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Abstract— In this paper, we propose an efficient algorithm to
find an optimal control policy in a discrete-time hidden mode
stochastic hybrid system, which is a special case of partially
observable discrete-time stochastic hybrid systems in which only
discrete states are hidden. Many human-centered systems can
be modeled as such systems, in which the intent of the human
operator is unknown and can be modeled as the hidden mode.
In the literature, the optimal control problem of hidden mode
stochastic hybrid system is known to have high computational
complexity due to the continuous state space. In this paper, we
will tackle this computational challenge by using local quadratic
functions to approximate the optimal expected reward, which
does not have a closed-form expression in general. We will
show the efficacy of our proposed method, and the significant
improvement in the computational time.

I. INTRODUCTION

In this paper, we consider a special class in partially
observable discrete-time stochastic hybrid system (PODT-
SHS) [5] in which only discrete states are hidden and there
are only discrete control inputs. There are many applications
that can be modeled as such systems, especially for human-
centered systems in which the intent of the human operator
is unknown and can be modeled as the hidden mode.
For instance, a driver assistance system should be able to
maintain the safety of the driver and the vehicle even though
the intent of the driver is unknown [11][12]. For human-
robot interaction, it is desirable for a smart robot to infer
human intent in order to provide suitable response [3]. More
examples could be found in assistive robotics [6][21], multi-
agent systems [4], and mobile robot navigation in man-made
environments [17].

Hybrid systems with perfect information, in which the
states are assumed to be directly observed, have been studied
extensively [2][16][8]. But there are only a few works on
stochastic hybrid systems with partial information. A general
form of discrete-time stochastic hybrid system with partial
information can be formulated as a partially observable
discrete-time stochastic hybrid system [5][9]. However, the
complexity of its computation is still a main issue in solving
a general PODTSHS. Instead, one can consider a special case
called hidden mode hybrid system, in which only the discrete
mode is hidden while the continuous states are assumed to
be observed directly [20][19][22]. The safety control problem
and mode tracking problem in hidden mode hybrid systems
have been studied in [20] and [22] respectively, with the
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assumption of a deterministic transition map. In the case
of hidden mode stochastic hybrid systems, the literature has
been focused on the estimation of the hidden mode [7], but
not the optimal control policy to control the states, which is
the focus of this paper.

In order to find the optimal control policy for a discrete-
time hidden mode stochastic hybrid system, we have to
maximize the value function at every time step, which is
the optimal expected reward over a finite or an infinite
horizon. However, it is known that there is no closed-form
expression for the value function. Therefore, maximizing the
value function at every time step is a challenge. In the past,
people either discretize the continuous state space [1] or
restrict the probability models and the reward function to be
Gaussian [10] in order to approximate the value function as
a linear combination of Gaussian functions. Both approaches
are either not scalable or too restricted.

Since the model involves hidden states, at every time
step, we need to maintain the distribution over the hidden
states, known as the belief. Therefore, we are actually doing
planning on the belief space rather than the original state
space. Researchers have been working on computational
techniques for belief space planning [14][18]. In particular,
Van den Berg et al. [18] approximated the value functions
along the trajectory as quadratic functions. We will adopt the
similar technique into our hybrid setting.

In this paper, we use the formulation of PODTSHS and
address the optimal control problem in discrete-time hidden
mode stochastic hybrid systems with only discrete inputs and
cumulative reward. We will show that by using many local
quadratic functions to approximate the value function, we
can efficiently evaluate the value function at every iteration
so the computational time is reduced significantly. In the
optimal value function updating process, instead of doing
a full update, we only update the lower bound of the
optimal value function in order to tackle the integral of a
maximization function. Moreover, we draw upon the point-
based method for continuous partially observable Markov
decision processes (POMDPs) [13] to restrict the number of
points of interest used to update the value function. We will
show that our method is more efficient and less restricted
compared to previous work.

This paper is organized as follows. We first introduce
the PODTSHS and derive a general solution to PODTSHS
with cumulative reward in Sections II and III. In Section
IV, we describe the control problem in discrete-time hidden
mode stochastic hybrid systems and propose an algorithm to
find the optimal control policy via quadratic approximation.



