x,t psq P Ksu.

Given Proposition 1 and the above definitions, we have an
important result expressed by the following proposition.

Proposition 2. The capture basin of the space-time tar-
get set T when the defender (attacker) is allowed to use
nonanticipative strategies is given by the zero sublevel set
of the upper (resp. lower) value function V ˘. That is:

C`T,K “ tpx, tq P Rn ˆ r0, T s : V `px, tq ď 0u, (9a)

C´T,K “ tpx, tq P Rn ˆ r0, T s : V ´px, tq ď 0u. (9b)

Corollary 1. The capture basin when the defender is
allowed to use nonanticipative strategies is a subset of that
resulting from the attacker using nonanticipative strategies:

C`T,K Ď C´T,K. (10)



V `px, tq “ sup
βPΛt

inf
aPAt

#

min

„

min
τPrt,t`δs

max
´

lpφ
a,βras
x,t pτq, τq, max

sPrt,τs
gpφ

a,βras
x,t psq, sq

¯

,

max
´

V `pφa,βrasx pt` δq, t` δq, max
τPrt,t`δs

gpφ
a,βras
x,t pτq, τq

¯



+

. (11a)

V ´px, tq “ inf
αPΓt

sup
bPBt

#

min

„

min
τPrt,t`δs

max
´

lpφ
a,βras
x,t pτq, τq, max

sPrt,τs
gpφ

a,βras
x,t psq, sq

¯

,

max
´

V ´pφa,βrasx pt` δq, t` δq, max
τPrt,t`δs

gpφ
a,βras
x,t pτq, τq

¯



+

. (11b)

3. THE DOUBLE-OBSTACLE ISAACS
EQUATION

It has been shown that the value function for minimum
payoff games can be characterized as the unique viscosity
solution to a variational inequality involving an appropriate
Hamiltonian [2, 3], which has commonly been referred to as a
Hamilton-Jacobi equation with an obstacle. We now extend
the results for minimum cost problems to the category of
problems with a more complex cost in the form of (4).

We first state the particular form of Bellman’s principle
of optimality [4] for the problem at hand.

Lemma 2 (Dynamic Programming Principle). Let
0 ď t ă T and 0 ă δ ď T ´ t. Then equation (11) holds.

Proof. The correctness of this lemma can be verified by
inspection of (11), considering how the value in (4) is prop-
agated back in time as per (7) along the characteristic (op-
timal trajectory) in all possible cases. The first term in the
outer minimum of (11) is the local application of the defini-
tion in (4) restricted to the interval rt, t` δs,

Vrt,t`δs :“ min
τPrt,t`δs

max
´

lpφa,bx,tpτq, τq, max
sPrt,τs

gpφa,bx,tpsq, sq
¯

.

(12)
The minimum outcome achieved in the whole of rt, T s, how-
ever, will also be a function of the future value of (4) through-
out the remainder of the game after rt` δs, captured by

Vrt`δ,T s :“ V pφa,bx,tpt` δq, t` δq. (13)

Now, if for all τ P rt, t`δs, gpφa,bx,tpτq, τq ď Vrt`δ,T s, then from
(4) it will clearly be that V px, tq “ mintVrt,t`δs, Vrt`δ,T su.
The future value that is propagated along the characteristic,
however, will be altered if anywhere on rt, t ` δs, g exceeds
Vrt`δ,T s, in which case the maximum of g along the charac-
teristic between t and t`δ will be propagated instead. Thus
the second term in the outer minimum of (11) is

VtÐrt`δ,T s :“ max
`

Vrt`δ,T s, max
τPrt,t`δs

gpφa,bx,tpτq, τq
˘

. (14)

The resulting value at px, tq is therefore determined by the
minimum of the local element and this last term, that is:

V `px, tq “ sup
βPΛt

inf
aPAt

mintV `rt,t`δs, V
`

tÐrt`δ,T su, (15a)

V ´px, tq “ inf
αPΓt

sup
bPBt

mintV ´rt,t`δs, V
´

tÐrt`δ,T su. (15b)

The statement in (15) is a more compact form of (11).

