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ABSTRACT
We give an overview of the main challenges in the specification,
design, and verification of human cyber-physical systems, with a
special focus on semi-autonomous vehicles. We identify unique
characteristics of formal modeling, specification, verification and
synthesis in this domain. Some initial results and design principles
are presented along with directions for future work.

Categories and Subject Descriptors
B.5.2 [Design Aids]: Verification; I.2.2 [Automatic Program-
ming]: Program Synthesis; I.2.8 [Control Methods]: Control
Theory

General Terms
Algorithms, Verification, Learning, Design

Keywords
Formal verification, synthesis, control, cyber-physical systems, au-
tomotive systems, semi-autonomous driving

1. INTRODUCTION
Formal methods is a field of computer science and engineering

concerned with the rigorous mathematical specification, design,
and verification of systems [20, 5]. The essence of formal methods
comes down to proof: (i) formulating proof obligations in terms of
formal specifications and models; (ii) verifying, via algorithmic
proof search, that a designed system meets its specifications, and
(iii) algorithmically synthesizing all or parts of a system so as to
satisfy its specification. The field has made enormous advances
in the past few decades. Techniques such as model checking [3,
18, 4] and theorem proving (see, e.g. [16, 9, 7]) are used rou-
tinely in the computer-aided design of integrated circuits and have
been widely applied to find bugs in software, analyze embedded
systems, and find security vulnerabilities. At the heart of these
advances are computational proof engines such as Boolean satis-
fiability solvers [14], Binary Decision Diagrams (BDDs) [2], and
satisfiability modulo theories (SMT) solvers [1].

A particularly compelling application domain for formal meth-
ods is the the field of cyber-physical systems. Cyber-physical sys-
tems (CPS) are computational systems that are tightly integrated
with the physical world. (An introduction to the area may be found
in a recent textbook [11].) Depending on the characteristics of CPS
that are emphasized, they are also variously termed as embedded
systems, the Internet of Things (IoT), the Internet of Everything
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(IoE), or the Industrial Internet. Examples of CPS include today’s
automobiles, fly-by-wire aircraft, medical devices, power gener-
ation and distribution systems, building control systems, robots,
and many other systems. While CPS have existed for long, it is
only recently that the area has come together as an intellectual dis-
cipline. Many CPS operate in safety-critical or mission-critical
settings, and therefore it is important to gain assurance that they
will operate correctly, as per specification. Thus, formal methods
are essential for the design of CPS.

Several cyber-physical systems are interactive, i.e., they inter-
act with one or more human beings, and the human operators’
role is central to the correct working of the system. Examples
of such systems include fly-by-wire aircraft control systems (in-
teracting with a pilot), automobiles with “self-driving” features
(interacting with a driver), remote-controlled drones (interacting
with a ground operator), and medical devices (interacting with a
doctor, nurse, or patient). We refer to the control in such systems
as human-in-the-loop control systems and the overall system as a
human cyber-physical system (h-CPS). The costs of incorrect op-
eration in the application domains served by these systems can be
very severe. Human factors are often the reason for failures or
“near failures”, as noted by several studies (e.g., [6, 10]). Correct
operation of these systems depends crucially on two design as-
pects: (i) interfaces between human operator(s) and autonomous
components, and (ii) control strategies for such human-in-the-loop
systems.

At the present time, some of the most compelling h-CPS prob-
lems arise from the automotive domain. In particular, over the past
decade, automobiles with “self-driving” features (otherwise also
termed as “driver assistance systems”) have made their way from
research prototypes to commercially-available vehicles. Such sys-
tems, already capable of automating tasks such as lane keeping,
navigating in stop-and-go traffic, and parallel parking, are being
integrated into medium-to-high end automobiles. However, these
emerging technologies also give rise to concerns over the safety
and performance of an ultimately driverless car. For various en-
gineering, legal and policy reasons, a car that is self-driving at all
times may not be a reality for a few more decades. However, semi-
autonomous driving is already here, and a myriad of scientific and
engineering challenges exist in the design of shared human and au-
tonomous control. For these reasons, the field of semi-autonomous
driving is a fertile application area for formal methods.

In this paper, we give an overview of the main challenges asso-
ciated with the principled design of h-CPS, with a special focus on
semi-autonomous driving, including:
• Modeling: What distinguishes a model of a h-CPS from a typ-

ical CPS?
• Specification: How do the requirements change for a h-CPS?
• Verification: What new verification problems arise from the hu-

man aspect?
• Synthesis: What advances in controller synthesis are required

for h-CPS?
We also review some of the work in this area by the authors and
colleagues, including especially the papers by Li et al. [13] and
Sadigh et al. [19].



