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Abstract— Suppose we are given an autonomous vehicle that
has limitations, meaning that it may need to transfer control
back to the human driver to guarantee safety in certain situa-
tions. This paper presents work on designing a user interface to
assist this hand off by considering the effects of the expression
of internal and external awareness. Internal awareness is the
concept of knowing whether or not the system is confident in
its ability to handle the current situation. External awareness
is the concept of being able to identify the limitations as the
car is driving in terms of situational anomalies. We conduct a
user study to examine what information should be presented
to the driver, as well as the effects of expressing these levels
of awareness on the driver’s situational awareness and trust in
the automation. We found that expressing uncertainty about
the autonomous system (internal awareness) had an adverse
effect on driver experience and performance. However, by
effectively conveying the automation’s external awareness on the
anomaly, improvements were found in the driver’s situational
awareness, increased trust in the system, and performance after
the transfer of control.

I. INTRODUCTION

With the development of Advanced Driver Assistance
Systems (ADAS) and increasing levels of autonomy in
driving, the role of the human driver is transitioning from
truly “operating” the vehicle to monitoring the vehicle’s
operation [1]. To many, this is an exciting paradigm shift,
as automation has the potential to significantly impact safety
on the road and how people utilize their time [2]. What was
once commute time will now be time to relax and utilize
in-vehicle entertainment, as was patented by Ford in early
2016 [3]. However, automation is not perfect. As it has been
practiced with aircraft systems, a pilot is always required to
be ready to take over control for difficult tasks, e.g. landing
or take off [4]. Similarly, drivers are required to be ready to
take over if the autonomous system detects difficult situations
that humans would be better at handling [5], [6].

The major difficulty in these semiautonomous systems,
where transfer of control is required, is the interaction and
interface with the human driver, as there is often disparity
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between how the system functions and how the human
expects the system to perform. For instance, when adaptive
cruise control was first in testing, there were discrepancies
between what people perceived as safe, and what was truly
safe [7]. In [8], the study found that some advanced safety
systems are actually increasing collision rates. When the
autonomy does not perform as expected, drivers tend to either
abuse the functionality due to lack of understanding in com-
munication or reject the system entirely due to loss of trust
[9]. Further, there are a number of issues that can arise during
transfer of control, (e.g. mode confusion or lack of situational
awareness [10]). Many factors play into the success of the
transfer of control including the driver’s response time [5],
which is a function of the driver’s situational awareness; the
environmental scenario that possibly caused the vehicle to
hand off control; and the warning given before the human
is handed full control. To avoid such mode confusions, and
to tap into the potential benefits of ADAS and autonomous
systems, the interaction and intercommunication between the
autonomy and the human must be carefully understood.

Imagine an autonomous system that comes with certain
limitations. For example, an autonomous vehicle may not
exactly know how to properly navigate construction zones
(e.g. the current Tesla Autopilot [11]), or an autonomous
system may have limited functionalities (e.g. Volvo’s City
Safety System [12]). Our key insight is the reasons for failure
and uncertainty in autonomy arise either from complicated
environment settings or difficulty in providing a safe and
trustworthy autonomous controller. In this work, we propose
a self-aware system that consists of internal and external
awareness, meaning that it is able to detect these situa-
tions/anomalies and has a sense of confidence associated
with these scenarios. Assuming the system is capable of
identifying such occurrences, the question of our interest
is: How should the autonomous system effectively transfer
control back to the human in a safe manner?

In this paper, we present findings in the first step of
developing a user interface (UI) that expresses the inter-
nal and external awareness of autonomy. While there are
many methods for developing user interfaces, this work is
motivated by Sturton et al., who present the use of formal
methods to verify the correctness of UI’s for electronic
voting machines [13]. In order to use these methods, first
an expectation model is needed to identify what information
the driver desires and expects of the system. Here, we present
our first foray in designing a UI to gather such data, and give
a starting point of a UI that aims to increase driver awareness



and trust in the system.
This pilot study aims to evaluate the effects of presenting

information of the internal and external awareness of the au-
tomation under varying reasons for transition to a distracted
driver. This evaluation includes analysis of subject feedback
via surveys; driver monitoring to assess situational aware-
ness; and assessment of driver performance after assuming
control.