We introduce the upper and lower Hamiltonians H˘:

H`px, p, tq “ min
aPA

max
bPB

fpx, a, b, tq ¨ p, (16a)

H´px, p, tq “ max
bPB

min
aPA

fpx, a, b, tq ¨ p. (16b)

The following theorem constitutes the main theoretical
contribution of this paper; it shows that the value function
V ˘ is the viscosity solution of a particular variational in-
equality that has the form of a Hamilton-Jacobi-Isaacs equa-
tion with a double obstacle.

Theorem 1. Assume f satisfies (1), and that lpx, tq, gpx, tq
are globally Lipschitz continuous. Then the value function
V ˘px, tq for the game with outcome given by (4) is the unique
viscosity solution of the variational inequality

max

"

min
!

BtV `H
˘
`

x,DxV
˘, t

˘

, lpx, tq ´ V ˘px, tq
)

,

gpx, tq ´ V ˘px, tq

*

“ 0, t P r0, T s, x P Rn, (17a)

with terminal condition

V ˘px, T q “ max
 

lpx, T q, gpx, T q
(

, x P Rn. (17b)

To prove this main result, we will make use of the following
important continuity argument (stated and proven in [12] as
Lemma 4.3).

Lemma 3. Let ψ P C1
pRn ˆ p0, T qq.

(a) If ψtpx0, t0q `H`px0, Dxψ, t0q ď ´θ ă 0 then, for suf-
ficiently small δ ą 0, there exists an input a P At0 such
that for all strategies β P Λt0 ,
ż t0`δ

t0

f
`

s, φ
a,βras
x0,t0

psq, apsq, βraspsq
˘

¨Dxψ
`

φ
a,βras
x0,t0

psq, s
˘

` ψt
`

φ
a,βras
x0,t0

psq, s
˘

ds ď ´
θ

2
δ.

(b) If ψtpx0, t0q `H`px0, Dxψ, t0q ě θ ą 0 then, for suffi-
ciently small δ ą 0, there exists a strategy β P Λt0 such
that for all inputs a P At0 ,
ż t0`δ

t0

f
`

s, φ
a,βras
x0,t0

psq, apsq, βraspsq
˘

¨Dxψ
`

φ
a,βras
x0,t0

psq, s
˘

` ψt
`

φ
a,βras
x0,t0

psq, s
˘

ds ě
θ

2
δ.



Proof of Theorem 1. The structure of the proof fol-
lows the classical approach in [12] and draws from viscosity
solution theory. In every case, we start by assuming that
V ˘ is not a viscosity solution of the HJI equation and de-
rive a contradiction of the dynamic programming principle
stated in Lemma 2. We will prove the theorem for V ` with
Hamiltonian H`; the proof for V ´ with H´ is analogous.

First, applying the definition of V ` (4),(7) to the terminal
case t “ T , it is seen to satisfy the boundary condition (17b).

A continuous function is a viscosity solution of a partial
differential equation if it is both a subsolution and a super-
solution (defined below). We will first prove that V ` is a
viscosity subsolution of (17a). Let ψ P C1

pRnˆp0, T qq such
that V ` ´ ψ attains a local maximum at px0, t0q; without
loss of generality, assume that this maximum is 0. We say
that V ` is a subsolution of (17a) if, for any such ψ,

max

"

min
!

Btψpx0, t0q `H
` px0, Dxψ, t0q , lpx0, t0q ´ ψpx0, t0q

)

,

gpx0, t0q ´ ψpx0, t0q

*

ě 0. (18)

Suppose (18) is false. Then it must be that

gpx0, t0q ď ψpx0, t0q ´ θ1, (19)

and, in addition, at least one of the following holds:

lpx0, t0q ď ψpx0, t0q ´ θ2, (20a)

Btψpx0, t0q `H
`
px0, Dxψ, t0q ď ´θ3, (20b)

for some θ1, θ2, θ3 ą 0. If (19) and (20a) are true, then by
continuity of g, l and system trajectories there is a suffi-
ciently small δ ą 0 such that for all ap¨q,bp¨q, τ P rt0, t0 ` δs,

gpφpτq, τq ď ψpx0, t0q ´
θ1

2
“ V `px0, t0q ´

θ1

2
,

lpφpτq, τq ď ψpx0, t0q ´
θ2

2
“ V `px0, t0q ´

θ2

2
.

