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Abstract— In many practical applications of system identi-
fication, it is not feasible to measure both the inputs applied
to the system as well as the output. In such situations, it is
desirable to estimate both the inputs and the dynamics of the
system simultaneously; this is known as the blind identification
problem. In this paper, we provide a novel extension of subspace
methods to the blind identification of multiple-input multiple-
output linear systems. We assume that our inputs lie in a
known subspace, and we are able to formulate the identification
problem as rank constrained optimization, which admits a
convex relaxation. We show the efficacy of this formulation
with a numerical example.

I. INTRODUCTION

Consider a discrete-time multi-input multi-output (MIMO)
state space model

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

with the state x(k) ∈ Rn, input u(k) ∈ Rm and output
y(k) ∈ Rp. Estimation of this type of model is one of
the most common tasks in system identification and a very
well studied problem, see for instance [1], [2]. The common
setting is that {(y(k), u(k))}Nk=1 is given and the matrices A,
B, C, and D are found by minimizing the prediction error
or by using linear algebra transformations and factorizations
with structured Hankel matrices constructed from the input-
output data. The former family of methods is referred to as
prediction error methods (PEM, see for instance [1]) and the
later subspace identification (SID, [3]–[9]) methods.

In this paper we study the more complicated problem of
estimating a discrete-time MIMO state-space model from
solely outputs {y(k)}Nk=1. This is an ill-posed problem and it
is easy to see that under no further assumptions, it would be
impossible to uniquely determine A, B, C and D. To form
a well posed problem, additional assumptions on the input
or the model are needed. We will work under the assumption
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that each of the components of the input vector lives in some
known subspace. This would be true if, for example, the
input:
• changes only at a set of discrete times due to a discrete

controller,
• is a linear combination of known possible signals, or
• is band-limited and therefore well represented by the

projection on the first discrete Fourier transform basis
vectors.

It should be noticed that this assumption is still not enough
to uniquely determine the inputs or the A, B, C and D
matrices. In particular, we will not be able to decide the
inputs or the matrix B more than up to a non-singular
ambiguity matrix. It should be stressed that this is not a
limitation of the method that we propose but an inherent
limitation of the system identification problem since the
sought quantities always appear as products. To uniquely
determine the inputs and the matrix B, further knowledge
is needed.

II. BACKGROUND

System identification refers to problems in which some
unknowns about a system are recovered, including system
parameters and system inputs, from system observations.
It is a research area whose tools are applicable in a wide
variatey of domains. In the remainder of this section, we
discuss existing work in the areas of subspace identification
and blind identification.

A. Subspace Identification

The two main thrusts within the system identification
literature for identification of state space models are pre-
diction error methods and subspace identification methods.
Prediction error methods focus on finding unknowns by
optimizing a cost function of given observations. The draw
back to such methods is that if the cost function is non-
convex, the optimization problem gets stuck in local minima.
In an effort to avoid such issues, subspace identification
methods came about.

Subspace methods find approximate models as opposed
to models that are optimal with respect to some cost [10].
They further allow for exploitation of underlying structure
that may exist in a particular system. In particular, subspace
identification methods aim to derive a low rank matrix from
which key subspaces are identified [10]. A recent advance in
subspace identification is replacing the traditional singular–
value decomposition (SVD) technique for obtaining the low
rank approximation with the nuclear norm [11]–[15].



A new subspace identification algorithm named Nuclear
Norm Subspace IDentification (N2SID)—and on which we
build our blind subspace identification method—exploits
the key structural properties in the data equation used by
system identification methods [10]. In particular, the core
structural properties are the low rank and the the block-
Toeplitz structure of the unknown model dependent matrices
in the data equation [10]. The key attribute of this approach
is that both of these structural properties are invoked in the
first step of the algorithm thereby addressing an issue that
arises in subspace identification methods in general. Namely,
in typical subspace methods the low rank approximation is
not invoked at the first step which, in turn, means that the low
rank decomposition does not operate on the raw input-output
data.