2. MODELING
A first step in applying formal methods is to build mathemati-

cal models of all components of the system. In this section, we
outline our view of the unique aspects of the modeling task for
h-CPS. Rather than espousing any particular modeling formalism
(e.g., ordinary differential equations, finite-state machines, hybrid
automata, etc.), we focus on elucidating the differences with mod-
eling fully-autonomous systems even when the underlying mathe-
matical formalism is the same.

A model of a cyber-physical system with fully-autonomous con-
trol typically comprises three mathematical entities: the plant be-
ing controlled, the autonomous controller, and the environment in
which they operate. The task of the controller is to ensure that the
plant behaves as per specification in the operating environment.

The key difference with an h-CPS is that, in an h-CPS, we ad-
ditionally have the human operator(s) with whom control must be
shared. Therefore, the model must contain a representation of the
human operator(s) as well as a sub-system that mediates between
the human operator(s) and the autonomous controller.

We propose an approach that models an h-CPS as a composition
of five types of entities (components) [13], as illustrated in Fig. 1.
The first is the plant, the entity being controlled. In the case of
automobiles, these are the sub-systems that perform the various
driving maneuvers under either manual or automatic control. The
second is the human operator (or operators); i.e., the driver in an
automobile. For simplicity, this discussion uses a single human
operator, denoting her by HUMAN. The third entity is the environ-
ment. HUMAN perceives the environment around her and takes ac-
tions based on this perception and an underlying behavior model.
We denote by HP HUMAN’s perception of the environment and
by HA the actions by HUMAN to control the plant. In the case of
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Figure 1: Structure of a Human Cyber-Physical System. ES
denotes environment sensing, HS denotes human sensing, HP
denotes human perception, HA denotes human actions, and u de-
notes the vector of control inputs to the plant.

a fully-autonomous system, the human operator is replaced by an
autonomous controller (AUTO, for short). In practice, each spe-
cialized function of the system may be served by a separately de-
signed autonomous controller; however, for conciseness these can
be modeled as a single autonomous controller component. AUTO
perceives the environment through sensors (denoted by ES, “en-
vironment sensors”) and provides control input to the plant.

The distinctive aspect of h-CPS arises from its partial auton-
omy. We capture this by including a fifth component, the advisory
controller (ADVISOR, for short) [13]. The function of ADVISOR

is to mediate between HUMAN and AUTO. This mediation can
take different forms. For instance, ADVISOR may decide when to
switch from full control by HUMAN to full control by AUTO, or
vice-versa. ADVISOR may also decide to combine the control in-
puts from HUMAN and AUTO to the plant in a systematic way that
achieves design requirements. This is indicated in Fig. 1 by the
yellow box adjoining plant, between it and the AUTO and HUMAN
components. We note that for legal and policy reasons, it may not
be possible in many applications (including driving) for ADVISOR
to always take decisions that override HUMAN. It is for this reason
that we use the term ADVISOR, indicating that the form of control
exercised by ADVISOR may, in some situations, only provide sug-
gestions to HUMAN as to the best course of action.

Modeling humans can be tricky. While there is a large literature
on human cognitive modeling, this is usually informal and per-
formed by experts for specialized domains with highly-trained op-
erators (e.g., cockpit flight control). For this reason, formal meth-
ods has, for the most part, steered clear of problems that involve
human modeling, with a common criticism being that such mod-
els can “never be precise.” On the other hand, as George Box
wrote, “all models are wrong, but some are useful.” The princi-
pled design of h-CPS requires the judicious use of human models.
Our position is to use formal models of human operators that are
grounded in empirical data. In other words, we propose that, while
the structural form of a model can be informed by expert guidance,
the precise model used for design be inferred from observations of
human behavior. In the case of driving, such data can be collected
from field tests or from hardware-based car simulators (e.g., the
Force Dynamics 401CR) that give the human driver a realistic feel
for the self-driving features. In both cases, the set up must be in-
strumented with a variety of sensors to capture human action and
perception.

To summarize, the key points of differentiation between model-
ing a h-CPS and modeling a fully-autonomous CPS are:
• The use of data-driven human modeling;
• The inclusion of relevant aspects of the human-machine inter-

face, and
• The presence of the advisory controller.