Section V shows simulation results, and the conclusion and
the future work are in Section VI.

II. BACKGROUND

A discrete-time stochastic hybrid system was first intro-
duced by Abate et al. [2]. Ding et al. [5] and Lesser [9]
extended it to a partially observable framework. We slightly
modify the formulation in [5] and [9] and define the partially
observable discrete-time stochastic hybrid system as follows:

Definition 1: A partially observable discrete-time
stochastic hybrid system (PODTSHS) is a tuple
H= (Q,X , In,Z,Tx,Tq,Ω) where
• Q= {q(1),q(2), ...,q(Nq)} is a finite set of discrete states.
• X ⊆ Rn is a set of continuous states. The hybrid state

space is defined by S =Q×X .
• In = Σ × U , where Σ = {σ (1),σ (2), ...,σ (Nσ )} repre-

sents a finite set of discrete control inputs affecting
the discrete transitions, and U represents the space of
continuous inputs affecting the transition of continuous
states.

• Z = Zq×Zx is a nonempty Borel space denoting the
observation space, where Zq is the observation space
of discrete states and Zx is the observation space of
continuous states.

• Tx : B(Rn)×Q×S × In→ [0,1] is a Borel-measurable
stochastic kernel which assigns a probability measure
to xk+1 ∈X given sk ∈ S,σk ∈ Σ,uk ∈ U and qk+1 ∈Q :
Tx(dxk+1|qk+1,sk,σk,uk).

• Tq : Q×X × In→ [0,1] is a discrete transition kernel
assigning a probability distribution to qk+1 ∈ Q given
sk ∈ S,σk ∈ Σ and uk ∈ U : Tq(qk+1|sk,σk,uk).

• Ω : B(Z) × S × In → [0,1] is a Borel-measurable
stochastic kernel assigning a probability measure to
zk ∈ Z given sk ∈ S,uk−1 ∈ U and σk−1 ∈ Σ :
Ω(dzk|sk,σk−1,uk−1).

To simplify the problem we make the following assump-
tions:

1) The discrete transition Tq only depends on qk ∈Q and
σk ∈ Σ: Tq(qk+1|sk,σk,uk) = Tq(qk+1|qk,σk).

2) The continuous transition Tx only depends on qk+1 ∈
Q, xk ∈ X and uk ∈ U : Tx(dxk+1|qk+1,sk,σk,uk) =
Tx(dxk+1|qk+1,xk,uk).

3) The measurement kernel Ω does not depend on the
inputs and can be factorized into measurements for
discrete states and measurements for continuous states:
Ω(dzk|sk,σk−1,uk−1) = Ωq(zq|qk)×Ωx(dzx|xk).

Here we use a driver assistance example to illustrate the
relationship between the general PODTSHS and the above
simplification. We assume the driver could be drowsy or
awake, which is modeled as the hidden discrete mode q.
The continuous state x is the position of the car. The discrete
input σ indicates whether the warning signal is turned on to
awake the driver, and the continuous input u is an augmented
control input to the car. The first assumption means whether
the driver is drowsy depends on whether she is drowsy at the
previous state and whether the warning signal is turned on to

awake her. The second assumption means that the position
of the vehicle depends on whether the human is awake, the
previous position of the vehicle and the augmented control
input. The last assumption means we measure the state
of the human and the state of the car separately. A more
concrete example of human-in-the-loop system can be found
in Section V.

Under this PODTSHS model, the information up to step
k is denoted as ik = (σ0,u0,z1,σ1,u1,z2, . . . ,σk−1,uk−1,zk),
along with the prior distribution of the initial state s0.
Working directly with the information state is cumbersome,
so instead we work with the distribution of states at every
time step, which is known as belief state. The belief state
is defined as follows:

Definition 2: A belief b(s) is a probability distribution
over S with

∫
s∈S b(s)ds = 1. Since s = (q,x) is a hybrid

state, the integral over s ∈ S is defined as
∫

s∈S f (s)ds =

∑q∈Q
∫

x∈X f (q,x)dx.
The belief changes every time step. We denote the new

belief at time k+1 when executing control inputs (σk,uk) and
observing new measurement zk+1 as bσk,uk,zk+1

k+1 (sk+1). The
belief can be updated recursively by:

bσk,uk,zk+1
k+1 (sk+1) = P(sk+1|σk,uk,zk+1,bk)