B. Blind Identification

Extending beyond identification of a system model, we can
also consider simultaneously identifying the system model
and some unknown inputs. This type of problem is typically
referred to as blind system identification (BSI). BSI is a
tool with a broad application area; it has been applied in
fields such as data communications, speech recognition and
seismic signal processing, see for instance [16]. For the
type of modeling problems that BSI has been applied to it
is common that the input is difficult, costly or impossible
to measure. In, for example, exploration seismology, the
physical properties of the earth are explored by studying
the response of an excitation (often a charge of dynamite).
The excitation is often difficult to measure and the modeling
problem is therefore a BSI problem, see e.g. [17].

Many methods have been proposed to solve the BSI
problem throughout the years. We give a short overview
here but refer the interested reader to [16], [18], for a more
extensive and complete review.

The maximum likelihood (ML) approach to BSI aims at
finding the ML estimate of the model and input. The resulting
non-convex optimization problem is often treated by alter-
nating between optimizing with respect to the input and the
system model [19]. The channel subspace (CS) methods to
BSI indirectly determine the sought finite impulse response
(FIR) model by estimating the nullspace of the Sylvester
matrix associated with the FIR model to be identified. This
is done by an eigen–decomposition of a matrix derived from
the outputs [20]. The methods proposed in [21] and [22]
work under the assumption that two or more output series are
available and that these were generated by the same input.
The methods proposed in [23], [24] assume that the input
consists of independent and identically distributed random
variables and considers the autocorrelation of the output to
decide a FIR model and the unknown input.

A number of approaches consider the blind identification
problem of Hammerstein systems under the assumption that
the input is piecewise constant [25]–[30]. In our recent
work [31], we assume that the input belongs to some known
subspace. A piecewise constant signal can be represented
using the subspace assumption given here. However, we note

that we are not restricted to piecewise constant signals, and
our approach is significantly different. We also consider the
blind identification of autoregressive models with exogenous
inputs (ARX models) while the blind identification problem
of Hammerstein systems is considered in [25]–[30]. The
related problem of blind deconvolution has been studied
in a number of contributions. In particular, see the very
interesting paper [32] for a solution where the signals to
be recovered are assumed to be in some known subspaces.
However, only FIR models are considered.

In this paper, we address the problem of BSI by building
upon our previous work [31] and the N2SID [10] approach
that allows us to exploit key structural properties in the data
equation. We call our algorithm Nuclear Norm minimization
for Blind Subspace IDentification (N2BSID).

III. PROBLEM STATEMENT AND MATHEMATICAL
FORMULATION (N2BSID)

Given the sequence of outputs {y(k)}Nk=1 ∈ Rp, we desire
to find an estimate for A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n,
D ∈ Rp×m and u(k) ∈ Rm, k = 1, . . . , N, such that

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
(1)

To make the problem well posed, we seek a length N time
history of m-dimensional inputs that lies in a given known
subspace of Rm×N .

Consider the state space model given by (1) and assume
that, for any given time k, the input can be decomposed as

u(k) = d(k)z (2)

where z ∈ Rl, u(k) ∈ Rm, and d(k) ∈ Rm×l is a known
matrix (refered to as a dictionary). The assumed constraint
expressed in (2) restricts the input to a subspace as in [31].
For a problem instance with a sequence of N samples (k =
1, · · · , N ), it is taken that l ≤ mN (the number of unknowns
is reduced by the assumption of (2)) and l ≤ pN (more
measurements are available than unknowns).

Let s > n be an integer. Define

OT
s =

[
CTATCT · · ·AT s−1

CT
]
, (3)

X =
[
x(1) x(2) · · · x(N − s+ 1)

]
, (4)

and the s× (N − s+ 1) block-Hankel matrices

Us =


u(1) u(2) · · · u(N − s+ 1)

u(2) u(3)
...

...
. . .

u(s) u(s+ 1) · · · u(N)

 , (5)

Ys =


y(1) y(2) · · · y(N − s+ 1)

y(2) y(3)
...

...
. . .

y(s) y(s+ 1) · · · y(N)

 , (6)

where entries u(i) ∈ Rm×1 are column vectors correspond-
ing to system inputs and entries y(i) ∈ Rp×1 are column



vectors corresponding to system outputs. Further define the
s× s lower-triangular block-Toeplitz matrix

Ts =


D 0 · · · 0

CB D
. . .

