
An Analytical Framework to Address the Data Exfiltration of
Advanced Persistent Threats

Kamil Nar and S. Shankar Sastry

Abstract— Detecting and preventing the data exfiltration of
advanced persistent threats is a challenging problem. These
attacks can remain in their target system for several years
while retrieving information at a very slow rate, possibly after
reformatting and encrypting the data they have accessed. Taint-
ing and tracking some of the files in the system and deploying
honeypots are two of the potentially effective measures against
advanced persistent threats. In this paper, we introduce an
analytical framework to study the effect of these measures on
the amount of files that an attacker can exfiltrate. In particular,
we obtain upper bounds on the expected amount of files at risk
given a certain ratio of tainted and honey files in the system
by using dynamic programming and Pontryagin’s maximum
principle. In addition, we show that in some cases tainting
more of the files does not necessarily improve the security of the
system. The results highlight the effectiveness and the necessity
of deception for combatting advanced persistent threats.

I. INTRODUCTION

Advanced Persistent Threats (APT) are long-term cyber-
attacks that primarily target political organizations, gov-
ernment agencies and facilities, defense contractors, and
industries with large influence on global markets [1]. As a
type of targeted attacks, APTs intend to affect only their
targets and the tools they employ for their attacks are
developed specifically for their campaign, which is either
sabotage or espionage. The attacks usually leverage the
vulnerabilities in their target system which are unknown to
the system administrator, and consequently, many APTs can
go undetected until the attack reaches its ultimate goal.

Collecting confidential information about the target is
either the main goal of an APT, or it is necessary to craft
an impactful attack. For example, Flame was designed to
collect information about its targets, and it was capable of
logging keystrokes to capture passwords, taking screenshots,
and recording voice using the internal microphone of the
computers [2], [3]. On the other hand, Stuxnet was meant to
sabotage nuclear plants in specific countries, but its design
required detailed knowledge of what operating system and
what type of controllers were used in the target plants and
how the communication between machines and sensors could
be intercepted [4].

APT attacks are known for their low and slow characteris-
tics [1]. Since they aim to gather information about the target
system, APTs make great effort to avoid detection and stay
in the system as long as possible, and the attack progresses

This research was supported by the U.S. Office of Naval Research
(ONR) MURI grant N00014-16-1-2710. Kamil Nar and S. Shankar Sas-
try are with the Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley, CA 94720 USA. Email:
{nar,sastry}@eecs.berkeley.edu

very slowly. For instance, Stuxnex was detected in 2010 even
though it was believed to be developed in 2005 [2]. Similarly,
Flame was detected in 2012, but some files particular to this
APT were first observed in Europe as early as December
2007 [5].

After acquiring access to the information they are looking
for, APT attacks can exfiltrate the collected data to their
command and control servers at a very small transmission
rate, unless the attacker is able to send them at once and sees
no benefit in staying in the target system any longer. Before
exfiltrating the data, the files could be reformatted, encrypted,
or attached onto other files in order to avoid the detection
mechanisms of the system. For example, the collected data
were exfiltrated as JPEG files in the case of Duqu [6].

Transmission in a form different than the original files,
along with very small rates of transmission, renders the
detection of data exfiltration of APTs challenging. One of
the potentially effective methods to address this problem is
tainting, or watermarking, the classified files in the system. If
a program in the system attempts to send a tainted file with
sensitive information out of the network, the system could
detect this attempt and prevent the transmission. However,
APTs could copy the original files, recreate them in different
formats and possibly add encryption. Therefore, the system
needs to keep track of every program that accesses any
tainted file and produces some other file anytime later since
that file could potentially contain information obtained from
the original file. Due to this dependence, taint tracking might
easily become burdensome and could lead to frequent false
alarms as many of the files produced by benign processes
could also be seen as threats. To prevent these false alarms
from interfering with the authorized use of the files, trans-
mission of tainted files might be allowed at that instant and
transmission logs could be screened later periodically. This,
however, puts some of the files with sensitive information at
risk of being exfiltrated between two screening times.

Another effective mechanism for detecting APTs is imple-
menting honeypots, which are resources such as computers,
account names, passwords, or files placed in an information
system whose unauthorized use indicates the existence of
an intruder in the system [7]. Required complexity of the
honeypots varies depending on its purpose. For instance, if
the system administrator wants to understand the motives
of a potential intruder, they can place a virtual machine in
the system which is isolated from the critical parts of the
system but is still capable of interacting with an unauthorized
user. If, however, the administrator wants to merely detect the
intruder, then they can place fake files in the system which



contain no valuable information for the authorized users and
should normally not be needed. An attempt to access any
of these files, which are referred to as honey files, reveals
the presence of an intruder in the system. Honey files do
not cause false alarms unless an authorized user accidentally
tries to access them, but they occupy some of the memory
space in the system and the users need to have the necessary
information to distinguish them from the real files.