For conciseness, we write φa,bx0,t0p¨q as simply φp¨q whenever
statements hold for all inputs ap¨q, bp¨q. Incorporating the
above into the dynamic programming principle (11a) gives

V `px0, t0q ď sup
βPΛt

inf
aPAt

!

min
τPrt0,t`δs

max
”

lpφ
a,βras
x0,t0

pτq, τq,

max
sPrt0,τs

gpφ
a,βras
x0,t0

psq, sq
ı)

ď V `px0, t0q ´min
! θ1

2
,
θ2

2

)

,

which is a contradiction, since θ1, θ2 ą 0.
If (19) and (20b) are true, then by Lemma 3, for small

enough δ ą 0, there will exist some input a P Apt0q such
that for all strategies β P Λt0 ,

ψpφ
a,βras
x0,t0

pt0 ` δq, t0 ` δq ´ ψpx0, t0q ď ´
θ3

2
δ,

and, recalling that V `´ψ has a local maximum at px0, t0q,

V `pφ
a,βras
x0,t0

pt0 ` δq, t0 ` δq ď V `px0, t0q ´
θ3

2
δ.

Inspecting (11a) in this case, we obtain

V `px0, t0q ď sup
βPΛt

inf
aPAt

!

max
”

V `pφ
a,βras
x0,t0

pt0 ` δq, t0 ` δq,

max
τPrt0,t0`δs

gpφ
a,βras
x0,t0

pτq, τq
ı)

ď V `px0, t0q ´min
! θ1

2
,
θ3

2
δ
)

,

which again is a contradiction, since θ1, θ3, δ ą 0. Therefore,
we conclude that (18) must be true and hence V ` is indeed
a subsolution of (17a).

We now proceed to show that V ` is also a viscosity su-
persolution of (17a), that is, for all ψ P C1

pRnˆp0, T qq such
that V ` ´ ψ attains a local minimum at px0, t0q (again, we
can assume for convenience that this minimum is 0), it holds
that

max

"

min
!

Btψpx0, t0q `H
` px0, Dxψ, t0q , lpx0, t0q ´ ψpx0, t0q

)

,

gpx0, t0q ´ ψpx0, t0q

*

ď 0. (21)

If we suppose that (21) is false, then either it holds that

gpx0, t0q ě ψpx0, t0q ` θ1, (22)

or both of the following are true:

lpx0, t0q ě ψpx0, t0q ` θ2, (23a)

Btψpx0, t0q `H
`
px0, Dxψ, t0q ě θ3, (23b)

for some θ1, θ2, θ3 ą 0.
If (22) holds, then there is a small enough δ ą 0 such that

for all trajectories starting at px0, t0q and all t0 ď τ ď t0` δ

gpφpτq, τq ě ψpx0, t0q `
θ1

2
“ V `px0, t0q `

θ1

2
.

Then the dynamic programming principle (11a) yields

V `px0, t0q ě sup
βPΛt

inf
aPAt

!

min
”

min
τPrt0,t0`δs

max
sPrt0,τs

gpφ
a,βras
x0,t0

psq, sq,

max
τPrt0,t0`δs

gpφ
a,βras
x0,t0

pτq, τq
ı)

ě V `px0, t0q `
θ1

2
,

which is a contradiction, as θ1 ą 0.
If, on the other hand, (23) holds, then there is a small

enough δ ą 0 such that, by (23a),

lpφpτq, τq ď ψpx0, t0q `
θ2

2
“ V `px0, t0q `

θ2

2
,

and by (23b) and Lemma 3, there exists a strategy β P Λt0
such that for all inputs a P Apt0q,

