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Abstract— Existing commercial driver assistance systems,
including automatic braking systems and lane-keeping systems,
may monitor the state of the vehicle or the environment to
determine whether the systems should intervene. However, the
state of the human driver is not typically included in the
decision making process. In this paper, we propose to use
hidden mode stochastic hybrid systems to model the interaction
between the human driver and the vehicle. We show that by
monitoring the human behavior as well as the vehicle state, we
can infer the human state and enhance the quality of decision
making in a driver assistance system. The resulting control
policy is obtained by solving an optimal planning problem
of the proposed hidden mode hybrid system. The policy can
automatically balance the decision making about when to give
warning to the driver and when to actually intervene in the
control of the vehicle.

I. INTRODUCTION
In the recent paradigm shifts of developing autonomous

driving vehicles, driver assistance systems (DAS) have re-
ceived a lot of attention in both academia and industry.
In particular, various versions of commercial DAS systems
have been successfully deployed, including lane departure
warning, lane-keeping assistance, and automatic braking
systems, just to name a few. They have demonstrated their
effectiveness in enhancing the safety of vehicles on the road,
when human drivers still assume the main responsibilities of
supervising the vehicles.

Currently, most DAS solutions only monitor the vehicle
state and/or the environment around the vehicle [2][3][4].
Typically in such systems, there is a risk assessment mod-
ule [1][2] evaluating different forms of safety metrics, and
such information will be used for rule-based decision mak-
ing. However, these solutions failed to take into account the
state of the human driver in making the decision, arguably
the greatest variability affecting the safety of the vehicle.

In light of the above drawbacks, researchers in the com-
munity of human-in-the-loop control systems have argued
that more desirable DAS systems should take into account
the modeling of the human driver. For example, knowing
the head pose of the driver will give us a better differen-
tiation between intended lane-changing or unintended lane-
departure. In the literature, human monitoring systems have
been demonstrated to be effective in estimating the head
pose [14], correlating the driver’s gaze with road events [7],
or analyzing the steering wheel position [10] to gain a better
understanding of the driver’s attention.
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Based on the understanding of the driver state, there are
several ways to integrate it into the DAS decision making
process. The first kind is rule-based decision processes: when
the system detects the driver does not pay attention to the
road condition according to certain preset thresholds [7][14],
the DAS will give warning or intervene. The second kind
is based on solving an optimal control problem with a
prediction of driver input from a human model [13][9].
One of the drawbacks of these methods is that both rule-
based methods and optimal control methods are formulated
to accommodate only one type of DAS function. As a result,
these methods are referred to as single-mode DAS systems.

Single-mode DAS systems also have their own drawbacks,
chief of which is the fact that the systems do not easily
support the integration of two or more types of different
DAS functions. To overcome this drawback, we need a more
sophisticated solution to determine and balance different
types of feedbacks from both the measurements of the
vehicle and the driver, which is the main topic of this paper.

Specifically, we propose a novel solution to address
human-in-the-loop decision making in multi-mode DAS. The
new solution is based on the hidden mode stochastic hybrid
systems (Hidden Mode SHS) framework, where the internal
states of the driver can be modeled as some hidden modes,
such as attentive versus distracted, or keeping in lane versus
changing lane. The model has the ability to keep track of
the distribution of the hidden driver state. The decision is
determined based on both this distribution and the vehicle
state. Moreover, we can balance different functions better in
multi-mode DAS systems through solving optimal control
policies in Hidden Mode SHS.

The paper is organized as follows. In Section II, we first
introduce some motivating scenarios under which our multi-
mode DAS system will be studied. Then the basic Hidden
Mode SHS framework will be introduced in Section III.
Section IV describes our proposed modeling process based
on the Hidden Mode SHS framework. Section V shows
experimental results. Finally, Section VI discusses the con-
clusion and future work.

II. MOTIVATING SCENARIOS

Consider a scenario where a car, referred to as the ego
vehicle, is driven by a human driver in a single-direction
two-lane driveway. When there is no obstacle within a certain
region in the heading of the ego vehicle, the attentive driver
should keep the car in the center of the current lane. Here
we assume that the driver will turn on the turn signal so
the lane-keeping system will not be activated for intended



Fig. 1: A screen shot of the experimental platform on
Force Dynamic 401CR simulator. A video demonstration is
available on https://youtu.be/Ue4SZ9PRD5E.

lane change. When there is an obstacle blocking the heading
of the ego vehicle, which can be another car with a slower
speed, the attentive driver should switch lane and then pass
the obstacle from the other line. It is reasonable to assume
that the driver is attentive in general. However, she may be
distracted from time to time, e.g., by interacting with her cell
phone.