Even though developing efficient algorithms for dynamic
taint tracking is an active research area [8], [9] and the
use of honeypots is known to be effective against APTs
[10]–[12], there does not exist an analytical model in the
literature to evaluate the security provided by these measures
quantitatively while taking the dynamic nature of APTs into
account. In this paper, we introduce an analytical framework
to evaluate the effect of tainted and honey files on data
exfiltration. In particular, we obtain upper bounds on the
expected amount of files that an intruder can exfiltrate over
a long time horizon given a certain ratio of tainted files and
honey files in the system. We use dynamic programming
and Pontryagin’s Maximum Principle from optimal control
theory [13], [14] to obtain the upper bounds on the amount
of files at risk.

Organization of the rest of the paper is as follows. We in-
troduce a discrete time model to analyze the data exfiltration
in Section II. In Section III, we relax some of the conditions
of the model, provide a continuous time approximation and
obtain an upper bound on the amount of files at risk. Section
IV provides a numerical example of the results obtained and
Section V concludes the paper. All proofs are given in the
Appendix.

II. DATA EXFILTRATION IN DISCRETE TIME

Let Nr and Nh be the number of real files and honey files
in the system, respectively, and let Nr∧t of the real files be
tainted. If the attacker attempts to access any of the honey
files, the attack is detected by the system and any further
data exfiltration is disabled. We assume that the attacker
has no knowledge about which files are honey or tainted
since this is the main reason for their deployment. Therefore,
we assume that all files are equally likely to be accessed.
Given this assumption, if the attacker tries to access k ∈ N
files, it is not detected with probability

(
Nr
k

)
/
(
Nr+Nh

k

)
. If

k � Nr, accessing files does not cause a significant change
in the proportion of files that are not accessed, and we can
approximate this probability by (Nr/(Nr +Nh))

k
=: e−αk,

where α = log (1 + (Nh/Nr)). Similarly, given that the
attacker has accessed only real files, if it tries to send l ∈ N
files out of the network, the transmission is not detected
if none of those files is tainted, which has probability(
Nr−Nr∧t

l

)
/
(
Nr
l

)
. If l � (Nr − Nr∧t), the proportion of

the files not transmitted remains almost the same and we
can approximate this probability by ((Nr −Nr∧t)/Nr)l =:
e−βl, where β = log (Nr/(Nr −Nr∧t)).

We assume that the attacker decides to access ut ∈ [0,∞)
files and transmit vt ∈ [0,M ] files at times t ∈ T :=
{0, 1, . . . , T −1} and tries to maximize the expected number

of files exfiltrated subject to the constraint

0 ≤
∑k

t=0
vt ≤

∑k

t=0
ut for all k ∈ T , (1)

where M is a bound on the amount of files that could
be transmitted in each time interval. This bound could be
imposed by the transmission capacity of the network, or it
could be the maximum transmission rate the attacker can use
to avoid getting detected by the detection mechanisms that
monitor the data flow rate in the system.

Since we assume that the data exfiltration will be ter-
minated once the attacker is detected, the decision of the
attacker at any time is relevant only if it has not been detected
until that time. Therefore, the attacker will determine its
decision at each time assuming that it has not been detected,
and consequently, it will have an open-loop policy.

Our goal is to find an upper bound on the expected number
of files that could be exfiltrated given a certain ratio of
Nh/Nr and Nr∧t/Nr. Since the objective function and the
strategy of the attacker will depend on whether the system
detects the exfiltration of tainted files before or after the
transmission takes place, we will consider these two cases
separately.

A. Detection Before Transmission

Let xk and yk denote the total number of accessed and
exfiltrated files, respectively, until time k:

xk =
∑k

t=0
ut, yk =

∑k

t=0
vt for all k ∈ T ,

and let dk = xk−yk be the total number files that have been
accessed but not transmitted until time k. Note that due to
constraint (1), we have dk ≥ 0 for all k ∈ T .

Now assume that an attempt to transmit tainted files is
detected before the transmission takes place and exfiltration
is disabled at that instant. At time k ∈ T , exfiltration of
vk files is accomplished only if the attacker has not been
detected until then, which has probability

e−αu0−βv0e−αu1−βv1 . . . e−αuk−βvk = e−αxk−βyk .