θ3

2
δ ď ψpφ

a,βras
x0,t0

pt0 ` δq, t0 ` δq ´ ψpx0, t0q

ď V `pφ
a,βras
x0,t0

pt0 ` δq, t0 ` δq ´ V
`
px0, t0q,

by the local minimum condition. With this, (11a) gives

V `px0, t0q ě sup
βPΛt

inf
aPAt

!

min
”

min
τPrt0,t0`δs

lpφ
a,βras
x0,t0

pτq, τq,

V `pφ
a,βras
x0,t0

pt0 ` δq, t0 ` δq
ı)

ě V `px0, t0q `min
! θ2

2
,
θ3

2
δ
)

,

resulting in another contradiction, as θ2, θ3, δ ą 0. We thus
conclude that (21) holds and V ` is a supersolution of (17a).

Since we have shown that V ` is both a viscosoty subsolu-
tion and a viscosity supersolution of the variational inequal-
ity, this completes the proof that V ` is a viscosity solution
of (17) with Hamiltonian H`. Uniqueness follows from the
classical comparison and uniqueness theorems for viscosity
solutions (see Theorem 4.2 in [3]).



4. NUMERICAL IMPLEMENTATION
We present in this section a numerical method to com-

pute the value function (7) for the time-varying reach-avoid
problem, based on the result in Theorem 1. For conciseness,
we drop the distinction between upper and lower values and
Hamiltonians, as the method is equally applicable to either.

Let i P I denote the index of the grid point in a discretized
computational domain of a compact subset X Ă Rn and let
k P t1, ..., nu denote the index of each discrete time step in
a finite interval r0, T s. Since our computation will proceed
in backward time, we will let T “ t0 ą t1 ą ... ą tn “ 0. To
numerically solve the variational inequality (17), we use the
following procedure, based on a three-step update rule:

Algorithm 1: Numerical Double-Obstacle HJI Solution

Data: l̂pxi, tkq, ĝpxi, tkq

Result: V̂ pxi, tkq

Initialization
for i P I do

Init V̂ pxi, t0q Ð maxtl̂pxi, t0q, ĝpxi, t0qu;

Value propagation
for k Ð 1 to n do

for i P I do

U1 V̂ pxi, tkq Ð V̂ pxi, tk´1q

`

ż tk´1

tk

Ĥ
`

xi, D
`
x V̂ pxi, τq, D

´
x V̂ pxi, τq, tk´1

˘

dτ ;

U2 V̂ pxi, tkq Ð min
!

V̂ pxi, tkq, lpxi, tkq
)

;

U3 V̂ pxi, tkq Ð max
!

V̂ pxi, tkq, gpxi, tkq
)

;

The method uses discretized values of the payoff function
l̂pxi, tkq and the discriminator function ĝpxi, tkq; V̂ denotes
the numerical approximation to V . The integral in the first
update step (U1) is computed numerically using time deriva-
tive approximations. As an illustrative example, with a first
order forward Euler scheme, we would have

V̂ pxi, tkq “ V̂ pxi, tk´1q (24)

` ptk´1 ´ tkqĤ
`

xi, D
`
x V̂ pxi, tk´1q, D

´
x V̂ pxi, tk´1q, tk´1

˘

.

The numerical scheme of Algorithm 1 is consistent with (17).

D`x V̂ , D
´
x V̂ represent the “right” and “left” approximations

of spatial derivatives. For the numerical Hamiltonian Ĥ, we
use the Lax-Friedrich approximation [15, 18]:

Ĥpxi, D
`
x V̂ , D

´
x V̂ , tkq “ H

˜

xi,
D´x V̂ `D

`
x V̂

2
, tk

¸

´
1

2
αJpD`x V̂ ´D

´
x V̂ q.

(25)

The components of α are given by αi “ maxpPI
ˇ

ˇ

BH
Bpi

ˇ

ˇ, where

I is a hypercube containing all the values that p takes over
the computational domain. With this choice of α for the
Hamiltonian, the numerical scheme is stable [16, 18].