Through these scenarios and user interfaces, this paper
aims to identify what information should be included, and
how it should be presented to a driver to enable the safest
transition. The contributions of this work are as follows:

• Designing UIs that express internal and external aware-
ness of the vehicle to assist transfer of control to humans
under various anomalies

• Assessing the effects of expressing internal and external
awareness from these UIs

• Analyzing the effect of information on the driver’s per-
ceived and measured awareness as well as performance
on the road

The paper is organized as follows. First, an overview of
related works is presented. Section III presents the method-
ology behind our UI design, in addition to the experimental
setup. The findings of this study are presented in Section IV
and discussed in Section V.

II. RELATED WORKS

In the work presented here, we aim to evaluate UI design
on distracted drivers. There is a rich body of research in
human factors and human-computer interaction associated
with how to best increase situational awareness in operators
[14], [15].

An important factor in this study was ‘when’ to send
the official transition warning to the driver. Research has
advocated for a 5 to 8 seconds period for a safe takeover
interval in order to avoid obstacles of varying complexities
[16]. Previous studies suggest that shorter takeover requests
cause faster reaction times yet poorer performance in taking
over control [17]. Advanced warnings before a takeover re-
quest were found to correlate with a high rate of successfully
avoided collision [18], which is adopted in this work.

In addition to timing for warnings, audio and visual cues
have been well studied. In [16], audio warnings were found
to be sufficient to warn the driver of a transfer of control. De
Waard et al. tested visual cues through a study that would
notify drivers of a transition, which was unsuccessful in
catching the driver’s attention [19]. Noting the success of
audio and visual warnings, the UIs to be presented use a
combination of a bold visual warning and an audio cue.

Given that drivers will be more prone to inattention,
many studies have investigated how different distractions and
obstacles will affect the driver’s ability to assume control
of the vehicle [20]. The main measure was the driver’s
success in takeover versus the distraction they were engaged
with at the time of the take over. Maltz et al. [21] studied
how an unreliable warning system for transfer of control
demonstrates the driver’s dependence on the warning system

to take over the vehicle. The study found that without the
warnings, the driver was unable to safely transfer control
from autonomous to human driving. Research by Young et
al. suggests that the takeover is affected by limited cognitive
resources that can get consumed by multitasking [22].

Walker et al. proposes that when drivers are given informa-
tion about their surroundings, they spend less time scanning
the environment and have more successful takeovers [23].
Therefore, we assess the type of information about the reason
of transition that is needed to decrease this searching time.

In the field of human-computer interaction, many studies
have found that it is important that the human has a shared
mental model to easily gain insight on how the robot is faring
[24]. Similarly, Takayma et al. has found that expressing
awareness in terms of uncertainty and reactions to failures
can improve people’s perception of a robot, and increase
the robot’s readability [25]. In his study, Steinfeld has
interviewed experts in the field of autonomous or semiau-
tonomous mobile robot interface experience and concluded
that users should be able to quickly and easily identify
the health and status of the robot [26]. This motivated our
examination of internal awareness as an expression of robot’s
self-confidence in a given situation.

This paper is motivated by and builds off of many of
these related works. The primary focus of this study is
to evaluate the automation’s expression of awareness to a
distracted driver, in terms of type of awareness (internal
and/or external) and the level of detail presented (general or
detailed warnings). Our goal is to assess how this information
affects the driver’s awareness and trust in the autonomous
system, under different transitions conditions.

III. METHODOLOGY

As previously described, this study targets the scenario
in which there exists a semiautonomous system that has
sufficient functionality such that full attention is not required
from the human (e.g. the driver is free to watch in-vehicle
entertainment), but might have to transfer control back to the
driver if its limitations are met. We assess different causes
for transferring control and different UI designs that present
information about the autonomy’s internal and/or external
awareness. The goal of testing different user interfaces is to
better understand the optimal level of information required
for ideal transfer of control.

The following subsections describe the design method-
ology for the UI, the parameters of the user study, and
the experimental setup to test the UI in an autonomous
framework.

A. User Study

The motivation behind this user study was to test users’
reaction to multiple user interfaces paired with a variety
of driving scenarios. It was important to vary the driving
scenarios in order to have a more wholesome picture of the
user interfaces’ effect on the overall performance in the take
over. The driving scenarios were selected such that they were
variable and comprehensive. The three general categories of



scenarios that could cause the autonomous vehicle to transfer
control to the user are described in detail as follows:

1) Baseline Transition: This transfer of control occurs
when the AutoPilot needs to pass control back to
the human driver even when no immediate danger is
detected. This event might occur when an autonomous
system has reached the end of a known route or area,
triggering a transfer of control back to the human
driver.