Therefore, the expected number of files exfiltrated at time k
is vke−αxk−βyk , and the utility of the attacker can be written
as ∑T−1

t=0
vte
−αxt−βyt =

∑T−1

t=0
vte
−αdt−γyt ,

where γ = α+ β. As a result, the goal of the attacker is to
solve

max
{dt,vt|t∈T }

∑T−1

t=0
vte
−αdt−γyt . (2)

Theorem 1. If

1

γ
≥M 1− e−γMT

1− e−γM
, (3)

then the optimal strategy for the attacker is given by v∗t =M
for all t ∈ T . Otherwise, there exists some k∗ ∈ T such that

M
1− e−γM(t+1)

1− e−γM
≤ 1

γ
for all t ≤ k∗ − 1, (4a)



M
1− e−γM(k∗+1)

1− e−γM
>

1

γ
, (4b)

and the optimal policy is given by

v∗t =

{
M if t > T − k∗ − 1,
1
γ

(
1− e−γv

∗
t+1

)
if t ≤ T − k∗ − 1.

Corollary 1. Expected number of files that can be exfiltrated
is bounded by

min

{
1

γ
, M

1− e−γMT

1− e−γM

}
.

Theorem 1 shows that small values of γ, which corre-
sponds to small ratio of tainted files and honey files, have
no effect on the optimal policy of the attacker. That is, the
attacker attempts to exfiltrate files at the highest rate possible
as if there is no tainted files or honey files. However, if γ is
large enough to influence the policy of the attacker, then the
attacker starts with a slow rate of transmission and increases
its rate towards the end of the horizon.

Corollary 1 shows that given a certain ratio of tainted
files and honey files, the expected number of files that the
attacker could exfiltrate can not exceed 1

γ . This implies that
integrating these files into the system provides a protection
mechanism that is immune to the transmission rate and the
length of the horizon, which is typically very long for most
APTs.

B. Detection After Transmission

Now assume that the transmission of tainted files is
detected only after the transmission has completed. If the
attacker accesses and exfiltrates ut and vt files at time t ∈ T ,
then vk files are transmitted at time k with probability

e−αu0e−βv0−αu1 . . . e−βvk−1−αuk = e−αxk−βyk+βvk .

Then the objective of the attacker can be written as

max
{ut,vt|t∈T }

T−1∑
t=0

vte
−αxt−βyt+βvt+(uT+dT−1)e

−αxT−βyT−1 .

(5)
We assume that at the end of the horizon, the attacker
transmits all the files that have been accessed but not
transmitted, which is represented by dT−1 in the second
term in the objective function. Then, we have the following
theorem, which follows from Lemma 1 and Lemma 2 given
in Appendix.

Theorem 2. Let cT = 1
αe and

ct = max
v∈[0,M ]

{
ve−αv + e−γvct+1

}
∀t ∈ T ,

v∗t = argmax
v∈[0,M ]

{
ve−αv + e−γvct+1

}
∀t ∈ T .

Then an attack policy which has

ut = vt = v∗t ∀t ∈ T

and uT = 1
α is optimal, and c0 is the expected amount of

files that could be exfiltrated.

Corollary 2. If

0 = argmax
v∈[0,M ]

{
ve−αv +

1

αe
e−γv

}
, (6)

then the optimal policy is to collect 1
α files and transmit no

files until the end of the horizon, and the expected amount
of files that could be exfiltrated is 1

αe .

Corollary 2 shows that as long as γ is large or M is
small enough to satisfy condition (6), the exact value of
γ influences neither the optimal attacker policy nor the
expected number of files that could be exfiltrated. In other
words, tainting more of the real files does not improve the
protection of the system. Note also that condition (6) holds
only if

γ

αe
> 1,

which will reappear in Theorem 4 in Section III.B.

III. CONTINUOUS TIME APPROXIMATION

In Section II, we assumed ut ∈ [0,∞), i.e., there was
no upper bound on the amount of files that the attacker
can access at any time. Consequently, there was no benefit
in accessing a file but not transmitting it, and the optimal
policies required accessing only the files that are going to be
transmitted at that time instant. In this section, we impose
a bound on ut, and provide a solution by introducing a
continuous time approximation to the problem in Section II.

Let u(t) and v(t) denote the rate at which the files are
accessed and transmitted at time t ∈ [0, T ], and let x(t)
and y(t) be the amount of files that has been accessed and
transmitted until time t, respectively:

ẋ = u, ẏ = v,

with x(0) = y(0) = 0, u(t) ∈ [0,Mu] and v(t) ∈ [0,Mv]
for all t ∈ [0, T ], where Mu ≥ Mv > 0. Note that we have
the condition

0 ≤ y(t) ≤ x(t) ∀t ∈ [0, T ].

A. Detection Before Transmission

The attacker tries to maximize∫ T

0

v(t)e−αx(t)−βy(t)dt.

Similar to the discrete time case, the optimal strategy requires
x(t) = y(t) for all t ∈ [0, T ]. Defining γ = α + β, we can
rewrite the objective of the attacker as maximizing∫ T

0

e−γy(t)v(t)dt =

∫ y(T )

y(0)

e−γydy =
1

γ

(
1− e−γy(T )

)
.