In the numerical examples in Section 5, we use a fifth-
order accurate weighted essentially non-oscillatory scheme
[17, 18] for the spatial derivatives D˘x V̂ ; for the time deriva-

tive DtV̂ , we use a third-order accurate total variation di-
minishing Runge-Kutta scheme [17, 24]. These methods are

implemented by means of the computational tools provided
in [13]. It should be noted that lower order spatial and time
derivative approximations can also yield a numerically stable
(although less accurate) solution to (17) at lower computa-
tional expense [15, 18].

It is important to stress the remarkable computational
similarity of this new method to its time-invariant counter-
part. Indeed, the only computational overhead is introduced
by step (U3) in Algorithm 1, and the need to allow l̂ and
ĝ to depend on time3. As a result, as will be demonstrated
in the following section, our method can compute the back-
wards reachable set for time-varying problems at essentially
no additional cost compared to the time-invariant case.

Lastly, the optimal action for each player is implicitly ob-
tained in solving the minimax to compute the Hamiltonian
Ĥ in step (U1). It follows from Algorithm 1 that, start-
ing inside a player’s winning region (the reach-avoid set for
the attacker and its complement for the defender), applying
this optimal action at each state as a feedback policy yields a
guaranteed winning strategy for the reach-avoid game, to an
arbitrary degree of precision determined by the discretiza-
tion used.

5. NUMERICAL EXAMPLES
To illustrate our proposed method for computing reach-

avoid sets, we present two numerical examples. The first
shows the computational procedure in a simple optimal con-
trol scenario with a moving target and a moving obstacle,
and the obtained capture basin is validated against the an-
alytical result. The second example presents a two-player
reach-avoid game with moving target and constraint sets;
our method is benchmarked against the approach proposed
in [5], producing the same computed set (within one grid
cell of accuracy) at substantially lower computational cost.

5.1 Example 1: Reachability Problem
Consider the simple optimal control problem below, con-

sisting of a vehicle that can move in any direction at some
maximum speed trying to reach a moving target set while
avoiding a moving obstacle, modeled as the complement of
the constraint set. The time span of the problem is r0, T s
with T “ 0.5. The system is described by the state vector
xptq “ ppxptq, pyptqq, which represents the vehicle’s position
on a plane, with the following dynamics:

9x “ vvehuptq, uptq P U , (26)

with vveh “ 0.5 the vehicle’s speed and U the unit disk.
The target set is a square with side length 0.4 moving

down in forward time with velocity vtar “ 1.5. The center
of the target set is at p0, 0.75q at t “ 0, and p0, 0q at t “ 0.5.
The set is given mathematically as follows:

Tt “ tppx, pyq : maxp|px|, |py ´ 0.75` vtart|q ď 0.2u. (27)

We represent this moving target set using a signed distance
function, lppx, tq: lppx, tq ď 0 ðñ px P Tt.
3Note that Algorithm 1 can be performed without storing

the value of V̂ for all time steps, but only keeping track of
the previous iteration. Just as in the finite-horizon time-
invariant case, one may generally want to study the evolu-
tion of the reach-avoid set in time, but can discard interme-

diate iterations of V̂ if only the initial set is of interest.
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Figure 1: Time evolution of the reach-avoid set for a problem
with a target (large square) moving down at speed 1.5, and
an obstacle (small square) moving down at speed 1. The
inside of the dashed boundary represents the set of states
that can reach the target set while avoiding the obstacle.

The obstacle is a square with side length 0.2 moving down
(in forward time) with velocity vobs “ 1. The center of the
obstacle is at p0, 0q at t “ 0, and p0,´0.5q at t “ 0.5. The
set is expressed as:

Ot “ tppx, pyq : maxp|px|, |py ` vobst|q ă 0.1u. (28)

We represent this moving obstacle by defining the constraint
set Kt “ R2

zOt, through the discriminator function gppx, tq:
gppx, tq ď 0 ðñ px R Ot.