=
P(zk+1|sk+1,σk,uk,bk)P(sk+1|σk,uk,bk)

P(zk+1|σk,uk,bk)

=ηΩ(zk+1|sk+1,σk,uk)×∫
sk∈S

Tx(dxk+1|qk+1,xk,uk)Tq(qk+1|qk,σk)bk(sk)dsk, (1)

where η is a normalization factor.
Definition 3: A policy π for H is a sequence π =

(π0,π1,π2, · · ·), where πk(bk) ∈ Σ×U is a map from the
belief state at time k to the set of controls.

A reward function is denoted as R(q,x,σ ,u) or Rσ ,u(q,x)∈
R, which is obtained by the system if it executes (σ ,u) when
the system is in state (q,x). To assess the quality of a given
policy π , we use a value function to represent the expected
m-step cumulative reward starting from the belief state b0:

Jπ
m(b0) = E[

m

∑
k=0

γ
kR(sk,σk,uk)], (2)

where 0 ≤ γ ≤ 1 is a discount factor and the controls
(σk,uk) = πk(bk). The optimal value function at step m is
J∗m = maxπ Jπ

m. For all m = 0,1,2, · · · , the optimal value
function can be calculated by

J∗m+1(b) = max
(σ ,u)∈Σ×U

{〈Rσ ,u,b〉+ γ

∫
z

p(z|σ ,u,b)J∗m(b
σ,u,z)dz},

(3)

where the operator 〈·, ·〉 is defined as 〈 f (q,x),g(q,x)〉 =
∑q∈Q

∫
x∈X f (q,x)g(q,x)dx.

The goal of a PODTSHS with cumulative reward is to find
an optimal policy to maximize the m-step value function to
yield J∗m = maxπ Jπ

m. For infinite horizon, i.e., m→ ∞, the
optimal policies of all time steps are the same, i.e., π∗ =
π0 = π1 = · · · .



By Lemma 1 in [13], we know that the m-step optimal
value function can be expressed as:

J∗m(b) = max
{α i

m}i
〈α i

m,b〉, (4)

for an appropriate continuous set of α-functions α i
m : S →R.

Therefore, to find the optimal value function, it is equivalent
to find the set of α-functions {α j

m} j.

III. RECURSIVE UPDATE OF THE VALUE FUNCTION

Using the α-function formulation, we will derive a recur-
sive update process for the set of α-functions. For m = 1,
the optimal value function is the maximum of the instant
reward:

J∗1 (b) = max
(σ ,u)
〈R(σ ,u),b〉. (5)

By Comparing (5) to (4), we can see that the first step
α-functions {α j

1} j are {R(σ ,u)}(σ ,u). The (m + 1)-step α-
functions {α j

m+1} j can be calculated from the m-step α-
functions {α j

m} j. Starting from (3), we have:

J∗m+1(b) = max
(σ ,u)∈Σ×U

{
〈Rσ ,u,b〉+ γ

∫
z

p(z|σ ,u,b)J∗m(b
σ,u,z)dz

}
(6)

= max
(σ ,u)∈Σ×U

{
〈Rσ ,u,b〉+ γ

∫
z

p(z|σ ,u,b) max
{α j

m} j

〈α j
m,b

σ ,u,z〉dz

}

= max
(σ ,u)∈Σ×U

{
〈Rσ ,u,b〉+ γ

∫
z

max
{α j

m} j

∫
s
b(s)

∫
s′

α
j

m(s
′)

Ω(z|s′,σ ,u)Tx(x′|q′,x,u)Tq(q′|q,σ)ds′dsdz
}
.

Let

α
j

σ ,u,z(s) =
∫

s′
α

j
m(s
′)Ω(z|s′,σ ,u)Tx(x′|q′,x,u)Tq(q′|q,σ)ds′,

(7)

then we have:

J∗m+1(b) = max
(σ ,u)∈Σ×U

{
〈Rσ ,u,b〉+ γ

∫
z

max
{α j

m} j

〈α j
σ ,u,z,b〉dz

}
.