The proposed DAS supports two popular vehicle safety
functions: automatic braking and lane keeping. Each function
when activated will act in two modes, respectively, which
provide phased safety enhancement. More specifically, in one
mode, both functions merely alert the driver about unsafe
vehicle conditions and/or road conditions. In the other mode,
both functions directly intervene and briefly take control of
the vehicle until the unsafe conditions are mitigated.

Note that our multi-mode DAS models the combination
of human modes and vehicle modes. It compares favorably
to traditional DAS solutions, most of which focus only on
monitoring the vehicle state, namely, whether the vehicle
drifts towards the edge of a lane or whether it comes within
an unsafe distance from a road obstacle. These traditional
systems do not consider whether the driver state is attentive
or distracted, arguably a more difficult state to measure in a
human-in-the-loop system.

Our experiment shown in Section V is conducted using
real-time human driving data collected on a Force Dynamic
401CR simulation platform, shown in Figure 1. The specifi-
cations of the platform will be described in Section V.

III. PLANNING IN HIDDEN MODE STOCHASTIC HYBRID
SYSTEMS

We set up the basic hidden mode stochastic hybrid system
(Hidden Mode SHS) for our multi-mode driver assistance
system in this section.

Definition 1: A Hidden Mode SHS is described as a tuple
H= (Q,X , In,Z,Tx,Tq,Ω) where
• Q= {q(1),q(2), ...,q(Nq)} is a finite set of hidden discrete

states.
• X ⊆ Rn is a set of continuous states.

• In = Σ × U , where Σ = {σ (1),σ (2), ...,σ (Nσ )} repre-
sents a finite set of discrete control inputs affecting
the discrete transitions, and U represents the space of
continuous inputs affecting the transition of continuous
states.

• Z is the discrete observation space of discrete states.
• Tx : B(Rn)×Q2×X × In→ [0,1] is a Borel-measurable

stochastic kernel which assigns a probability measure
to xk+1 ∈X given qk,qk+1 ∈Q,xk ∈X ,σk ∈ Σ and uk ∈
U : Tx(dxk+1|qk+1,qk,dxk,σk,uk).

• Tq : Q2 ×X × In → [0,1] is a discrete transition ker-
nel assigning a probability distribution to qk+1 ∈
Q given qk ∈ Q,xk ∈ X ,σk ∈ Σ and uk ∈ U :
Tq(qk+1|qk,dxk,σk,uk).

• Ω : Z × Q × X × In → [0,1] is a observation ker-
nel assigning a probability measure to zk ∈ Z
given qk ∈ Q,xk ∈ X ,uk−1 ∈ U and σk−1 ∈ Σ :
Ω(zk|qk,dxk,σk−1,uk−1).

In Hidden Mode SHS, only the discrete states are hidden,
while the continuous states can be observed directly.

To simplify the Hidden Mode SHS for our multi-mode
driver safety system in this paper, we further make the
following assumptions:

1) The discrete transition Tq only depends on qk ∈Q and
σk ∈ Σ: Tq(qk+1|qk,dxk,σk,uk) = Tq(qk+1|qk,σk).

2) The continuous transition Tx only depends on qk+1 ∈
Q, xk ∈X and uk ∈ U : Tx(dxk+1|qk+1,qk,dxk,σk,uk) =
Tx(dxk+1|qk+1,dxk,uk).

3) The observation kernel Ω only depends on the hidden
state Ω(zk|qk,dxk,σk−1,uk−1) = Ωq(zk|qk), but not on
the control input.

Definition 2: A belief b(q,x) is a probability distribution
over Q×X with ∑q∈Q

∫
x∈X b(q,x)dx = 1. Note that we can

actually observe x at every time step. If x = x at step t, we
will have bt(qt ,x) = 0 for all x 6= x.