2) Static Anomaly Detected: These transitions occur when
an unexpected static obstacle is detected and the au-
tonomous system is not confident in how to proceed.
Examples of these events include unexpected construc-
tion or a trailer blocking most of the road.

3) Dynamic Anomaly Detected: Similar to the previous
scenarios, this transfer of control occurs when an
anomaly is detected. However, the anomaly in this
case is in the form of a moving obstacle. This could
be a nearby car that is swerving or behaving in a
peculiar manner, meaning that the AutoPilot cannot
predict what the vehicle will do.

Fig. 1: Representation of all our UIs in various levels of anomaly
detection. Each row represents the three different reasons of switch-
ing back control. Each column represents the four designed UIs
accordingly.

Manipulated Factors
We manipulate two factors: (i) Internal Awareness: The
current confidence level of the vehicle in its actions during
AutoPilot mode. We use an emoticon shown in the first
column of Figure 1 to describe the confidence in actions
of the autonomous car. The emoticon takes three different
states, each representing a high, medium and low level of
confidence in the current actions the autonomous vehicle
takes. (ii) External Awareness: The state of the environment,
i.e., how complex the current environment conditions are
during the autonomous mode. For the state and complexity
of the environment, we use the measures shown in the second
and third row of Figure 1 to represent either a static or
dynamic anomaly. The specificity of the anomaly is general

between the static and dynamic anomalies in the second
column, i.e., all anomalies are displayed using a similar
icon, whereas in the third column each anomaly is separately
designated.
Dependent Measures
For each scenario that studies each factor above, and the
combination as in the last column of Figure 1, we measure
different values to study the effectiveness of each factor.
First, we evaluate measures for driver performance for a
short period of time after taking control. We consider the
average of the human’s throttle and braking input, as well
as the difference between the human driver’s trajectory and
a nominal trajectory in the same short horizon after human
takes over control. Second, we consider the driver’s gaze,
i.e., how often the driver looks at the front screen or the UI,
to estimate situational awareness. We also consider measures
regarding safety and trust based on a user survey.
Hypothesis
Our hypothesis is that using UIs representative of the two
manipulated factors will result in better performance demon-
strated by the described dependent measures. The expression
of both internal and external awareness will lead to better
understanding of the autonomous system, which will improve
trust, awareness, and performance. However, it is suspected
that the complete UI will show lower metrics than the other
UIs due to clutter.
Subject Allocation
We recruited 10 participants (4 female, 6 male) in the age
range of 18-61. All the participants owned a driver’s license.
We used a within-subjects design, and counterbalanced the
order of conditions.

B. User Interface Design

The experiment was structured such that each participant
would experience five different user interfaces and three
different control transfer scenarios. Each participant would
experience the following user interfaces: Baseline, Internal
Confidence, External - General Warning, External - Detailed
Warning and Complete. The features included in each of the
user interfaces are as follows:

• Baseline (UI 0):
– This user interface displays the car’s speed and

the current controller of the vehicle (AutoPilot or

Fig. 2: Skeleton of the UI design. The red box can be modified
depending on specific UIs used in the experiment.



Human). During the transfer of control, there is
a 5 seconds and 1 second audio warning beep,
each with a different pitch. Along with the beeps
there is a visual timer indicating 5 seconds and
1 second remains until the switch, as shown in
Figure 2. The speed, controller and timer warnings
are standard across all of the following UIs. The
red box in Figure 2 points to where new features in
the following UIs are placed relative to the baseline
features.

• Internal Confidence (UI 1):
– This user interface includes all the features in

Baseline. In addition, there is a visualization of the
car on the road and an indicator of the confidence
of the vehicle in its own actions in AutoPilot mode
as shown in the first column of Figure 1. A smile
emoticon indicates that the car is confident in its
maneuvers. A neutral emoticon indicates that the
car is not in immediate danger; however, it is unsure
of some future actions. A frown emoticon indicates
that the car is unable to handle a situation and needs
to switch control to the human.

• External - General Warning (UI 2):
– This user interface shown in the second column

of Figure 1 builds off of Baseline. Added to it
is a visualization of the car on the road with a
generic hazard warning in the general region where
an anomaly is occurring.

• External - Detailed Warning (UI 3):
– This user interface includes all the features in

Baseline. In addition, there is a visualization of
specific warnings of potential hazards ahead on the
road. Warnings include the location of construction
or an unpredictable vehicle on the road. These
warnings often indicate that it is imminent that the
car will initiate a transfer of control to the human.
This is shown in the third column of Figure 1.