(8)

Let

(σ∗,u∗) = argmax
(σ ,u)∈Σ×U

{
〈Rσ ,u,b〉+ γ

∫
z

max
{α j

m} j

〈α j
σ ,u,z,b〉dz

}
.

(9)

Then if we represent J∗m+1(b) as the form of inner product
as in (4), we can find that a new (m+1)-step α-function for
a specific belief b can be written as:

α
b
(σ∗,u∗)(s) = Rσ∗,u∗(s)+ γ ∑

zq∈Zq

∫
zx

argmax
{α j

σ∗ ,u∗ ,z} j

〈α j
σ∗,u∗,z,b〉dzx.

(10)

Then the new set of α-functions is:

{α i
m+1}i =

⋃
∀b
{αb

σ∗,u∗}. (11)

Given the set of α-functions, and a belief b, the policy
function π(·) is the map from b to the optimal control
calculated by (9).

Although we derive the updating process of the set of α-
functions theoretically, it is very challenging to perform the
exact update in practice. There are four reasons:

1) We have to maximize the non-convex value function
over continuous input space;

2) There is no efficient way to find the exact value of the
integral of maximization function in (10);

3) There is no closed-form expression for α-functions;
4) It is not possible to find the full set of α-functions for

all b in the belief space because the belief space is of
infinite dimension with continuous state variables.

IV. APPROXIMATE SOLUTION TO A DISCRETE TIME
HIDDEN MODE STOCHASTIC HYBRID SYSTEM

Instead of dealing with the general PODTSHS, we con-
sider a special case of PODTSHS where only discrete states
are hidden and there are only discrete inputs. In this case
we will avoid the first challenge about the continuous input
space. Although we do not consider continuous inputs, we
will show in the simulation in Section V that we can
use a controller selection scheme to introduce continuous
control inputs in the system. More specifically, we consider
a PODTSHS as follows:

1) U = /0;
2) Zx = X ;
3) Ωx(zx|xk) = δ (zx− xk).

We also model the dynamical system under each discrete
mode q as

xk+1 = fq(xk)+w, w∼N (0,Wq),

where w is the Gaussian noise and Wq is the covariance
matrix of w at discrete mode q. We also assume that fq(x)
is differentiable. The above dynamical system implies that
the continuous transition Tx(xk+1|qk+1,xk) is a Gaussian
function with mean fqk+1(xk) and covariance Wqk+1 , i.e.
N ( fqk+1(xk),Wqk+1).

In this case, since the continuous states are observable, the
belief at any time step k will have the following form:

bk(qk,xk) =

{
bk(qk,zk)≥ 0, if xk = zk;
0, otherwise.

(12)

The belief update (1) becomes:

bσk,zk+1
k+1 (qk+1,xk+1)

=ηΩ(zq
k+1|qk+1)δ (zx

k+1− xk+1)×

∑
qk∈Q

∫
xk∈X

Tx(xk+1|qk+1,xk)Tq(qk+1|qk,σk)bk(qk,xk)dxk

=


ηΩ(zq

k+1|qk+1)Tx(zk+1|qk+1,zk)×
∑qk∈Q Tq(qk+1|qk,σk)bk(qk,zk), if xk+1 = zk+1;
0, otherwise,

(13)



where

η = ∑
qk+1

Ω(zq
k+1|qk+1)Tx(zk+1|qk+1,zk)Tq(qk+1|qk,σk)bk(qk,zk).

We can get the optimal value J∗m+1 with (8):

J∗m+1(b) = max
σ∈Σ

{
〈Rσ ,b〉+ γ ∑

zq∈Zq

∫
zx

max
{α j

m} j

〈α j
σ ,zq,zx ,b〉dzx

}
,

(14)

where by equation (7), α
j

σ ,zq,zx(q,x) is:

α
j

σ ,zq,zx(q,x) = ∑
q′∈Q

α
j

m(q
′,zx)Ω(zq|q′)Tx(zx|q′,x)Tq(q′|q,σ).