The belief changes in every time step. We denote the new
belief at time k+1 when executing control inputs (σk,uk) and
observing new measurement zk+1 as bσk,uk,zk+1

k+1 (qk+1,xk+1).
The belief can be updated recursively by:

bσk,uk,zk+1
k+1 (qk+1,xk+1) =ηΩ(zk+1|qk+1)Tx(xk+1|qk+1,xk)×

∑
qk∈Q

Tq(qk+1|qk,σk)bk(qk,xk), (1)

where

η = ∑
qk+1

(Ω(zk+1|qk+1)Tx(xk+1|qk+1,xk)×

∑
qk∈Q

Tq(qk+1|qk,σk)bk(qk,xk)

)

is a normalization factor.
Definition 3: A policy π(bk) ∈ Σ×U for a Hidden Mode

SHS is a map from a belief state to the set of controls.
A reward function is denoted as R(q,x,σ ,u) or Rσ ,u(q,x)∈

R, which is obtained by the system if it executes (σ ,u) when
the system is in state (q,x). To assess the quality of a given



policy π , we use a value function to represent the expected
cumulative reward starting from the belief state b0:

Jπ(b0) = E[
∞

∑
k=0

γ
kR(qk,xkσk,uk)], (2)

where 0 ≤ γ ≤ 1 is a discount factor and the controls
(σk,uk) = πk(bk). The optimal value function follows the
Bellman equation

J∗(b) = max
(σ ,u)∈Σ×U

{
〈Rσ ,u,b〉+

γ ∑
z

∫

x′
p(z,x′|σ ,u,b)J∗(bσ,u,z)dx′

}
, (3)

where the operator 〈·, ·〉 is defined as 〈 f (q,x),g(q,x)〉 =
∑q∈Q

∫
x∈X f (q,x)g(q,x)dx. If we can calculate the function

J∗(·), the policy will be

π
∗(b) = argmax

(σ ,u)∈Σ×U

{
〈Rσ ,u,b〉+

γ ∑
z

∫

x′
p(z,x′|σ ,u,b)J∗(bσ,u,z)dx′

}
. (4)

Finally, the goal of Hidden Mode SHS with the cumulative
reward (2) is to find the optimal polity π∗(·), or equivalently,
to find the optimal value function J∗(·).
IV. HIDDEN MODE STOCHASTIC HYBRID SYSTEMS FOR

MULTI-MODEL DRIVER ASSISTANCE

In this paper, we model the decision making process of
the proposed multi-model driver assistance system as Hidden
Mode SHS. We assume the driver could be attentive or
distracted. In practice, there are many ways to measure
whether the driver is distracted, such as detecting the gaze
of the driver or whether the driver’s hands are on the
steering wheel. Indeed, many commercial car safety systems
have implemented various versions of these straightforward
measures. In this paper, as we mainly focus on investigating
human-in-the-loop decision making processes, we adopt a
simple indicator of driver distraction by measuring whether
the driver is using her cell phone, which can be recorded in
our simulator in real time. However, we note that the Hidden
Mode SHS framework is general enough to interface with
other alternative measures regarding whether the driver is
distracted.

A. Lane-Keeping Scenario

In the first kind of road condition, when there is no
obstacle within certain distance in front of the ego vehicle,
the driver should keep the car in the middle of the lane, as
shown in Figure 2.

We use a linear system model to model the trajectory of
the car:{

xk+1 = A1xk +u+n1, for attentive driver;
xk+1 = A2xk +u+n2, for distracted driver,

(5)

where u is the augmented intervention to the vehicle, and xk
is the lateral drift with respect to the center of the lane and

x

0

Attentive Distracted 
xk+1 = A2xk + u + n2xk+1 = A1xk + u + n1

�1 = {Warning on, Warning o↵}

Fig. 2: Lane-keeping scenario.

its positive direction is toward the middle line. Throughout
this paper, ni denotes a Gaussian noise with zero mean
and variance Wi. There are two feedback systems. One is
a warning system that reminds the driver to be attentive, and
the other one is an augmented control input u. The value of
u is determined by the following rule:

{
u = 0, if executing controller C0;
u = A1x−A2x, if executing controller C1,

(6)

where the controller C0 will not intervene, and C1 will help
driving the car toward the middle of the lane.

In equation (6), the switching between the two controllers
C0 and C1 is determined by a controller selection scheme.
More specifically, the Hidden Mode SHS in the lane-keeping
scenario is defined as follows:
• Q1={qa=Attentive, qd = Distracted}, Q2= {q(0) = C0,

q(1) = C1}. Hidden state space Q=Q1×Q2.
• Continuous state x ∈ R is the lateral position of the

car vertical to the direction of the lane, where x = 0
corresponds to the middle of the lane. Its positive
direction is toward the middle line.