3. SPECIFICATION
Human CPS (h-CPS) have certain unique requirements which

need to be formalized as formal specifications for verification and
control. We focus here on the case of semi-autonomous driving,
but the concepts are more generally applicable.

Recognizing both the safety issues and the potential benefits of
vehicle automation, in 2013 the U.S. National Highway Traffic
Safety Administration (NHTSA) published a statement that pro-
vides descriptions and guidelines for the continual development
of these technologies [15]. Particularly, the statement defines five
levels of automation ranging from vehicles without any control
systems automated (Level 0) to vehicles with full automation (Level
4). We focus on Level 3 which describes a mode of automation
that requires only limited driver control:

“Level 3 - Limited Self-Driving Automation: Vehicles
at this level of automation enable the driver to cede
full control of all safety-critical functions under cer-
tain traffic or environmental conditions and in those
conditions to rely heavily on the vehicle to monitor
for changes in those conditions requiring transition
back to driver control. The driver is expected to be
available for occasional control, but with sufficiently
comfortable transition time. The vehicle is designed
to ensure safe operation during the automated driving
mode.” [15]



Essentially, this mode of automation stipulates that the human driver
can act as a fail-safe mechanism and requires the driver to take over
control should something go wrong. The challenge, however, lies
in identifying the complete set of conditions under which the hu-
man driver has to be notified ahead of time. Based on the NHTSA
statement, we have identified [13] four important criteria required
for a human-in-the-loop controller to achieve this level of automa-
tion.
1. Effective Monitoring. The advisory controller should be able to

monitor all information about the h-CPS and its environment
needed to determine if human intervention is needed. This is a
requirement on the types of sensors required and their quality
and performance.

2. Conditional Correctness. When the autonomous controller is
in control (and not the human operator) the system must sat-
isfy a given formal specification (e.g., provided in temporal
logic). This is therefore a traditional correctness requirement
that is conditional in the sense that it applied only when the
autonomous controller is in charge.

3. Prescience. The advisory controller must determine if the above
formal specification may be violated ahead of time, and issues
an advisory to the human operator in such a way that she has
sufficient time to respond. This requirement must be based on
a model of human response time.

4. Minimal Intervention. The advisory controller should only in-
voke the human operator when it is necessary, and does so in a
minimally-intervening manner (minimizing a given cost func-
tion capturing the cost of asking the human to intervene).

Li et al. [13] show how these criteria can be made mathematically
precise for the special case when linear temporal logic (LTL) is
used to express correctness requirements on the system. LTL and
its derivatives have proved a very effective specification language
for electronic design automation, and it has been useful in some
robotics and CPS applications as well. Other formal specification
languages can also be employed. Moreover, specialized require-
ments, e.g., related to security and privacy, may also apply in cer-
tain settings. We believe the above four criteria will apply to all
h-CPS design problems.

4. VERIFICATION
We see h-CPS as more than just “yet another application area”

for formal verification: h-CPS, in general, and semi-autonomous
driving, in particular, are also giving rise to interesting new classes
of verification problems. We highlight here two main directions:
• Quantitative Verification: Traditionally, formal verification tools

have Boolean outputs, i.e., either the specification is satisfied or
it is not. However, due to the uncertainty inherent in modeling
semi-autonomous systems, probabilistic modeling and verifica-
tion gains importance. Additionally, as stated in the preceding
section, some requirements are inherently quantitative, such as
the minimal need for human intervention — such requirements
are not hard constraints and hence the corresponding verifica-
tion questions are best captured with a quantitative formulation.

• Verification with Data-Driven Models: Models of human agents
as well as of the environment are expected to be generated
from empirically observed data. Since empirical data is in-
herently incomplete, the inferred models must represent this
incompleteness. For instance, if transition probabilities of a
Markov chain model are inferred from empirical data, the es-
timation error in those probabilities must be represented in the
model. Verifying such models requires an extension to existing
algorithmic methods such as model checking.

In the rest of this section, we illustrate the above directions with

some recent work by the authors and colleagues [19] on proba-
bilistic modeling and verification of human driver behavior. Here
the aim is to infer a Markov Decision Process (MDP) model for the
whole closed-loop system (including human, controller, plant, and
environment) from experimental data obtained from a industrial-
scale car simulator.