...
...

. . . . . . 0
CAs−2B · · · CB D

 (7)

Using the above defined notation, we rewrite (1) as

Ys = OsX + TsUs. (8)

which is known as the data equation. For simplicity, we
introduce the notation for Ts given by

Ts =


H1 0 · · · 0

H2 H1
. . .

...
...

. . . . . . 0
Hs · · · H2 H1


where H1 = D, H2 = CB, etc. With this notation, we write

TsUs =


H1u(1) ··· H1u(N−s+1)

H2u(1)+H1u(2)
...

...
. . .

Hsu(1)+···+H1u(s) ··· Hsu(N−s+1)+···+H1u(N)


(9)

By the data equation (given in (8)), all block entries of
TsUs will have the same dimensions as the block entries of
Ys, which are p×1 column vectors. For any column vector v,
v = vec(v) = vec(vT ), which can be seen readily from the
definition of vectorization. Therefore, every entry Hiu(j) =

Hid(j)z in TsUs will be equal to vec
(
(Hid(j)z)

T
)

=

vec
(
zT d(j)THT

i

)
. Using the identity

vec(XY Z) = (ZT ⊗X) vec(Y ) (10)

where ⊗ represents the Kronecker product, we can now write

vec
(
zT d(j)THT

i

)
=
(
Hi ⊗ zT

)
vec
(
d(j)T

)
(11)

which implies that we can express TsUs as

TsUs =


H1 ⊗ zT 0 · · · 0
H2 ⊗ zT H1 ⊗ zT 0

...
. . .

...
Hs ⊗ zT Hs−1 ⊗ zT · · · H1 ⊗ zT

×


vec(d(1)T ) vec(d(2)T ) ··· vec(d(N−s+1)T )
vec(d(2)T ) vec(d(3)T ) vec(d(N−s+2)T )

...
. . .

...
vec(d(s)T ) vec(d(s+1)T ) vec(d(N)T )

 (12)

We will rename the right-hand side of the equation such that

TsUs = H(z)Ds. (13)

Like Ts, H(z) is an s × s lower-triangular block Toeplitz
matrix, and we denote the block entries of H(z) by

H(z) =


H1 0 · · · 0
H2 H1 0

...
. . .

...
Hs Hs−1 H1



We seek to find a minimal representation of the system which
can faithfully explain the observed output. Therefore, as in
[10], we seek to minimize the rank of OsXs, which, by
the data equation (given in (8)), is equal to Ys − TsUs. We
express this goal via the following optimization problem

min
H(z)∈Ts

rank (Ys −H(z)Ds) (14)

where Ts denotes the set of s × s lower-triangular block
Toeplitz matrices. Rank minimization is known to be non-
convex, so we use an accepted convex relaxation and replace
the rank with the nuclear norm, denoted ‖ · ‖∗. The relaxed
problem is given by

min
H(z)∈Ts

‖Ys −H(z)Ds‖∗ (15)

The optimization problem formulated in (15) is convex.
There is, however, a constraint on our decision variable

H(z). We must retain the possibility that H(z) has the form
shown in (12), specifically the fact that each block entry is
given by the Kronecker product of a p×m matrix (Hi) and
a 1 × l row vector (zT ). In the case where m = 1 (single
input), we note that Hi ⊗ zT = Hiz

T . Therefore, we can
express this requirement as



H1 ⊗ zT
H2 ⊗ zT

...
Hs ⊗ zT

 =


H1

H2

...
Hs

 zT
 is rank 1. (16)

When the rank is 1, we can recover zT via an SVD and
then recover the input via (2). Directly enforcing this rank
constraint would again lead to a non-convex optimization
problem, so we again apply the convex relaxation of using
the nuclear norm to enforce that this matrix be low rank. The
full optimization problem then becomes

min
H(z)∈Ts

‖Ys −H(z)Ds‖∗ + λ

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣


H1

H2

...
Hs


∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
∗

(17)

The optimization problem expressed in (17) seeks a balance
between minimizing the two nuclear norms. Therefore, sim-
ilarly to [10], we can express the full range of potential
optimal solutions by varying the weighting coefficient λ.