We observe that the attacker tries to maximize y(T ), and
therefore, it keeps the transmission rate at the maximum
value possible for all time. Similar to discrete time case, 1

γ
is an upper bound on the expected number of files that can
be exfiltrated, and this bound becomes tight as the horizon
length T increases.



What we observe in the continuous time model is that
the optimal strategy is to send the files one by one at
the maximum rate, without aggregating or accumulating the
accessed files.

Note that the result of the continuous time model is
consistent with Theorem 1. As the time intervals in the
discrete model become smaller, the bound M also diminishes
while the product MT stays the same. As a result, the
condition (3) in Theorem 1 holds and the optimal policy
requires v∗t =M for all t ∈ T .

B. Detection After Transmission

In this case, the objective of the attacker is to maximize∫ T

0

v(t)e−αx(t)−βy(t)dt+ [x(T )− y(T )]e−αx(T )−βy(T ).

To obtain the optimal strategy, we use Pontryagin’s maxi-
mum principle with state constraints [15], [16]. First define
d(·) = x(·)− y(·), and let

ẏ = v, v(t) ∈ [0,Mv] ∀t ∈ [0, T ],

ḋ = r, r(t) ∈ [−Mv,Mu] ∀t ∈ [0, T ],

with the constraint

v(t) + r(t) ≥ 0 ∀t ∈ [0, T ],

which means that the rate of decrease in the number of
collected files cannot be more than the transmission rate.
Note that we also have the constraint d(t) ≥ 0 for all
t ∈ [0, T ]. Then, we can rewrite the objective function in
terms of d, y, r and v as∫ T

0

v(t)e−αd(t)−γy(t)dt + d(T )e−αd(T )−γy(T ).

The Hamiltonian and the Lagrangian for this problem are

H(d, y, λ1, λ2, r, v) = ve−αd−γy + λ1r + λ2v,

L(d, y, λ1, λ2, r, v, µ) = ve−αd−γy + λ1r + λ2v + µd,

where (λ1, λ2) is the costate, and µ is the Lagrange multi-
plier which satisfies

µ(t) ≥ 0, µ(t)d(t) = 0 ∀t ∈ [0, T ]. (7)

The dynamics of the costate vector is given as

λ̇1 = −∂L
∂d

= αve−αd−γy − µ,

λ̇2 = −∂L
∂y

= γve−αd−γy,

with the terminal values

λ1(T ) = (1− αd(T ))e−αd(T )−γy(T ),

λ2(T ) = −γd(T )e−αd(T )−γy(T ).

The optimal actions maximize the Hamiltonian over the
optimal trajectory:

(r∗, v∗) = argmax
{(r,v)|r+v≥0}

H(d∗, y∗, λ∗1, λ∗2, r, v).

Therefore,

r∗ =

 Mu if λ1 > 0,
−v∗ if λ1 < 0,
any value in [−v∗,Mu] otherwise,

and

v∗ =


argmax
v∈[0,Mv]

v
(
e−αd−γy + λ2

)
if λ1 ≥ 0,

argmax
v∈[0,Mv]

v
(
e−αd−γy + λ2 − λ1

)
if λ1 < 0,

which can be written as

v∗ =


Mv if λ1 ≥ 0, s > 0

or λ1 < 0, s− λ1 > 0,
0 if λ1 ≥ 0, s < 0

or λ1 < 0, s− λ1 < 0,
any value in [0,Mv] otherwise,

where s = λ2 + e−αd−γy. Note that

ṡ = −αre−αd−γy,

s(T ) = (1− γd(T ))e−αd(T )−γy(T ).

By analyzing the relationship between r, v, λ1 and λ2, we
can obtain the form of the optimal policies, which is given
in Theorem 3.

Theorem 3. An optimal policy must have a time instant
t0 ∈ [0, T ] such that

v∗(t) ∈ [0,Mv], r
∗(t) = 0 ∀t ∈ [0, t0),

v∗(t) = 0, r∗(t) ∈ [0,Mu] ∀t ∈ [t0, T ].

To obtain an upper bound on the amount of files at risk,
we can consider the policies with the specific form given in
Corollary 3.

Corollary 3. There exists an optimal policy with 0 ≤ τ0 ≤
τ1 ≤ T such that

v∗(t) =Mv, r
∗(t) = 0 ∀t ∈ [0, τ0),

v∗(t) = 0, r∗(t) = 0 ∀t ∈ [τ0, τ1),

v∗(t) = 0, r∗(t) =Mu ∀t ∈ [τ1, T ].

Theorem 4. Given T ≥ 1
αMu

, the optimal policy of the
attacker is the following. If γ > αe, then

v∗(t) = 0, r∗(t) ∈ [0,Mu] ∀ t ∈ [0, T ] such that d(T ) =
1

α
.