• Σ1 = {σon = Warning on, σo f f = Warning off} and Σ2
= {σ (0) = Execute C0, σ (1) = Execute C1}. The set of
discrete controls is Σ = Σ1×Σ2

• Z={z1=The driver is not distracted by the phone,
z2=The phone has rang and the driver might be reading
the phone, z3=The driver is texting on the phone}.

• Tq(q′|q,σ) = Tq1(q1|q1,σ1)Tq2(q
′
2|q2,σ2) where

Tq1(q
′
1 = q1|q1,σ1 = σo f f ) = 0.95, Tq1(q

′
1 = qa|q1 =

qa,σ1) = 0.95, Tq1(q
′
1 = qa|q1 = qd ,σ1 = σon) = 0.8

and Tq2(q
′
2 = σ2|q2,σ2) = 1.

• The continuous transition Tx follows (5) and (6).
• the observation function Ω(z|q) measure the accuracy

of our measurement, which can be obtained from the
experimental data.

• The reward function R(q,x,σ) = 50 − x2 − 3I(σ1 =
σon)−3I(σ2 =σ (1)), where I(·) is the identity function.

Tq(q′|q,σ) is defined empirically, given the fact that the
driver will be more likely to be attentive if we give warning.
The reward function R(q,x,σ) give a high reward to x close
to the center of the lane and penalize the warning to the
driver and the intervention to the vehicle. A higher penalty
results to less intervention and warning. Ω(z|q) is estimated



by counting the frequency of the corresponding event, by
assuming the driver is always distracted when she is texting
and is attentive when she is not.

B. Collision Avoidance Scenario

In the second kind of road condition, there is an obstacle
within a certain distance to the ego vehicle, as shown in
Figure 3. When a driver observes there is a car in front of
her, she will first go straight and approach the front car, and
then switch to the other lane with constant lateral velocity:




xk+1 = xk +n3, if the driver is attentive and keeps
the vehicle in the current lane;

xk+1 = xk +aatt +n5, if the driver is attentive and is
switching lane;

xk+1 = xk +n6, if the driver is distracted and keeps
the vehicle in the current lane;

xk+1 = xk +adis +n8, if the driver is distracted and goes
straight to approach the front car,

(7)

where aatt and adis are the lateral velocities per sampling time
in attentive mode and distracted mode. We also consider the
distance between the ego car and the front car, d, in our
Hidden Mode SHS:{

dk+1 = dk + catt + v+n4, for attentive driver;
dk+1 = dk + cdis + v+n7, for distracted driver,

(8)

where catt and cdis are the relative velocities per sampling
time in attentive mode and distracted mode respectively. v
is the augment control from the automatic braking system.
Assume when the automatic braking is active, it applies a
constant decrease of velocity until the car stop. The value of
v is determined by the following rule:

{
v = 0, if executing controller C2;
v = vbrake, if executing controller C3,

(9)

where the controller C2 will not activate the automatic
braking while the controller C3 will.

More specifically, the Hidden Mode SHS in the collision
avoidance scenario is as follows:
• Q1={qa=Attentive, qd = Distracted}, Q2 = {qk =

Keeping in lane, qs=Switching lane}, Q3 = {qnb=No
automatic braking, qb= Applying automatic braking}.
Hidden state space Q=Q1×Q2×Q3.

• Continuous state [x,d] ∈ R2.
• Σ1 = {σon = Warning on, σo f f = Warning off} and Σ2

= {σ (0) = Execute C2, σ (1) = Execute C3}. The set of
discrete controls is Σ = Σ1×Σ2

• Z={z1=The driver is not distracted by the phone,
z2=The phone has rang and the driver might be reading
the phone, z3=The driver is texting on the phone}.

• Similar to the lane-keeping scenario, the discrete tran-
sition Tq(q′|q,σ) is defined empirically.

• The continuous transition Tx follows Equations (7), (8)
and (9).

x

d
0

Attentive & 
 Keeping in lane 

� = {Warning on, Warning o↵}

Distracted & 
keeping in lane 

Attentive & 
Switching lane 

Distracted & 
Switching lane 

(
xk+1 = xk + n3

dk+1 = dk + catt + v + n4

(
xk+1 = xk + aatt + n5

dk+1 = dk + catt + v + n4

(
xk+1 = xk + n6

dk+1 = dk + cdis + v + n7

(
xk+1 = xk + adis + n8

dk+1 = dk + cdis + v + n7

Fig. 3: Collision avoidance scenario.

• The observation function Ω(z|q) measure the accuracy
of our measurement, which can be obtained from the
experimental data.