In the general case of m inputs, we still need to enforce
that we can recover zT . From the structure of H(z), it is
possible to derive a matrix H∗(z) such that

H∗(z) =


vec
(
HT

1

)
vec
(
HT

2

)
...

vec
(
HT

s

)
 zT (18)

If H∗(z) has rank 1, then we can recover zT from an SVD.
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ŷ1(Hi)
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Fig. 1. Time history of true output y vs. noised output ŷ for High and
Low SNR

Therefore, the full MIMO problem formulation for N2BSID
is given by the following convex optimization problem:

min
H(z)∈Ts

‖Ys −H(z)Ds‖∗ + λ‖H∗(z)‖∗ (19)

IV. NUMERICAL EXAMPLE

Consider a linear time-invariant (LTI) system represented
by (1) whose system matrices are given by

A =

[
−0.4 0.2
0.1 −0.3

]
, B =

[
3 2 0.5
2 1 6

]
,

C =

[
1 0
0 1

]
, D =

[
0 0 0
0 0 0

]
.

(20)

We generate output data from this system using the initial
state x0 = [0 0]T . The pre-image of the input, z, is sampled
from the standard normal distribution, and the dictionary
matrix d(1 : N) (the vertical concatenation of all d(i) as
in (2)) is chosen such that the first two inputs u1, u2 hold
constant values over 5-step intervals and the third input u3
repeats one half period of a sine wave every 5-step inteval
(these can be seen along with their estimates from N2BSID
in Figure 3). At every time step k, noise is drawn from a
uniform distribution between −ε/2 and ε/2 and added to
the output vector y(k) to generate the noisy output ŷ(k)
which will be used as input to the N2BSID algorithm (Figure
1 shows examples of both y and ŷ). The algorithm was
implemented and tested in MATLAB, making use of the
CVX package for specifying and solving convex programs
[33]–[35].

In order to characterize the degree to which the output
signal is affected by this noise, we analyze the signal-to-
noise ratio (SNR) of the data. For this application, the SNR,
given in decibels, is defined as

SNR = 10 log10

(
Psignal

Pnoise

)
(21)

where Psignal is equal to the sum of the squares of each
sample of the true output signal, and Pnoise is the sum of
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Fig. 2. Time history of true output y vs. simulated output ysim generated
using N2BSID recovered input and system matrices for High and Low SNR

the squares of each sample of the noise that has been added
to that output signal.

In order to describe how well a noised signal φ̂ (or a
simulated signal based on identified system matrices φsim)
tracks the original φ, we analyze the root mean square (RMS)
error, defined as

εRMS(φ̂, φ) =

√∑N
k=1(φ̂(k)− φ(k))2

N
(22)

The magnitude of this error will depend on the magnitude of
the true signal, so we normalize εRMS by the RMS magnitude
of the true signal, given by

µRMS(φ) =

√∑N
k=1 φ(k)

2

N
(23)

Therefore, the normalized RMS error is given by

ε∗(φ̂, φ) =
εRMS(φ̂, φ)

µRMS(φ)
(24)

The data shown in Figures 1, 2, and 3 correspond to
performing N2BSID on the system described by (20) under
two conditions:

High SNR (Hi):
ε = 2, which leads to SNRy1

= 13.9dB and
SNRy2

= 16.1dB.
Low SNR (Lo):

ε = 5, which leads to SNRy1 = 6.0dB and
SNRy2

= 8.1dB.
Under both of these conditions, the system was simulated
for 40 time steps (N = 40). We selected λ = 0.1
as the weighting parameter for N2BSID in both cases.
Algorithm performance is approximately constant for any
choice λ ≤ 1, corresponding to cases where less weight
is assigned to the minimization of ‖H∗(z)‖∗ than to the
minimization of ‖Ys −H(z)Ds‖∗ (see Figure 5).