(15)

A. Quadratic Approximation for α-Functions

In order to evaluate the optimal value J∗m+1(b) for a
specific belief b, (by (12), without loss of generality, assume
b(q,x)≥ 0 only if x = x), we have to deal with the integral of
a maximization function in (14). However, as we mentioned
before, there is no efficient way to calculate an exact closed-
form solution of the integral of a maximization function. To
tackle this challenge, instead of directly calculate the integral,
we calculate a lower bound of the optimal value J∗m+1(b) by
the inequality:∫

zx
max
{α j

m} j

〈α j
σ ,zq,zx ,b〉dzx ≥ max

{α j
m} j

∫
zx
〈α j

σ ,zq,zx ,b〉dzx. (16)

Using the lower bound is important because it will not
overestimate the optimal value function. Overestimation may
lead to divergence of Jm+1 because we find Jm+1 in a maxi-
mization scheme. We also propose to use a quadratic function
to approximate the α-function in order to tackle the third
challenge, i.e., let α j(q,x)≈ a j

0(q)+a j
1(q)

T x+xT A j
2(q)x. We

will show that by doing so, we can calculate a closed-form
lower bound of the optimal value J∗m+1(b). The integration
in (16) can be obtained by:∫

zx
〈α j

σ ,zq,zx ,b〉dzx

=
∫

zx
∑

q∈Q
∑

q′∈Q
α

j
m(q
′,zx)Ω(zq|q′)Tx(zx|q′,x)Tq(q′|q,σ)b(q,x)dzx

= ∑
q∈Q

∑
q′∈Q

Ω(zq|q′)Tq(q′|q,σ)b(q,x)
∫

zx
α

j
m(q
′,zx)Tx(zx|q′,x)dzx

= ∑
q∈Q

∑
q′∈Q

Ω(zq|q′)Tq(q′|q,σ)b(q,x)E[α j
m(q
′,zx)], (17)

where

E[α j
m(q
′,zx)] = a j

0(q
′)+(a1(q′) j)TE[zx]+E[(zx)T A j

2(q)z
x].

Since Tx(zx|q′,x) is a Gaussian distribution with mean fq′(x)
and covariance Wq′ , we have:

E[α j
m(q
′,zx)] = a j

0(q
′)+(a j

1(q
′))T fq′(x)+

( fq′(x))
T A j

2(q
′) fq′(x)+ tr(A j

2(q
′)Wq′). (18)

In (18), we are using the fact that E[xT Lx] = E[x]T LE[x]+
Tr(LVar(x)). Combining (14), (16), (17) and (18), we can
get a lower bound of J∗m+1(b). Let

α
∗
m = argmax

{α j
m} j

∫
zx
〈α j

σ ,zq,zx ,b〉dzx, (19)

then the lower bound of J∗m+1 is

J∗m+1(b)≥max
σ∈Σ

{
〈Rσ ,b〉+

γ ∑
zq∈Zq

∑
q∈Q

∑
q′∈Q

Ω(zq|q′)Tq(q′|q,σ)b(q,x)E[α∗m(q′,zx)]

}
.

Let

σ
∗ =argmax

σ∈Σ

{
〈Rσ ,b〉+ (20)

γ ∑
zq∈Zq

∑
q∈Q

∑
q′∈Q

Ω(zq|q′)Tq(q′|q,σ)b(q,x)E[α∗m(q′,zx)]

}
.

Then similar to (10), a new αm+1 can be updated by:

αm+1(q,x) = Rσ∗(q,x)+

γ ∑
zq∈Zq

∑
q′∈Q

Ω(zq|q′)Tq(q′|q,σ∗)E[α∗m(q′,zx)]. (21)

To maintain the quadratic form of the α-function, we ap-
proximate αm+1(q,x) as a quadratic function around x:

αm+1(q,x)≈αm+1(q,x)+
(

∂αm+1(q,x)
∂x

∣∣∣∣
x

)T

(x− x)+

1
2
(x− x)T ∂ 2αm+1(q,x)