If γ < αe,

v∗(t) =Mv, r
∗(t) = 0 ∀ t ∈ [0, T − t∗)

v∗(t) = 0, r∗(t) =Mu ∀ t ∈ [T − t∗, T ],

where t∗ is the unique solution of

t∗ = argmin
t∈[0, 1/αMu]

e−γMv(T−t)
[
1− γMute

−αMut
]
.

Finally, if γ = αe, then any policy obeying Theorem 3 with
d(T ) = 1

α is optimal.

Corollary 4. The amount of files that the attacker can
exfiltrate is bounded by max

{
1
γ ,

1
αe

}
.



IV. A NUMERICAL EXAMPLE
Remember that by definition

α = log

(
Nr +Nh
Nr

)
, β = log

(
Nr

Nr −Nr∧t

)
, γ = α+β,

where Nr and Nh are the number of real files and honey
files, respectively, and Nr∧t is the number of real files with
taint. Consider a system with Nr = 1000 files which detects
the exfiltration of the tainted files before the transmission
takes place. The expected number of files that an intruder
can exfiltrate is given in Table I for different values of Nh
and Nr∧t. Note that the values correspond to 1

γ , which was
obtained in Corollary 1 and in Section III.A. We observe that
the number of files at risk strictly decreases as Nh or Nr∧t
increases.

TABLE I
EXPECTED NUMBER OF FILES THAT CAN BE EXFILTRATED WITH

DETECTION BEFORE TRANSMISSION

Nh
Nr∧t 20 50 100 200 400

20 25.0 14.1 8.0 4.1 1.9
50 14.5 10.0 6.5 3.7 1.8
100 8.7 6.8 5.0 3.1 1.6
200 4.9 4.3 3.5 2.5 1.4
400 2.8 2.6 2.3 1.8 1.2

Table II displays the expected number of files that an
intruder can exfiltrate if the system detects the transmission
of the tainted files only after the transmission is completed.
The values in the table correspond to the upper bound
obtained in Corollary 4: max{ 1γ ,

1
αe}.

TABLE II
EXPECTED NUMBER OF FILES THAT CAN BE EXFILTRATED WITH

DETECTION AFTER TRANSMISSION

Nh
Nr∧t 20 50 100 200 400

20 25.0 18.6 18.6 18.6 18.6
50 14.5 10.0 7.5 7.5 7.5
100 8.7 6.8 5.0 3.9 3.9
200 4.9 4.3 3.5 2.5 2.0
400 2.8 2.6 2.3 1.8 1.2

In contrast to Table I, in Table II we observe that increas-
ing the number of tainted files does not strictly improve the
security. This is a consequence of the optimal policy of the
intruder when exfiltration of tainted files is detected after the
transmission. When there are relatively few honey files in
the system, and hence, detection due to transmission is more
likely than detection due to access, the attacker chooses to
collect the files but not to transmit them until the end of the
horizon. Since there is no transmission taking place, tainting
does not help to detect the intrusion until all the files are
exfiltrated at the end of the horizon. Note that existence of
honey files becomes crucial to limit the data exfiltration in
this case.

V. CONCLUSION

We introduced an analytical model to quantitatively eval-
uate the security provided by two of the potentially effective
measures against APTs: tainting and tracking the sensitive
files and adding honey files into the system. We showed
that both of these measures limit the amount of files that an
intruder can exfiltrate, and the defense acquired with them is
immune to small rates of transmission, which is typical for
most APTs. We obtained upper bounds on the amount of files
that an intruder can exfiltrate given a certain ratio of tainted
files and honey files in the system. We also showed that
tainting more of the real files does not necessarily improve
the security of the system if the system does not stop the
transmission of tainted files at the instant of transmission. In
this case, presence of honey files becomes crucial for early
detection of an intruder and prevention of data exfiltration.

During our analysis, we assumed that the intruder had the
perfect knowledge of the ratio of tainted files and honey
files in the system, and we observed that the optimal attack
strategy of the intruder changes based on this informa-
tion. However, in a real scenario, an intruder may not have
this knowledge, and it may need to estimate it by observing
the system. Then, the system administrator has an incentive
to deceive the intruder. That is, the system can benefit from
leading the intruder to think that a larger or smaller portion
of the files in the system is tainted or honey files. This results
in a game of deception [17], which is a future direction for
research.

The results obtained show that honey files are essential
in some cases, and in others they can be used to decrease
the ratio of tainted files needed for a certain level of security,
thereby easing the taint tracking. More research and software
development need to be put into automatic creation of honey
files and methods to help the authorized users distinguish
between honey files and real files.

APPENDIX

Proof of Theorem 1. Note that a policy with dt = 0 for all
t ∈ T is at least as good as another policy which differs only
at time t′ with dt′ > 0. In other words, it is advantageous
not to access more files than that is going to be transmitted
in each time interval, and there exists an optimal policy with
ut = vt for all t ∈ T . Therefore, we can simplify the
objective (2) of the attacker as

max
{v0,v1,...,vT−1}

∑T−1

t=0
vte
−γ

∑t
k=0 vk .