• Complete (UI 4):
– This combines features from Internal Confidence

and External - Detailed Warning. This includes
everything in Basic, the emoticon health indicators
from Internal Confidence, and the warning icons
from External - Detailed Warning, and is depicted
in the last column of Figure 1.

C. Experimental Setup

In order to collect data, we used a human-in-the-loop
testbed as shown in Figure 3 [27]. This testbed consists of a
car simulator to recreate driving experiences for the driver,
as well as sensors to monitor the driver. Data was collected
using a Force Dynamics CR401 vehicle simulator, which
provides a 120◦ visual display from the driver’s perspective1.
This system has been integrated with PreScan software
[28], which provides vehicle dynamics and customizable

1http://www.forcedynamics.com

Fig. 3: Experimental setup with the car simulator. The steering
wheel, MS Kinect for driver monitoring, the UI, and the entertain-
ment tablet are specified in the figure.

driving environments. The system ran the simulation and data
collection at 60 Hz.

The driver was monitored using a Microsoft Kinect 2.02,
which was used to monitor the attention of the driver.
The driver was monitored at a rate of 30 Hz, which was
synchronized with the simulation data.

The user interface, displaying key information to aid the
computer to human control transition, is displayed over the
simulated dashboard of the vehicle. To distract/entertain the
driver while being driving by the autonomous system, a tablet
playing videos is attached to the frame of the simulator. The
complete experimental setup is shown in Figure 3.

Each of the five user interfaces is implemented in Python
2.7 using the software package TkInter as the main GUI
library [29]. The complete system was implemented on a
2.3 GHz Intel Core i7 processor with 16 GB RAM.

In designing the experiments, one test course was created
and used for all experiments. To ensure that the driver did
not become too familiar with the test course, variations on
the visual world were created (e.g. different buildings and
landscaping). The transition times and locations changed in
each test, so the driver did not learn to expect to take control
of the vehicle. The autopilot was controlled via a basic path
following controller that would attempt to maintain a speed
of 15 m/s and stay in the center of the lane.

For each user interface, the three scenarios were tested
twice in a random order, for a total of six trials per user
interface. In each trial, the AutoPilot would be in control for
anywhere from three to five minutes, during which the driver
was asked to watch videos on the entertainment tablet3.
Then, one of the three scenarios would trigger a transition
and the UI would warn the driver five seconds prior to the
driver taking control. For consistency between the anomaly
scenarios, the hand off was timed to always occur when the
driver has two seconds of time headway to the obstacle [30].

2https://developer.microsoft.com/en-us/windows/
kinect

3Simple distraction tests were performed prior to the experiment to verify
that three minutes of watching videos was enough time for the driver to
lose interest in the autonomous vehicle. More details on the driver’s level
of engagement are provided in Section IV-B

http://www.forcedynamics.com
https://developer.microsoft.com/en-us/windows/kinect
https://developer.microsoft.com/en-us/windows/kinect


IV. RESULTS

Our study’s results indicate that the External-Detailed
Warning user interface was the most successful, followed
by External-General Warning, Complete, Internal Confidence
and Baseline UIs, respectively. An overarching result gath-
ered from the data is that the vehicle’s external awareness
caused the driver to trust the vehicle more and thus had better
performance during the transfer of control. This disproves the
hypothesis that conveying internal awareness will increase
trust in this human-robot system. However, this supports
the idea that effectively conveying external awareness will
increase the driver’s perceived awareness and trust in the
system.

The following subsections present the findings of the
user study, looking at the data collected from the user
feedback from the surveys, driver monitoring, and trajectory
information after the transition occurred.

A. User Survey

In order to gauge the user’s level of trust and security
towards the autonomous vehicles, we requested subjects
complete quantifiable surveys. These surveys aimed to target
the user’s fluctuating feelings of trust and safety throughout
the entire experiment. The subjects were surveyed before
experiencing the simulations, between each user interface
session and at the end of the entire experiment. The initial
survey and final survey asked on 5-point scale (with the
options ranging from strongly disagree to strongly agree)
the following three questions:

• Do you feel safe in a human-driven car?
• Do you feel safe in an autopilot?
• Is an autopilot safer than a human?

Fig. 4: This graph compares initial and final ratings of the survey
questions concerning safety of human driven and autonomously
driven vehicles. The values were collected based on a 5-point
ranking system, where negative values demonstrate disagreement,
0 is neutral and positive values demonstrate agreement.

Fig. 5: This graph shows the difference between the subject’s
rankings of audio and visual warnings before and after completing
the entire experiment.