For the particular set of noisy outputs shown in Figure 1,
the N2BSID method, which made use of the same dictio-
nary matrix as was used in data generation, recovered the
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following system matrices for the Hi and Lo cases:

AHi =

[
−0.28 0.16
0.11 −0.42

]
, BHi =

[
2.83 1.29 0.77
1.68 1.78 5.91

]
ALo =

[
0.06 −0.25
0.10 −0.68

]
, BLo =

[
2.55 1.02 2.17
0.73 3.93 5.33

]
Note that, in recovering the system matrices, it was assumed
that there was no direct feedthrough from input to output,
leading DHi and DLo to be taken as zero matrices of
appropriate dimension.

To enforce CHi = CLo = I2×2 (as in (20)) and main-
tain consistency among the recovered matrices, we use the
matrices returned by the algorithm (Aout, Bout, and Cout),
and perform a similarity transformation on the system they
describe such that AHi = CoutAoutC

−1
out , B∗Hi = CoutBout,

and CHi = CoutC
−1
out = I2×2, and similarly for the Lo

case. Recall that it is not possible to determine the B matrix
and the input signal u beyond a non-singular ambiguity
matrix. In order to make comparisons between the true u
and the uout produced by N2BSID, we find the least-squares
solution P to the equation u = Puout, letting û = Puout
and BHi = B∗HiP

−1 (and similarly for BLo). The estimated
input data û is shown in comparison to the true input u in
Figure 3. Note that these transformations do not affect the
output that will be estimated by the identified system.

The estimated output data ysim in Figure 2 was calculated
by simulating the system using the estimated system matrices
and the estimated input û, all products of N2BSID. The
only inputs to the N2BSID algorithm were the noisy output
signal (see Figure 1) and the dictionary matrix d(1 : N),
and the algorithm was able to closely reproduce the input
signal (see Figure 3), which lead to smoothed estimates of
the output compared to the noisy estimates given to the
algorithm (see Figure 2). In fact, for the Hi case, the error
was reduced from ε∗(ŷ1, y1) = 0.201 and ε∗(ŷ2, y2) = 0.156
to ε∗(y1sim , y1) = 0.145 and ε∗(y2sim , y2) = 0.096. For the
Lo case, the error was reduced from ε∗(ŷ1, y1) = 0.501
and ε∗(ŷ2, y2) = 0.390 to ε∗(y1sim , y1) = 0.300 and
ε∗(y2sim , y2) = 0.275.

In order to illustrate the behavior of N2BSID with respect
to noise and sample size, we performed a parametric study,
testing the algorithm at a range of SNRs for both N = 40
and N = 200, using the system descibed by (20) above
(the results are summarized in Figure 4). At each SNR
level shown, system identification was performed to recover
estimates of the true system matrices. Ten thousand random
input trajectories were then generated by using the same
dictionary defined above, with randomly generated values
for z. These random inputs, which are distinct from the input
which generated the output signal utilized during the system
identification process, are used to drive both the true and
the estimated system, allowing us to calculate the value of
ε∗ by comparing the output signals. Every point in Figure 4
represents the mean value of ε∗ over ten thousand trials, and
the error bars show plus and minus one standard deviation.

This same analysis was performed using the MATLAB im-
plementation of N4SID (numerical algorithms for subspace



state space system identification) for second order systems
[9], [33]. It is important to note, however, that N4SID is
not a blind method, so it was necessary to provide N4SID
with the input signal u in order to identifiy system matrices
that could be used for simulation and error analysis. The
results for N4SID are shown alongside those for N2BSID in
Figure 4.

There are three salient features to the resulting plot.
First, we see that, under the same testing conditions, the
performance of N2BSID is comparable to that of N4SID.
This correspondance indicates that, although N2BSID is a
blind method and has no access to the input signal, the
knowledge of the subspace in which the input lies (defined by
the dictionary) allows N2BSID to acheive results comparable
to those of non-blind methods. Second, it can be clearly seen
that as sample size increases from N = 40 to N = 200, the
errors in system estimation uniformly decrease. And third, it
can be seen that, regardless of sample size, the performance
of the algorithm improves with increasing SNR, and the
algorithm performance degrades smoothly as SNR decreases.

V. CONCLUSION

The paper presents a novel extension of subspace meth-
ods to the blind identification of MIMO LTI systems. The
extension takes the form of a convex optimization problem
and we show that it can effectively handle problems where
the input is unknown but restricted to some known subspace.
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