Let Vk denote the value function at time k∈{1, 2, . . . , T−1}:

Vk = max
{vk,vk+1,...,vT−1}

∑T−1

t=k
vte
−γ

∑t
i=k vi . (8)



Then, we have

Vk−1 = max
vk−1

max
vk,...,vT−1

∑T−1

t=k−1
vte
−γ

∑t
i=k−1 vi

= max
vk−1

max
vk,...,vT−1

e−γvk−1

(
vk−1 +

T−1∑
t=k

vte
−γ

∑t
i=k vi

)
= max

vk−1

e−γvk−1 (vk−1 + Vk) . (9)

The expression to be maximized is quasiconcave in vk−1
since its partial derivative with respect to vk−1

(1− γvk−1 − γVk)e−γvk−1

changes sign only once. Therefore, the optimal action satis-
fies

v∗k−1 = min

{
1

γ
− Vk, M

}
. (10)

Let k∗ satisfy the conditions (4a-4b). Then,

v∗t =M, Vt =

T−1−t∑
i=0

Me−γM(i+1) for all t > T − k∗− 1

due to the equalities (8) and (10). On the other hand,

v∗T−1−k∗ = min

{
1

γ
− VT−k∗ , M

}
= −VT−k∗ +min

{
1

γ
, M

1− e−γM(k∗+1)

1− e−γM

}
=

1

γ
− VT−k∗ < M

where the last inequality follows from (4b).
Now assume v∗t < M , and hence, v∗t = 1

γ −Vt+1 for some
t ∈ T . From equation (9), we have Vt = e−γv

∗
t (v∗t + Vt+1),

and consequently, Vt = 1
γ e
−γv∗t . In addition,

v∗t−1 = min

{
1

γ
− Vt, M

}
= min

{
1

γ
(1− eγv

∗
t ), M

}
=

1

γ
(1− e−γv

∗
t ) < v∗t < M

where the last equality follows from the assumption v∗t < M
and the inequality

(1− e−γz) < γz ∀z > 0.

An induction argument completes the proof. �

Proof of Corollary 1. Note that V0 is the maximum value of
the utility of the attacker, and it is given by

V0 =

{
M 1−e−γMT

1−e−γM if M 1−e−γMT
1−e−γM ≤ 1

γ ,
1
γ e
−γv∗0 otherwise.

�

Lemma 1. Let Vk(dk−1) denote the value function at time
k ∈ T for the problem (5):

Vk(dk−1) = max
{vt,ut|t≥k}

{
T−1∑
t=k

vte
βvt−α

∑t
i=k ui−β

∑t
i=k vi

+
(
uT + dk−1 +

T−1∑
t=k

(ut − vt)
)
e−α

∑T
t=k ut−β

∑T−1
t=k vt

}
.

Let St denote the set {(vt, dt) : vt + dt ≥ dt−1}. Then, the
value function satisfies

Vt(dt−1) = max
(vt,dt)∈St

e−α(vt+dt−dt−1)
[
vt + e−βvtVt+1(dt)

]
for all t ∈ T with the terminal value

VT (dT−1) =

{
1
αee

αdT−1 if dT−1 ≤ 1
α ,

dT−1 otherwise,

and V0(0) denotes the expected amount of files that could be
exfiltrated.

Proof of Lemma 1. The value function at the end of the
horizon is

VT (dT−1) = max
uT

(uT + dT−1)e
−αuT

= (uT + dT−1)e
−αuT

∣∣
uT=max{0, 1

α−dT−1}

=

{
1
αee

αdT−1 if dT−1 ≤ 1
α ,

dT−1 otherwise.

For every t ∈ T ,

Vt(dt−1) = max

{
vte
−αut + e−αut−βvt

T−1∑
k=t+1

vte
βvk−µ(t,k)

+e−αut−βvt
(
uT + dt−1+ ut− vt +

T−1∑
k=t+1

(uk − vk)
)
e−ν(t)

}
= max
ut≥0,vt∈[0,M ]

{
vte
−αut + e−αut−βvtVt+1(dt−1+ ut− vt)

}
where

µ(t, k) =
∑k

i=t+1
(αui + βvi) ,

ν(t) = α
∑T

i=t+1
ui + β

∑T−1

i=t+1
vi.

Note that dt−1 + ut − vt = dt, and if we write the
maximization over (dt, vt) instead of (ut, vt), the feasible
set {(ut, vt) : ut ≥ 0, vt ∈ [0,M ]} becomes

{(dt, vt)|vt + dt ≥ dt−1, vt ∈ [0,M ]} .