Figure 1 shows the time evolution of the numerical solu-
tion for the example problem described above.

The obtained reach-avoid set is not unlike what one might
expect out of intuition: because the target set is moving
down at a speed greater than that of the vehicle, the lower
boundary of the capture basin for t “ 0.45 consists of states
from which the vehicle can meet the target set at its final po-
sition. This lower boundary directly below the target moves
down in backward time (as the vehicle has more time to get
to this final position), but eventually gets “blocked” by the
obstacle (t “ 0.3). For earlier times (t “ 0.1), the bound-
ary is “pinched inwards” again, including nearby states from
which the vehicle can move around the obstacle to get to the
target; yet, there remains a triangular region directly below
the obstacle, shown in the t “ 0 subplot, that is not part of
the reach-avoid set, because starting from those states the
vehicle is unable to avoid the obstacle that is moving down.
The diagonal boundaries of the capture basin at its upper
region are formed by those states from which the vehicle can
meet the target set between its initial and final positions.

5.1.1 Analytic Solution
The reach-avoid set boundary for this example problem

can be computed analytically, and thereby compared against
the numerically obtained boundary. Because the problem
is symmetric about the py axis, we will consider the cap-
ture basin in the region px ď 0. We now derive the an-
alytic boundary by considering several different segments
separately; it will convenient to refer to Figure 2 below.

The optimal path for a vehicle with initial position on seg-
ment 1 of the capture basin boundary is a straight trajectory,
perpendicular to the segment, that reaches the upper corner
of the moving target at some intermediate position. Segment
1 is continued by a short arc 2 comprising initial states from
which the vehicle can follow a straight path reaching this top
corner exactly at the target’s final position. For a vehicle
starting on segments 3, 4 and 5 the optimal action is to take
the shortest path to the closest point of the target’s final po-
sition, which will be reached at exactly the final time. The
optimal action for a vehicle with initial position on segment
6 is similar: it must follow a straight line to barely miss the
obstacle, before redirecting its path to the target, reaching
it at the final time. Finally, a vehicle initially within the
triangular region enclosed by segment 7 and the obstacle
cannot avoid being hit by the obstacle. Based on these con-
siderations, the expression for each of these segments can be
geometrically derived, leading to the following:

t = 0
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Figure 2: Analytic and numeric reach-avoid set.

1. Upper diagonal segment:

tppx, pyq : py “ mppx ` 0.2q ` 0.95, px P rp
˚
x ,´0.2su,

(29)
where

p˚x “
´vtarT

m´1 `m
´ 0.2,

p˚y “
´vtarT

m´2 ` 1
` 0.95,

m “

d

v2
tar ´ v

2
veh

v2
veh

. (30)



2. Upper transition arc

tppx, pyq : ppx ` 0.2q2 ` ppy ´ 0.2q2 “ pvvehT q
2 ,

px P r´0.45, p˚x s, py P r0.2, p
˚
y su,

(31)

3. Side straight segment:

tppx, pyq : py P r´0.2, 0.2s, px “ ´0.45u (32)

4. Outer bottom rounded corner:

tppx, pyq : px “ cospθq ´ 0.2, py “ sinpθq ´ 0.2,

θ P rπ, 3π{2su
(33)

5. Bottom straight segment:

tppx, pyq : px P r´0.2,´0.1s, py “ ´0.45u (34)

6. Bottom rounded corner under obstacle:

tppx, pyq : py “ yom´
a

d2 ´ ppx ´ xomq2, px P rxom, 0su
(35)

where pd, yomq solves

d` ytf ´ yom “ C

d

vveh
“
yoi ´ yom
vobs

(36)

7. Obstacle’s “shadow”:

tppx, pyq : py “ mpx ` 0.95, px P r´0.1, 0su, (37)

where

m “

d

v2
obs ´ v

2
veh

v2
veh

. (38)

5.1.2 Convergence
Using the scheme described in Section 4, we numerically

solved the double-obstacle Hamilton-Jacobi variational in-
equality (17) on a computation domain consisting of N ˆN
grid points for N “ 51, 101, 151, 201, 251, 301. We compared
each of the numerical solutions to the analytic solution de-
rived in Section 5.1.1 by the following procedure:

1. Construct signed distance functions with the zero level
set corresponding to the boundary of the numerically
computed reach-avoid set (for instance using [13]).