∂x∂x

∣∣∣∣
x
(x− x). (22)

We also linearize the dynamical system around x:

xk+1− fq(x) = Hq(xk− x), (23)

where Hq = D fq(x)
∣∣
x. Let the quadratic approximation of

Rσ∗(q,x) around x be

Rσ∗(q,x)≈ Rσ∗(q,x)+ rT
1 (x− x)+

1
2
(x− x)T M(x− x),

(24)

where r1 =
∂Rσ∗ (q,x)

∂x

∣∣
x and M =

∂ 2Rσ∗ (q,x)
∂x∂x

∣∣
x. Combining (21),

(23) and (24) we can get:

∂αm+1(q,x)
∂x

∣∣∣∣
x
=r1 + γ ∑

zq∈Zq
∑

q′∈Q

[
Ω(zq|q′)Tq(q′|q,σ∗)×(

HT
q′a
∗
1(q
′)+2HT

q′A
∗
2(q
′) fq′(x)

)]
(25)

and

∂ 2αm+1(q,x)
∂x∂x

∣∣∣∣
x
=M+ γ ∑

zq∈Zq
∑

q′∈Q

(
Ω(zq|q′)Tq(q′|q,σ∗)×

2HT
q′A
∗
2(q
′)Hq′

)
. (26)

To summarize, we can update a new α-function for a
specific belief b by Algorithm 1. Since for every α-function,



there is a specific linearizing point x used for quadratic
approximation, we are not using the whole set of α

j
m’s, but

using those whose linearizing points are closed enough to x
to perform update in Step 1 of Algorithm 1.

Algorithm 1: α-function update

Function Update({a j
m} j, b)

1. Obtain α∗m by (19) where
∫

zx〈α j
σ ,zq,zx ,b〉dzx

can be calculated by (17) and (18).
2. Get σ∗ by (20) and (18).
3. Obtain the quadratic approximation of a new

α-function αm+1 by (22), (25) and (26).
return αm+1

A full updating process requires updating {α j
m+1} j over

all b ∈ B, the entire belief space. However, as we mentioned
before, the belief of continuous states is of infinite dimension,
so finding the full set of the (m + 1)-step α-functions is
not possible. The point-based method for POMDP suggests
only using a finite number of reachable beliefs to update α-
functions and also bounding the number of new α-functions.
The point-based method allows us to update α-functions in
bounded times, which makes the problem tractable. There-
fore, we will adopt the point-based method to tackle this
challenge.

There are different variations of point based method in
which people use different methods for generating belief
set B and updating a new set of α-functions. We propose
Algorithm 2 to perform point based value iteration for hidden
mode stochastic hybrid system.

The first step of Algorithm 2 is to generate a set of
reachable beliefs. We first randomly explore the belief space
and then use K-means to cluster the belief set. After that, we
select beliefs from each cluster randomly until it meets the
predefined number of beliefs. Since we found that random
exploration in PODTSHS will result in many similar beliefs,
clustering them and selecting them from different clusters
can increase the diversity of beliefs, which accelerates the
value iteration process in next step. We adopt Perseus algo-
rithm [15] to perform point-based value iteration which has
been shown to be efficient for discrete POMDP. In every
iteration of ValueIteration, the time complexity is
O(NB|Σ||Zq||Q|2|Vα |n2), where NB is the number of beliefs
used for update, |Σ| is the number of discrete inputs, |Zq|
is the number of discrete observations, |Q| is the number of
discrete states, |Vα | is the number of α-functions at every
iteration, and n is the dimension of the continuous state.