This completes the proof. �

Lemma 2. Consider the problem (5). There exists an optimal
policy with d∗t = 0 for all t ∈ T . Furthermore, if d∗t′ > 0
for some t′ ∈ T , then v∗t = 0 for all t ≥ t′.

Proof of Lemma 2. Given two policies {(vt, ut, dt)}t∈T and
{(ṽt, ũt, d̃t)}t∈T which satisfy

vt = ṽt, d̃t = 0 ∀t ∈ T ,

ũT = uT + dT−1,



we have the inequality

T−1∑
t=0

vte
−αdt−γyt+βvt + (uT + dT−1)e

−α(uT+dT−1)−γyT−1

≤
T−1∑
t=0

vte
−γyt+βvt + ũT e

−αũT−γyT−1 . (11)

Therefore, expected utility given by a policy can only in-
crease or stay the same if dt is set to zero for all t ∈ T .
This implies that there exists an optimal policy with d∗t = 0
for all t ∈ T . The second statement in the lemma is a result
of the fact that (11) becomes a strict inequality if dt′ > 0
and vt > 0 for any t ≥ t′ ≥ 0. �

Lemma 3. An optimal policy must have two time instants
t0 and t1 such that 0 ≤ t0 ≤ t1 ≤ T and

v∗(t) ∈ [0,Mv], r
∗(t) = 0 ∀t ∈ [0, t0),

v∗(t) = 0, r∗(t) ∈ [0,Mu] ∀t ∈ [t0, t1),

v∗(t) ∈ [0,Mv], r
∗(t) =Mu ∀t ∈ [t1, T ].

Proof of Lemma 3. Let τ̃ ∈ (0, T ] be such that d∗(τ̃) > 0.
Then there exists some instant τ ∈ (0, τ̃ ] such that d∗(τ) > 0
and ḋ∗(τ) = r∗(τ) > 0. Note that µ∗(τ) = 0 due to the
constraint (7). Since r∗(τ) > 0, we have either λ∗1(τ) > 0
or λ∗1(τ) = 0.

1) λ∗1(τ) > 0:
r∗(τ) = Mu and λ̇∗1(τ) ≥ 0 since µ∗(τ) = 0, which
implies λ∗1(t) > 0 for all t ≥ τ , and consequently,
r∗(t) =Mu for all t ∈ [τ, T ].

2) λ∗1(τ) = 0:
2i. v∗(τ) > 0:

λ̇∗1(τ) > 0 =⇒ λ∗1(τ
+) > 0, which leads to

the first case: r∗(t) = Mu and λ∗1(t) > 0 for all
t ∈ (τ, T ].

2ii. v∗(τ) = 0:
λ̇1(τ) = 0 and r∗(τ) ∈ [0,Mu] since r∗(τ) ≥
−v∗(τ).

Note that we obtained r∗(t) ≥ 0 for all t > τ , and
since d∗(τ) > 0 and ḋ∗(t) = r∗(t), we have d∗(t) > 0
and µ∗(t) = 0 for all t ∈ (τ, T ]. Consequently, λ∗1(t) is
nondecreasing for all t ∈ (τ, T ]. Then the optimal policy on
the time interval (τ, T ] must first go through the case 2ii, then
the case 2i, and then the case 1. However, τ̃ is an arbitrary
time instant with d∗(τ̃) > 0; therefore, we can consider τ to
be the first instant with ḋ∗(τ) > 0, which corresponds to t0
in the lemma, and this completes the proof. �

Proof of Theorem 3. We need to show that v∗(t) = 0 for all
t ∈ [t1, T ] in Lemma 3. From the proof of Lemma 3, note
that λ∗1(t) ≥ 0 for all t ∈ [t0, T ], and therefore, v∗(t) is
determined based on the sign of s∗(t) in the interval [t0, T ].
Since v∗(t) = 0 for all t ∈ [t0, t1), we know either s∗(t1) <
0 or s∗(t1) = 0.

1) s∗(t1) < 0:
Since r∗(t) ≥ 0 for all t ∈ [0, T ], we have s∗(t) < 0
and v∗(t) = 0 for all t ≥ t1.

2) s∗(t1) = 0:
Since r∗(t) = Mu for all t ≥ t1, we have ṡ∗(t) < 0
for t ≥ t1, s∗(t) < 0 for t > t1, and consequently,
v∗(t) = 0 for all t ∈ (t1, T ].

�

Proof of Corollary 3. Consider an optimal policy that sat-
isfies the conditions in Theorem 3. With this policy, the
objective function of the attacker attains∫ t0

0

v∗(t)e−γy
∗(t)dt+ d∗(T )e−αd

∗(T )−γy∗(t0)

=

(
1− e−γy∗(t0)

)
γ

+ d∗(T )e−αd
∗(T )−γy∗(t0),

which only depends on y∗(t0) and d∗(T ). If we choose τ0
and τ1 as

τ0 =
y∗(t0)

Mv
, τ1 = T − d∗(T )

Mu
,

then the policy given in Corollary 3 is optimal. �

Proof of Theorem 4. We can write the utility of a policy
given in Corollary 3 as∫ τ0

0

Mve
−γMvtdt+Mu(T − τ1)e−αMu(T−τ1)−γMvτ0

=
1

γ
− e−γMvτ0

γ

[
1− γMu(T − τ1)e−αMu(T−τ1)

]
.