2. Evaluate the signed distance functions at approximately
20 000 points distributed on the analytically determined
boundary of the reach-avoid set.

The values of the signed distance function correspond to
the distance between the analytically computed reach-avoid
set boundary points to the numerically computed boundary.
These values are used as the error metric for the numerical
approximation.

Figure 3 shows, in logarithmic scale, the mean error and
maximum error over all analytic points plotted against the
size of spatial discretization or grid spacing. Consistently
across the different grid spacings, the mean error is approx-
imately one-tenth of the grid spacing, and the maximum
error is approximately half of the grid spacing. The numer-
ical scheme therefore converges both in terms of the mean
error and the maximum error.

Grid spacing (dx)10-2 10-1

Er
ro

r
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10-3
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10-1

eavg
emax
dx

Figure 3: Convergence of our numerical implementation for
Example 1 with different grids. Average error is consistently
an order of magnitude smaller than the grid spacing, with
the maximum error being roughly half of the grid size.

5.2 Example 2: Reach-Avoid Game
Consider a reach-avoid game in which the attacker moves

in a two-dimensional space while the defender moves on the
vertical line x “ 0.05. Let pA “ pxA, yAq be the position of
the attacker, and yD be the position of the defender, with
x “ pxA, yA, yDq the state of the system, governed by the
following time-varying dynamics:

9pA “ p1´ tqvAaptq, }a}2 ď 1,

9yD “ vDbptq, b P r´1, 1s.
(39)

In this reach-avoid game, the attacker wishes to reach a tar-
get set that is moving upwards at speed vT “ 1.5, while
the defender tries to prevent the attacker from succeeding
by intercepting or delaying its advance. The attacker is free
to move in any direction at a limited speed, anywhere in
a square domain with the exception of a growing obsta-
cle whose lower edge is expanding downwards at a speed
of vO “ 0.5. The attacker has a time-varying maximum
speed that decreases linearly from vA “ 3 at t “ 0 to 0 at
t “ 1. The defender has a time-invariant maximum speed
of vD “ 3. Here, interception is defined as the two players
being within a radius of R “ 0.1 of each other. Figure 4
shows the initial configuration of the moving target and the
moving obstacle, as well the interception set centered at four
different defender positions.

For this reach-avoid game, we seek to compute the reach-
avoid set, comprised by the set of joint positions from which
the attacker is guaranteed to be able to reach the target
while avoiding interception by the defender as well as colli-
sion with the obstacle. To compute the reach-avoid set, we
solve (17) with the following Hamiltonian:

Hpx,∇xV, tq“min
aPA

max
bPr´1,1s

∇pAV p1´tqvAaptq`∇yDV vDbptq.

(40)
Solving the minimax in the Hamiltonian, we get

Hpx,∇xV, tq “ ´p1´ tqvA}∇pAV }2 ` vD|∇yDV |. (41)

Since the state space of the reach-avoid game is three-
dimensional (n “ 3), we visualize two-dimensional cross sec-



tions of the three-dimensional reach-avoid set at t “ 0, taken
at various defender initial positions. Figure 4 compares the
two-dimensional slices of the reach-avoid sets computed by
the state augmentation method in [5] and by our newly pro-
posed augmentation-free method. Given the defender posi-
tions shown in each of the subplots, the attacker will be able
to reach the target if it is on the side of the reach-avoid set
boundary containing the target. As can be appreciated, the
capture basin boundaries computed by the two methods are
very similar (well within a grid cell of distance); however,
computation4 using the state augmentation method took
approximately 3 hours on a 514 grid. With our proposed
augmentation-free method, computation only took about 3
minutes on a 513 grid. Our computation was two orders of
magnitude faster and provided essentially identical results.