V. SIMULATION RESULTS

We use two simulations to demonstrate the efficacy and
the speed of the proposed method. The simulations are
programmed in C++ on a laptop running Mac OS X with
2GHz Quad-core Intel Core i7. In the first simulation, we
simulate a human-in-the-loop system. It shows that although
we only consider discrete inputs in our proposed algorithm,
we can actually use a controller selection scheme to introduce

Algorithm 2: Value iteration for discrete-time hidden
mode stochastic hybrid system

Input: Hidden mode stochastic hybrid system H, initial
state (q0,x0) and the number of beliefs NB

Output: Vα : The set of α-functions

B = BeliefCollection((q0,x0),NB)
Vα = ValueIteration (B)
Function BeliefCollection((q,x),NB)

repeat
Uniformly choose σ from Σ

Sample (q′,x′)′ ∼ Tx(x′|q′,x)Tq(q′|q,σ)
Sample zq ∼Ω(zq|q′)
b′ = bσ ,z by (13)
B← B

⋃
b′

(q,x)← (q′,x′)
until |B|= 10NB;
Clustering B by K-means: C =K-means(B)
B′← /0
repeat

Randomly select a cluster Ci and randomly
select a belief b from Ci
B′← B′

⋃
b, Ci←Ci \b

until |B′|= NB;
return B′

Function ValueIteration(B)
Vα ←{Rσ}σ∈Σ

repeat
B′← B; V ′α ← /0
while B′ 6= /0 do

Choose b ∈ B′ randomly
α ′← Update(Vα ,b) by Algorithm 1
if 〈α ′,b〉 ≥ J∗(b) (J∗(b) is calculated by
(4)) then

B′←{b ∈ B′|〈α ′,b〉 < J∗(b)}
αb← α ′

else
B′← B′ \b
αb← argmaxα∈Vα

〈α,b〉
V ′α ←V ′α

⋃
αb

Vα ←V ′α
until ∀b ∈ B, Vα(b) converges;
return Vα

continuous inputs. The second simulation compared our
method with a discretization scheme [1]. To our best knowl-
edge, we are aware of another computational method in [10],
which uses the linear combination of Gaussian functions
to approximate the α-functions. However, it requires the
probability models and the reward function to be Gaussian,
which is not applicable to our case.

The first simulation models a human-in-the-loop system
with a two-dimensional continuous state space, in which a
driver, who could be either attentive or distracted, is keeping
the car at the middle of a lane. x is the position and v



is the velocity of the car vertical to the direction of the
lane. Suppose that there are two feedback systems. One is a
warning system that reminds the driver to be attentive, and
the other one is an augmented control input um obtained by
controllers C0 that will not intervene the driver, or C1 that will
help driving the car toward the middle of the lane. In such
setting, we use a controller selection scheme to introduce
continuous input um.

More specifically, the hidden mode stochastic hybrid sys-
tem is defined as follows:
• Q1={qa=Attentive, qd = Distracted}, Q2 = {q(0) =

C0,q(1) =C1}. Hidden state space Q=Q1×Q2.
• Continuous state [x,v]T ∈ R2.
• Σ1 = {σw = Warning, σnw = No warning} and Σ2 =
{σ (0) = Execute C0, σ (1) = Execute C1}. The set of
discrete controls is Σ = Σ1×Σ2

• Zq =Q1.
• Tq(q′|q,σ) = Tq1(q1|q1,σ1)Tq2(q

′
2|q2,σ2) where

Tq1(q
′
1 = q1|q1,σ1 = σnw) = 0.95, Tq1(q

′
1 = qa|q1 =

qa,σ1) = 0.95, Tq1(q
′
1 = qa|q1 = qd ,σ1 = σw) = 0.8

and Tq2(q
′
2 = σ2|q2,σ2) = 1.

• [
xk+1
vk+1

]
=

[
1 ∆t
0 1

][
xk
vk

]
+

[
(∆t)2

2
∆t

]
uh +

[
(∆t)2

2
∆t

]
um +w.

(27)

uh,k =

−[K1 K2]

[
xk

vk

]
, if q1 = qa;

0, if q1 = qd .

um,k =


0, if q2 = q(0);

−[K1 K2]

[
xk

vk

]
, if q2 = q(1),

where K1 and K2 are feedback gains such that the system
is stable, and w∼N (0,

(
0.2 0
0 0

)
) when q1 = qa and w∼

N (0,
(

1 0
0 0

)
) when q1 = qd .

• Ω(zq = q1|q1) = 0.95.