• The reward function R(q,x,d,σ)=




15+d−0.02d2I(σ1 = σon)−0.02d2I(σ2 = σ (1)),

if q1 = Attentive;
d−0.01d2I(σ1 = σon)−0.01d2I(σ2 = σ (1)),

if q1 = Distracted.

The idea behind the reward function is that we give the
attentive driver and larger d a higher reward. We also
penalize the warning and intervention according to the
distance. The penalization is more in attentive mode (-
0.02) than in distracted mode (-0.01). The penalties are
parameters that affect the sensitiveness of the warning
and the intervention.

Under these two Hidden Mode SHS models, we have to
first estimate the parameters in each mode, and then find the
optimal policy that maximizes the accumulative reward.

C. Driver Model Learning

In this subsection, we establish a process to estimate
the parameters in both the lane-keeping Hidden Mode SHS
model and the collision avoidance Hidden Mode SHS model.

In the lane-keeping scenario (5), to estimate parameters A1
and A2, we collect all the trajectories of an attentive driver
driving in lane-keeping scenario and use the method of least
squares to find A1 and A2. The variances W1 and W2 are
approximated by the sample variances, respectively.

In the collision avoidance scenario (7) and (8), we collect
the trajectories of an attentive or distracted driver when
there is an obstacle within a certain distance in front of



the ego vehicle. We can use least squares to estimate catt
and cdis and use expectation-maximization (EM) to estimate
the others. catt and cdis can be estimate by least squares
because the dynamics of dt in (8) are the same in a single
mode. After estimating catt and cdis, we can estimate the
variances W4 of n4 and W7 of n7 in (8) by sample variances
in both attentive and distracted modes. On the other hand,
we use EM algorithm to estimate the remaining parameters
because we do not have annotations on when the driver starts
to switch lane when she see the obstacle. The remaining
parameters include aatt , adis, W3, W5, W6, and W8 in (7),
and the probabilities of switching from ”Keeping in lane” to
”Switching lane” in both attentive mode and distracted mode
patt and pdis.

q0 qn

x0 xn

. . . . . .

. . . . . .

qt qt+1

xt+1xt

(
xt+1 ⇠ N (xt, W3) if qt+1=‘Keeping in lane’

xt+1 ⇠ N (xt + aatt, W5) if qt+1=‘Switching lane’

patt := P (qt+1 = ‘Switching lane’|qt = ‘Keeping in lane’)

Fig. 4: Graphical model for parameters learning.

We now show the details of the parameters learning from
data in attentive mode in collision avoidance scenario. The
parameters in the distracted mode: pdis, adis, W6 and W8 can
be estimated by EM in a similar way.

Figure 4 shows the graphical model for
a driver who is switching lane, where qt ∈
{Keeping in lane, Switching lane} is the hidden mode
and xt is the position of the vehicle. Let t = K be the
time step that the vehicle is changing from “Keeing in
lane” to “Switching lane”. From time 0 to time K, the
vehicle is keeping in lane and approach the front obstacle.
It starts to switch lane from time (K + 1) to time n, where
n is the time that the ego vehicle has been to the other
lane. patt is defined as the probabilities of switching from
”Keeping in lane” to ”Switching lane” in attentive mode, i.e.
patt := P(qt+1 = “Switching lane”|qt = “Keeping in lane”).
Let θ = (patt ,aatt ,W3,W5) be the parameters we are
estimating in attentive collision avoidance mode. Given the
model, we can write the complete log-likelihood as:

L(x0:n,q0:n) = K log(1− patt)+ log patt+

1
2

K

∑
t=1

(
(xt − xt−1)

2

W3
− log(2π)− log(W3)

)
+

1
2

n

∑
t=K+1

(
(xt − xt−1−aatt)

2

W5
− log(2π)− log(W5)

)
.

We use EM algorithm to estimate the parameters.
E-step:

Ki =
n−1

∑
k=1

k Pr(qk+1 = “Switching lane” ∧

qk = “Keeping in lane”|θi−1,x0:n),

where

Pr(qk+1 = “Switching lane”∧
qk = “Keeping in lane”|θi−1,x0:n)

∝(1− patt)
k patt

k

∏
i=1

1√
2πW3

exp
(

1
2
(xi− xi−1)

2

W3

)
×

n

∏
i=k+1

1√
2πW5

exp
(

1
2
(xt − xt−1−aatt)

2

W5

)
.