At this point it should be mentioned that there exist
local level set methods developed to speed up computa-
tion in time-invariant problems with monotonically prop-
agating level sets [19, 23]; these methods update the value
function only in a neighborhood of its zero level set, which
can partially mitigate the cost of iterating over an pn ` 1q-
dimensional grid. We did not implement such fast methods
here, since the goal was to compare the accuracy and per-
formance of the full implementation of both approaches. It
is important to stress that our method inherently avoids the
increase in computational cost altogether, because it uses an
n-dimensional grid, and in addition returns the entire value
function and not just its zero level set, which can provide
useful additional information [1].

The effect of the different defender initial positions on the
reach-avoid set is apparent in Figure 4. If the defender starts
the game near the bottom of the domain (a), the defender
would be able to block the attacker from going through the
gap between the bottom edge of the obstacle and that of
the domain. Thus we see that the reach-avoid set boundary
does not extend into the bottom left quadrant of the domain.
However, in this case, the attacker is free to cross the gap
above the top edge of the obstacle, which leads to a large
area of the top left quadrant being inside the capture basin.

Similarly, if the defender starts near the top (d), the reach-
avoid set extends into the bottom left quadrant of the do-
main. Yet it does not propagate as far as in (a), due to the
fact that the passage under the obstacle is closing and the
target is moving away from it: an attacker not starting close
enough to the bottom opening will not be able to make it
through in time to reach the target. The remaining plots
(b),(c) show the capture basin at t “ 0 for intermediate
defender positions.

Figure 5 shows the backward time evolution of the reach-
avoid set for a single defender position. The subplots show
the capture basin at various times. At t “ 0.90, there is
a relatively small region in the state space from which the
attacker can reach the target by the end of the game (t “ 1),
as there is little time left. As the starting time t considered
decreases, the attacker has more time to reach the target
and thus the reach-avoid set grows; however, this growth is
inhibited by both the defender’s interception set and by the
presence of the obstacle. Furthermore, near t “ 1, the at-
tacker has a slow speed, so the growth of the capture basin
depends primarily on the motion of the target set; as t de-
creases, the attacker’s motion becomes more relevant.

4Computations were run using [13] on desktop computer
with a Core i7-2600K processor.
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Figure 4: Reach-avoid set computed through the state aug-
mentation method (4D) and our proposed augmentation-free
method (3D). 2D cross-sections of the set are shown at the
initial time for four different defender positions.
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Figure 5: Backward time evolution of the reach-avoid set.
As t decreases, the attacker has more time to reach the tar-
get, so the reach-avoid set grows. The growth of the reach-
avoid set is inhibited by the defender’s interception set and
the obstacle.



6. CONCLUSION
We have presented here a novel extension of Hamilton-

Jacobi methods to reach-avoid problems with time-varying
dynamics, targets, and constraints. This result enables the
analysis of many relevant problems in game theory and op-
timal control, including pursuit-evasion, differential games,
and safety certificates for dynamical systems. In particular,
our result can provide guarantees for collision avoidance in
dynamic environments with multiple moving obstacles.

Importantly, numerical implementations of our method
have computational complexity equivalent to that of already
existing techniques for time-invariant systems. This sets
our method apart from previously proposed approaches that
work around time variation by incorporating time as an ad-
ditional variable in the state. In many important applica-
tion contexts, such as online safety analysis in dynamical
systems [1], the substantial reduction in computational cost
introduced by our technique can allow timely obtention of
results that would otherwise entail an impractical computa-
tional effort.

In the future, we intend to develop applications of this new
formulation to large-scale multi-agent systems in both coop-
erative and adversarial contexts: a first result is presented
in [8] for safe multi-vehicle path planning. By leveraging
the possibilities of time-varying targets and constraints to
encode the trajectories of other agents, we aim to incremen-
tally build solutions that scale linearly, and not exponen-
tially, with the complexity of the multi-agent network.
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