• R(q,x,v,σ) = 100 − [x v]
[

1 0
0 0.1

][
x
v

]
− 5I(σ1 =

σw)−5I(σ2 = σ (1)), where I(·) is the identity function.
Given the discrete-time hidden mode stochastic hybrid

system, we first compute the optimal control policy π(·)
by Algorithm 2, which takes 27s with 5000 belief states.
We then evaluate our policy by the following simulation
process: based on the current belief bt , we obtain the control
σt = π(bt), apply σt to the system and sample a new discrete
state qt+1 from Tq. We calculate xt+1 by equation (27) and
sample new observation zq

t+1 from Ω, by which we update
a new belief bt+1 and the whole process repeats. Figure 1a
shows the ground truth of the hidden discrete state q1 and
figure 1b shows the continuous state x. Figure 1c shows the
marginal belief Pt(q1) of every time step, and figures 1d
and 1e show the corresponding controls obtained by our
learned policy.

(a) Ground truth of the hidden discrete state q1 and the correspond-
ing discrete observation zq.

(b) Continuous states xt and vt .

(c) The probability of the driver being attentive Pt(q1 = Attentive).

(d) The first discrete input σ1: warning on/off.

(e) The second discrete input σ2: the selected controller.

Fig. 1: Simulation results for a human-in-the-loop system.

Intuitively, the goal of the policy should encourage the
system staying in mode qa and keeping x and v zero. The
simulation result conforms with our intuition that when
P(q1 = Attentive) goes down to some threshold, there will
be a warning σ1 = Warning in order to keep the driver
attentive. Moreover, we can see that our learned policy
selects controller C1 when the x is too far from zero. This
simulation shows that using quadratic approximation, we can
still get a reasonable control policy.

Finally, we compare the time used to get the policy in
our proposed algorithm with a discretization scheme [1]. In
this simulation, we reduce the above 2D example to a 1D
example with only one continuous variable x. Table I shows
the computing time, in which we can see that our proposed
algorithm is at least 130 times faster than the discretization
scheme. Moreover, we compare the average reward by
running 50 simulations for both schemes. As shown in
Table II, our method gets a higher average reward than the
discretization scheme. Hence, out method outperforms the
discretization scheme. The main reason is that the accuracy
of discretization highly depends on how fine you discretize
the state space. If you do not discretize the space fine
enough, the error will be large, but if we discretize it too



fine, the computation becomes slower. We can see that our
method both increase the efficiency and retain the optimality
of the policy.

TABLE I: The computational time of our method and the
traditional discretization scheme.

Number of belief |B| used in updating value function
100 500 1000 2500 5000

Discretization 71m 93m 114m 120m 132m
Our method 1.0s 5.7s 12.4s 34.7s 61s

TABLE II: The average reward of our method and the
traditional discretization scheme.

Number of belief |B| used in updating value function
100 500 1000 2500 5000

Discretization 9912 9914 9917 9918 9915
Our method 9917 9918 9919.2 9919.6 9920

VI. CONCLUSION AND FUTURE WORK

We have proposed an algorithm to find an approximate
optimal control policy for the hidden model stochastic hybrid
system. We have shown that by approximating α-functions
as quadratic functions and using lower bound of the optimal
value function to do update, we can efficiently perform value
iteration in order to find the optimal control policy. We
have compared our method with the traditional discretization
scheme and have shown that our method can find the optimal
policy faster while still remain the optimality of the control
policy.

For future work, we would like to find a theoretic guar-
antee on the bound of the optimal value function using our
method and to explore how to generalize this technique to a
general PODTSHS.

REFERENCES

[1] Alessandro Abate, Saurabh Amin, Maria Prandini, John Lygeros, and
Shankar Sastry. Computational approaches to reachability analysis of
stochastic hybrid systems. In Alberto Bemporad, Antonio Bicchi, and
Giorgio Buttazzo, editors, Hybrid Systems: Computation and Control,
volume 4416 of Lecture Notes in Computer Science, pages 4–17.
Springer Berlin Heidelberg, 2007.

[2] Alessandro Abate, Maria Prandini, John Lygeros, and Shankar Sas-
try. Probabilistic reachability and safety for controlled discrete time
stochastic hybrid systems. Automatica, 44(11):2724 – 2734, 2008.
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