M-step:

patt =
K
n

aatt =
1

n−K

n

∑
i=Ki+1

(xi− xi−1)

W3 =
1
K

Ki

∑
i=1

(xi− xi−1)
2

W5 =
1

n−K

n

∑
i=Ki+1

(xi− xi−1−aatt)
2.

D. Driver Assistant System Decision

After learning the model of Hidden Mode SHS, we would
like to solve the optimal control problem in order to get the
optimal policy π(·) ∈ Σ1×Σ2 in both lane-keeping scenario
and collision avoidance scenario. Solving the exact optimal
policy is very challenging and there is no efficient algorithm
to solving the exact solution. We use the algorithm described
in [8] to efficiently solve an approximate solution. We briefly
describe the method as follows.

Recall the goal of the optimal policy is to find the optimal
value function (3) or the optimal control policy (4). In order
to do so, we can use value iteration to find Jm for m > 0 by

J∗m+1(b) = max
(σ ,u)∈Σ×U

{
〈Rσ ,u,b〉+

γ ∑
z

∫

x′
p(z,x′|σ ,u,b)J∗m(b

σ,u,z)dx′
}
. (10)

It has been shown that Jm will converge to optimal value
function J∗ [11] and can be expressed as

J∗m(b) = max
{α i

m}i
〈α i

m,b〉 (11)

for an appropriate set of α-functions α i
m :Q×X →R. Each

α-function represents the state value function corresponds
to a plan of control policy. The expression (11) means that
we are choosing a policy that maximize the value function
at the belief b. For m = 1, the optimal value function is the
maximum of the instant reward:

J∗1 (b) = max
(σ ,u)
〈R(σ ,u),b〉, (12)

so the first step α-functions {α j
1} j are {R(σ ,u)}(σ ,u) by

comparing (12) and (11). Instead of updating J∗m, we update
the set of α-functions {α j

m} j iteratively because once we get
{α j

m} j, J∗m can be solved by (11).



The updating process, however, is very challenging be-
cause we have to maximize the non-convex value function
over continuous input space. In [8], we only consider a dis-
crete input space and approximates α-functions as quadratic
functions in order to tackle the challenge. In the proposed
Hidden Mode SHS, we use a controller selection scheme to
introduce the continuous input u, so that we do not have
to consider continuous inputs directly. Therefore, a new α-
function can be calculated by:

αm+1(q,x) =Rσ (q,x)+ γ ∑
z∈Z

∑
q′∈Q

Ω(zq|q′)

Tq(q′|q,σ)Ex′∼Tx(x′|q′,x)[α
∗
m(q
′,x′)], (13)

where

α
∗
m = argmax

{α i
m}i

∫

x′
p(z,x′|σ ,u,b)〈α i

m,b
σ,u,z〉dx′. (14)

Once we get the set of α-functions, we can determine J∗

as well as π∗ by (4). The algorithm will solve optimal
policies of Hidden Mode SHS for both the lane-keeping
scenario, π∗1 (·), and the collision avoidance scenario, π∗2 (·),
respectively.

Once the optimal policies are obtained, the decision pro-
cess is carried out as follows. In every time step t, the system
first detects whether there is an obstacle within a certain
distance in front of the ego vehicle by the radar on the ego
vehicle in order to determine which scenario the vehicle is in.
If in the previous and current time steps the vehicle is in the
lane-keeping scenario, the observation zt and the current state
xt will be used to update the current belief based bt(qt ,xt)
by (1) for that scenario. Similarly, if in the previous and
current time steps the vehicle is in the collision avoidance
scenario, the observation zt and the current state (xt ,dt) will
be used to update the current belief based bt(qt ,xt ,dt).

Note that the number of discrete states in the lane-keeping
scenario are different from the number of discrete states
in the collision avoidance scenario. Therefore, when the
scenario in the previous time step is not the same as the
scenario in the current time step, we cannot use the belief
update in (1) directly. To solve this problem, if the scenario
in the previous time step is different from the current one,
we will carry the belief of the the previous time step to the
current time step by the following way:
• If it is transiting from collision avoidance scenario to

lane-keeping scenario,

bt(qt = Attentive,xt) = ∑
qt−1 is attentive

bt−1(qt−1,xt−1,dt−1),

bt(qt = Distracted,xt) = ∑
qt−1 is distracted

bt−1(qt−1,xt−1,dt−1).