The initial and final responses are illustrated in Figure 4. On
the chart, -2 represents strongly disagree and 2 represents
strongly agree. Our results show that subjects felt that
autonomous vehicles were safer than human drivers after
the final survey. Further, our results reveal that at the end
of the experiment their experiences with our user interfaces
influenced their feelings about the safety of autonomous
vehicles. There was an overall increase in feelings of safety
of semi-autonomous vehicles and a slight decrease in their
thoughts about the safety of human-drivers.

In both the initial and final surveys, we asked subjects
how important audio and visual warnings were to them to
help aid the takeover transition. In Figure 5, the difference
between the final and initial responses is plotted based on
the same 5-point scale as the previous figure. The result is
that after experiencing the different user interfaces, subjects
found that audio warnings are a lot more crucial than visual
warnings to aid the takeover transition.

In between each user interface run, the survey asked, on a
5-point scale, if they trusted the semi-autonomous vehicle
and if they felt the semi-autonomous vehicle was aware
of its surroundings. The result of averaging these scores

Fig. 6: This graph demonstrates the high correlation between
driver’s trust of the autopilot and the driver’s feeling that the
autopilot is aware of its surroundings as demonstrated through the
user interface.



Fig. 7: The bubble plot shows the all subject responses to survey questions, where the size of the point indicates the number of identical
responses. Each column corresponds to UI 0 through 4. The graph displays the Trust Score on the x-axis versus the agreement that the
UI increased awareness on the y-axis.

across all user interfaces is plotted in Figure 6. There is
a high correlation coefficient between the two measures
(R2 = 0.967), which indicates that subjects trust the semi-
autonomous vehicle most when they felt that the vehicle was
most aware of its surroundings. Fluctuating values of trust
and awareness are a result of the different user interfaces
displaying different amounts of information in various ways.

There is also an interesting trend across the UIs in how
they affected the subject’s awareness of the environment
and feelings of trust, as shown in Figure 7. The graph
demonstrates the feeling of awareness the drivers received
from the interface and their feeling of trust in the vehicle,
for each user interface trial (in sequential order) The figure
demonstrates that subjects are in stronger agreement in UI
3 and UI 4 interfaces, as majority of responses indicated
high trust and increased awareness. This demonstrates that as
more and more information was given to the driver through
each UI (in order from left to right) the driver gains more
awareness and trust.

B. Driver Monitoring

Using the data collected from driver monitoring, two key
types of information were identified: subject distraction and
search time.

Subject distraction was evaluated to determine whether or
not the driver was sufficiently invested in the entertainment
provided. Using the head pose relative to the Kinect at each
time instance, the subject was considered distracted if they
were looking in the direction of the tablet. For each trial, the
ratio of time spent engaged in watching the entertainment
was computed and compared in Figure 8.

It can be noted that in general, the drivers were sufficiently
distracted and engaged in the entertainment, but also that
they were most engaged with UIs 2, 3, and 4. This can be
attributed to the fact that the subjects trusted these UIs more
than the first two UIs.

Search time is the amount of time it takes for a driver
to check the UI and identify the reason for transition in
the real world. This was calculated using the head pose
and eye movement, by finding the time it takes the driver
to look ahead and for eye movement to settle after the
warning signal. In essence, this attribute is highly related to
the situational awareness that the UI is providing the driver

Fig. 8: This plot shows the level of engagement in the entertainment
of the drivers throughout each test, quantified by the ratio of time
the driver spent watching the videos for each UI. The pink lines
show the engagement for each trial conducted. The solid black line
shows the average level of engagement, and minus one standard
deviation is shown in the dashed line.

Fig. 9: This plot illustrates the average time spent searching during
the five second warning period before the transition of control, for
each user interface. The average search time for each subject is
shown in pink. The average for all subjects is shown in solid black,
and the plus/minus one standard deviation is shown in dashed line.

when needed. A low search time would imply that the UI
was able to quickly inform the driver the reason for transition
and making it easier for her to identify, while a high search
time would imply that the driver spent most of her transition
warning period searching the screens for the problem. This
is visualized in Figure 9.

It can be observed that the minimum search time corre-



(a) (b)

Fig. 10: Distribution of driver input for various UIs in the case of
dynamic anomalies, with mean indicated by a point. Fig. (a) shows
the average throttle input for all users and UIs. Fig. (b) show the
average brake input for all users and UIs.

sponds to UI 3, closely followed by UI 2 and 4. Considering
the amount of information presented by each UI, it appears
that UI 3 provides the optimal amount of information to
increase the driver’s situational awareness. Since UI 3 and
4 are similar in information provided, it makes sense that
these two UIs give similar results. However, we hypothesize
that the increase in search time was due to UI 4 being more
cluttered than UI 3.