The driver behavior is dependent on particular modes or sce-
narios, which are determined by the future external environment,
e.g., a turn in the road, and by the driver state, e.g., attentive or
distracted. In order to recover these unknown modes, the data is
clustered using the k-means algorithm [8], which allows for flex-
ibility in determining the modes in an unsupervised manner. In
this modeling framework the modes will be the states of the MDP.
These modes are created based on data collected about:

1. Driver Pose: This contains the past two seconds of skele-
ton data, specifically the positions of the wrist, elbow, and
shoulder joints.

2. Environment Estimation: This contains a feature vector for
the future four seconds of the outside environment, includ-
ing road bounds and curvature, obstacle locations, and the
car’s deviation from the lane center.

Since the model is inferred from an empirical data set that is
incomplete, the model has estimation errors, e.g., in the transition
probabilities, that depend on the level of confidence in the data set.
Therefore, in this case we infer a generalization of an MDP called
a Convex-MDP (CMDP) [17], where the uncertainty in the values
of transition probabilities is captured in the form of convex uncer-
tainty regions, a first-class component of the model. Puggelli et
al. [17] show how one can extend algorithms for model check-
ing properties expressed in probabilistic computation tree logic
(PCTL) to the CMDP model. Sadigh et al. [19] use that model
to infer desired properties about human driver behavior, such as a
quantitative evaluation of distracted driving.

For instance, Fig. 2 shows verification results for computing the
PCTL expression Pmax [Attention U Unsafe], which is “maxi-
mum probability of eventually reaching an unsafe state, if the state
of the driver’s attention remains constant (one of two states, ei-
ther attentive or distracted)", for values of confidence level ranging
from 60% to 99% for one driver. The probability of reaching an
unsafe state is always lower in the case of attentive driving. The
probability also decreases as the confidence level is increased, but,
more significantly, the difference between the maximumum prob-
abilities for attentive and distracted driver states grows as confi-
dence in the data increases.

Figure 2: Comparison of distracted and attentive driving for dif-
ferent values of confidence level CL for Property P1 (reproduced
from [19]).

To summarize, we see formal verification of h-CPS as generat-
ing a range of new technical questions relating especially to quan-



titative verification and verification with data-driven models.

5. SYNTHESIS AND CONTROL
The design and synthesis of control strategies for h-CPS have

important differences with those for fully-autonomous systems.
First, as noted in Sec. 2, one must synthesize both the autonomous
controller and the advisory controller. Further, as described in
Sec. 3, h-CPS have special requirements not present in the fully-
autonomous setting. Control algorithms must be modified to ad-
dress these additional requirements. Moreover, just as in the case
of verification, the state of the art in controller synthesis must
be extended to handle quantitative requirements and incorporate
data-driven techniques. While the specific modifications vary from
problem to problem, some general principles have emerged in re-
cent years.

One such principle is based on the common formulation of syn-
thesis as game solving. Here the synthesis problem is encoded as a
game between the controller and its environment, and the winning
strategy of the controller, if one exists, forms the desired control to
be synthesized. In zero-sum games, if a winning strategy does not
exist for the controller, then one exists for the environment. The
latter strategy for the environment is called a counterstrategy. Li et
al. [12, 13] describe this approach of counterstrategy-guided syn-
thesis. They show how one can extract, from the counterstrategy,
assumptions about the environment that are sufficient to guaran-
tee correct operation by a fully-autonomous controller. These as-
sumptions, when suitably restricted to be efficiently monitorable
at run time, form the basis for an advisory controller. For semi-
autonomous driving, such an advisory controller can continually
monitor the environment of a vehicle, alerting the human when en-
countering a situation that the self-driving feature cannot correctly
handle.

Another principle involves the co-design of human-machine in-
terfaces and control algorithms. The information displayed to hu-
man operators must be informed by the state of the controller and
its environment. Similarly, the functioning of the controller de-
pends on human input and sensor data capturing information about
the state of the human operator and the environment. However,
there has been little work in the formal methods and design au-
tomation community on these co-design problems.

The identification of these principles is but an initial step. Con-
trol for h-CPS with provable guarantees is still an open field with
several interesting technical problems yet to be solved.

6. CONCLUSION
In summary, the field of human cyber-physical systems, in gen-

eral, and semi-autonomous driving, in particular, is a fertile ground
for formal methods. There are several exciting directions for future
work including human modeling, novel specification languages to
capture requirements unique to h-CPS, data-driven verification and
synthesis, quantitative verification and synthesis, and co-design of
interfaces and control.
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