• Similarly, if it is transiting from collision avoidance
scenario to lane-keeping scenario,

bt(qt = Attentive,xt ,dt) = ∑
qt−1 is attentive

bt−1(qt−1,xt−1),

bt(qt = Distracted,xt ,dt) = ∑
qt−1 is distracted

bt−1(qt−1,xt−1).

Once we determine the belief, the optimal control decision is
made according to the optimal policy of the current scenario,
i.e. σ = π∗1 (bt) or σ = π∗2 (bt).

V. EXPERIMENT

Our experiment is conducted in a Force Dynamic 401CR
simulator, as shown in Figure 1. The simulator provides
four-axis motion: pitch, roll, yaw, and heave. The platform
is capable of providing continuous 360-degree rotation at
1:1 rotation ratio. The maximal velocity of the platform is
120 degrees per second (dps) in yaw, and 60 dps in pitch
and roll, respectively. The controls of the simulator include
force feedback steering, brake, paddle shifters, and throttle.
Our system has been integrated with PreScan software,
which provides vehicle dynamics and customizable driving
environments [12].

The testbed is designed to recreate the feeling of moving
in a vehicle and is equipped with monitoring devices to
observe the human. The data is collected following the
experimental design in [5] and [6]. We collect data from
human drivers driving on four custom designed courses as
shown in Figure 7. These courses consist of two-lane roads
with turns of various curvatures, with different levels of
traffic that moves independently with respect to the ego
vehicle with no opposing traffic. On these courses, the driver
faces a number of obstacles, some of which are stationary
(e.g. cardboard boxesn on the road) and some of which are
moving (e.g. balls rolling in the road and other vehicles). The
driver is asked to drive as they would normally at about 50
mph. We use the data from the first three courses to learning
our Hidden Mode SHS and the data from the fourth course
for testing. The final test course consists of obstacles and
road patterns that had not been experienced in the training
set, to verify the flexibility of the model.

To simulate distraction, the driver is given an android
phone with a custom application to randomly ping the driver
to respond to a text message within 30-60 seconds after the
driver responds to the previous text.

The data is collected every 0.025 second. Some key data
include the position and velocity of the vehicle, the obstacle
position and speed relative to the ego vehicle, and the state
of the cell phone. We use the data from the three training
courses to estimate the parameters of our parametric models
of lane-keeping scenario and collision avoidance scenario
described in Section IV-C. The total length of the training
data is about 30 minutes.

After learning the model, we solve the optimal control
policies for the two Hidden Mode SHS. We then run the con-
trol policies on the data from the test course. The duration of
the test data is 15 minutes. Figure 5 shows the experimental
results from 0 second to 180 seconds on the test course. We
also compare our control policy with a rule-based policy.
The rule-based policy merely monitors the vehicle state, and
intervenes if a certain unsafe condition is satisfied. More
specifically, we let the rule-based driver assistance system
start to intervene when |xt |> xunsa f e in lane-keeping scenario
or dt < 20 meters in collision avoidance scenario. We choose
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Fig. 5: Experimental result of our control decisions. x(t) shows the lateral drift of the ego vehicle where blue means the
driver is driving without being distracted by the cell phone, yellow means the cell phone rings and the driver may reading
the phone message, and red means the driver is texting on the cell phone. “Obstacle” indicates the apperance of obstacles in
time, where darker colors mean obstacles are closer. “Warning” and “Intervention” decisions are determined by our control
policy. “Rule-Based” shows the decisions determined by the rule-based policy in comparison.
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Fig. 6: The state of the vehicle and the driver from the view
of the course. The use of color annotation is the same as
Figure 5.
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Fig. 7: Four driving courses. The first three courses are for
training and the last course is for testing.

the threshold xunsa f e = 3.6/2−0.1 = 1.7 meters because the
width of a single lane is 3.6 meters. Figure 6 shows the
vehicle state and the driver from the view of the course.

From Figure 5, we can see that in lane-keeping scenario,
our policy tends not to intervene if the probability of attentive
driver is high, but will first give warning when the driver is
distracted. The intervention will come in only if the vehicle
drift off a certain distance from the middle of the lane, as
shown in Figure 8a. The rule-based policy, however, just
determines whether to intervene based on the vehicle state,
even though the driver is actually attentive. Our policy is
more desirable because if the driver is still attentive, an
intervention may negatively interfere with the control of the

driver. Therefore, the DAS should minimize the occurrence
of intervention.