Then, we can solve

min
0≤τ0≤τ1≤T

e−γMvτ0
[
1− γMu(T − τ1)e−αMu(T−τ1)

]
︸ ︷︷ ︸

h(τ1)

(12)

to obtain the optimal policy. Note that if the term in the
brackets, h(τ1), can be negative, which corresponds to the
condition γ > αe, then we minimize it and set τ0 = 0. This
means that the attacker will collect 1/α files and not transmit
anything until the end of the horizon.

If the minimum value h(τ1) can achieve is zero, which
corresponds to γ = αe, then the optimal policy requires
collecting 1

α files to make h(τ1) = 0. The attacker can
possibly transmit some files before starting to collect them in
congruence with Theorem 3; this does not change the utility
of the attacker.

If h(τ1) is positive for all τ1 ∈ [0, T ], which corresponds
to the condition γ < αe, then τ0 gets the largest possible
value, which is τ1, to minimize the expression in (12). If we
make the change of variable t = T − τ1, the problem (12)
becomes

min
t∈[0,T ]

e−γMv(T−t)
[
1− γMute

−αMut
]
.

This expression is strictly increasing over [1/αMu, T ]; there-
fore, the minimum is achieved on [0, 1/αMu]. In addition,
the function is quasiconvex over [0, 1/αMu] with a unique
minimizer as long as Mu ≥Mv . �



REFERENCES

[1] Symantec, “Advanced persistent threats: a Symantec perspective,”
2011.

[2] N. Virvilis, D. Gritzalis, “The big four – What we did wrong in
advanced persistent threat detection?”, in Proc. of the International
Conference on Availability, Reliability and Security, 2013.

[3] N. Virvilis, D. Gritzalis, T. Apostolopoulos, “Trusted computing vs.
advanced persistent threats: Can a defender win this game?”, in Proc.
of the 10th IEEE International Conference on Ubiquitous Intelligence
and Computing, 2013.

[4] N. Falliere et al., W32.Stuxnet Dossier: Symantec Security Response.
Mountain View, CA: Symantec, 2011.

[5] B. Bencsath et al., “The Cousins of Stuxnet: Duqu, Flame, and Gauss,”
Future Internet, Vol. 4, pp. 971–1003, 2012.

[6] E. Chian, L. O. Murchu, and N. Falliere, “W32. Duqu: the precursor
to the next Stuxnet,” in Proc. of the 5th USENIX Workshop on Large-
Scale Exploits and Emergent Threats (LEET), 2012.

[7] L. Spitzner, “Honeypots: catching the insider threat,” in Proc. of the
19th Annual Computer Security Applications Conference, 2003.

[8] D. Zhu et al., “Tainteraser: protecting sensitive data leaks using
application-level taint tracking,” SIGOPS Operating Systems Review,
Vol. 45, No.1, pp. 142–154, 2011.

[9] S. Ma et al., “Protracer: towards practical provenance tracing by
alternating between logging and tainting,” in Proc. of Network and
Distributed System Security Symposium, 2016.

[10] N. Virvilis et al., “Changing the game: the art of deceiving sophisti-
cated attackers,” in Proc. of the 6th International Conference on Cyber
Conflict, 2014.

[11] D. Fronimos et al., “Evaluating low interaction honeypots and on
their use against advanced persistent threats,” in Proc. of the 18th
Panhellenic Conference on Informatics, 2014.

[12] Z. Saud et al., “Towards proactive detection of advanced persistent
threat (apt) attacks using honeypots,” in Proc. of the 8th International
Conference on Security of Information and Networks, 2015.

[13] D. P. Bertsekas, Dynamic Programming and Optimal Control, Vol. I,
3rd ed. Belmont, MA: Athena Scientific, 2005.

[14] D. Liberzon, Calculus of Variations and Optimal Control Theory: A
Concise Introduction. Princeton, NJ: Princeton University Press, 2012.

[15] R. F. Hartl et al., “A Survey of the Maximum Principles for Optimal
Control Problems with State Constraints”, SIAM Review, Vol. 37, No.
2, pp. 181–218, 1995.

[16] R. Vinter, Optimal Control. Modern Birkhauser Classics. Boston, MA:
Birkhauser, 2010.

[17] V. J. Baston, F. A. Bostock, “Deception games,” International Journal
of Game Theory, Vol. 17, No. 2, pp. 129–134, 1988.