For UI 2, although little information was provided, the
subject feedback indicated that the visual warning was
enough to catch their attention with their peripheral vision,
before the audio warning signal sounded. This implies that
the drivers were aware of an anomaly with slightly more lead
time than the other UIs.

C. Driver Performance

The subject’s control inputs and resulting trajectories were
collected to assess the quality of taking over control. A safe
takeover is one that doesn’t involve much of deviation from
a nominal trajectory with minimal braking or acceleration. A
nominal trajectory is one driven by an expert driver without
any distractions or transfer of control.

In Figure 10, we show the average brake and acceleration
inputs of all users in the case of dynamic anomalies. These
inputs are the most representative in the case of dynamic
obstacles, as humans tend to brake or accelerate more when
moving obstacles are present during the takeover; thus, the
takeover is more complicated in such scenarios.

As shown in the figure, UI 2 and 3 perform well as their
average braking and throttle is lower than the other UIs.
Although UI 4 is more cluttered than the other ones it also
performs reasonably well. However, it is clear that in the
case of dynamic obstacles, UI 1 is not sufficient for a safe
transfer of control as the values for UI 1 are significantly
higher than the other interfaces.

Also we consider the difference between trajectory per-
formed by the users and a nominal trajectory shown in
Figure 11. As shown in the figure, UI 3 has the lowest of

Fig. 11: Distribution of difference in trajectory performed by
drivers and nominal trajectory averaged for all users, and all UIs
in the case of baseline, static anomalies and dynamic anomalies.
Mean is indicated by a point.

deviation from the nominal trajectory for the baseline and
static anomaly case, where all the other UIs perform worse.
UI 3 also performs reasonably well for the dynamic anoma-
lies case. However, UI 2 and 4 perform similarly in this last
case (dynamic anomalies). We believe deviation from the
nominal trajectory is not as descriptive as other measures,
e.g. throttle or braking input for the specific case of dynamic
anomalies as the human might need to perform trajectories
far from the nominal in such complicated scenarios to stay
safe. From our experiments and driver performance results
we conclude that UI 3 is the most effective for transfer of
control.

V. DISCUSSION

In this work, we designed UIs that show the reasons of
internal and external failures to the human in order to engage
the human better, and create a safer takeover of control.
By conveying the vehicle’s external awareness precisely,
the driver’s perceived and measured awareness increased,
along with their trust score. Improved performance after the
handoff was also measured quantitatively. Contrary to our
initial belief, conveying internal awareness made people feel
uneasy, likely due to the safety critical nature of driving.

For future directions, we consider quantifying this perfor-
mance through applying model checking techniques, where
we verify logical properties on performance models from
each case and compare the probability of failure, similar
to our previous work in [31]. Our hypothesis is that the
quantitative values will prove that the driver’s performance
increases when using the succinct and formally proven UI
and that the driver will have a positive qualitative response to
surveys after interacting with autonomous vehicles through
the interface. In addition, we hope to explore different UI
mediums, and an expanded user study in more realistic
settings.

ACKNOWLEDGEMENTS

We would like to thank Vijay Govindarajan for his help in
setting up the driver monitoring system as part of our driving
simulator testbed.



REFERENCES

[1] C. P. Janssen and J. L. Kenemans, “Multitasking in autonomous vehi-
cles: Ready to go?” http://www.auto-ui.org/15/p/workshops/4, 2015.

[2] M. Bertoncello and D. Wee, “Ten ways autonomous driving could
redefine the automotive world,” 2015.

[3] M. Cuddihy and M. Rao, “Autonomous vehicle entertainment
system,” Mar. 1 2016, uS Patent 9,272,708. [Online]. Available:
https://www.google.com/patents/US9272708

[4] D. A. Norman, “The ‘problem’ with automation: inappropriate feed-
back and interaction, not ‘over-automation’,” Philosophical Transac-
tions of the Royal Society of London B: Biological Sciences, vol. 327,
no. 1241, pp. 585–593, 1990.

[5] W. Li, D. Sadigh, S. S. Sastry, and S. A. Seshia, “Synthesis for human-
in-the-loop control systems,” in Proceedings of the 20th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), April 2014, pp. 470–484.

[6] S. Ghosh, D. Sadigh, P. Nuzzo, V. Raman, A. Donzé, A. L.
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