In collision avoidance scenario, the advantage of our
optimal policy is illustrated in Figure 8b. From around 82.5
seconds to 84 seconds, since the driver is texting on the
phone, our belief on distracted driver is high. The warning
signal will turn on first, given that the distance to the front
obstacle is still large at that time. One second later, our
optimal policy intervenes and applies brakes since the driver
is still texting on the cell phone and the distance is close to
the front obstacle. Our policy gradually increases the level
of intervention according to both the vehicle state and the
belief of the driver state, while the rule-based policy only
intervenes according to the vehicle state.

One may argue that a rule can be added to turn on the
warning when the driver is texting. However, such a hard
decision rule does not combine the information from the
measurement and the vehicle state. Note that our belief
update (1) depends on both the observation and the vehicle
state so we can have a better estimation of the driver state.
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Fig. 8: Two examples of engaging the proposed multi-mode
driver assistance system.

Finally, we compare the time corresponding to different
modes in Table I to show how our policy improves the
human-in-the-loop decision making in DAS. We can see that
when the vehicle is safe and the driver is not distracted
by the cell phone, i.e. z1 ∧ (|xt | < xunsa f e ∨ dt > 20), both
our policy and the rule-based policy will not intervene.
When the vehicle is unsafe and the driver is texting, i.e.
z3∧ (|xt |> xunsa f e∨dt < 20), our policy will either warn the
driver or intervene directly in order to maintain safety, which
is the same as the rule-based policy. Therefore, the decisions



TABLE I: Total amount of time corresponding to the two scenarios. The highlighted columns shows the main differences
between our policy and rule-based policy.

Lane-keeping scenario Collision avoidance scenario
z1 =Not distracted z2=Phone rang z3=Driver texting z1=Not distracted z2=Phone rang z3=Driver texting

|xt |< xunsa f e |xt |> xunsa f e |xt |< xunsa f e |xt |> xunsa f e |xt |< xunsa f e |xt |> xunsa f e dt > 20 dt < 20 dt > 20 dt < 20 dt > 20 dt < 20
Total 465.5s 33.1s 111.025s 7.7s 87.225s 8.675s 53.8s 13.05s 8.675s 0.5s 10.075s 0.6s

Warning 0s 0s 35.7s 7.6s 36.125s 8.675s 0.025s 0.15s 1.55s 0.3s 1.35s 0.575s
Intervention 0s 0.025s 0s 0s 0s 0s 0s 0.9s 0s 0.5s 0s 0.6s
Rule-based 0s 33.1s 0s 7.7s 0s 8.675s 0s 13.05s 0s 0.5s 0s 0.6s

of our policy and rule-based policy are the same in the safest
case and the most unsafe case.

The main difference between our policy and the rule-based
policy is that although the vehicle is still in the safe region,
i.e. |xt | < xunsa f e ∨ dt > 20, our policy will sometimes turn
on the warning signal when z = z2 or z = z3. It is because
our Hidden Mode SHS can infer the belief of the driver state
from the observation and the vehicle state. When the belief
of the driver being attentive is low, our method will first
warning to the driver, which will make the driver more likely
to become attentive again. By considering the driver state,
this phased interference not only decreases the possibility of
intervention, but also prevents the unsafe state early.

From Figure 5 and Table I, we can also find that in the
collision avoidance scenario, when the driver is not distracted
by the cell phone, our policy allows the ego vehicle to be
closer to the obstacles without triggering the warning or
the intervention. This is because we penalize intervention
more in attentive mode than in distracted mode in the
reward function. It follows the idea that there should be less
intervention to an attentive driver than a distracted driver.

VI. CONCLUSION AND FUTURE WORK

We have proposed a novel framework for improving
human-in-the-loop decision making for multi-mode driver
assistance systems. We use Hidden Mode SHS to model two
popular scenarios: the lane-keeping scenario and the collision
avoidance scenario where the automatic braking function
may be activated. We have described how we can integrate
the human model into the Hidden Mode SHS and combine
decision making processes for the two scenarios. Through
experiments, we have shown that our policy can provide
phased safety enhancement based on both the distribution
of the driver state and the vehicle state.

For the future work, we would like to enhance the driver
observation model, such as the head pose using a Kinect
sensor. A higher-granularity driver observation model is more
likely to differentiate the human intent in multi-mode driving
scenarios, such as the lane-changing example and the lane-
departure example considered in this paper. Moreover, we
note that interventions may change the behavior of the driver.
Therefore, human-in-the-loop systems should address the
problem of transitioning control between the driver and an
autonomous controller.
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