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Abstract

Training a neural network with the gradient descent algorithm gives rise to a
discrete-time nonlinear dynamical system. Consequently, behaviors that are typi-
cally observed in these systems emerge during training, such as convergence to an
orbit but not to a fixed point or dependence of convergence on the initialization.
Step size of the algorithm plays a critical role in these behaviors: it determines the
subset of the local optima that the algorithm can converge to, and it specifies the
magnitude of the oscillations if the algorithm converges to an orbit. To elucidate the
effects of the step size on training of neural networks, we study the gradient descent
algorithm as a discrete-time dynamical system, and by analyzing the Lyapunov
stability of different solutions, we show the relationship between the step size of
the algorithm and the solutions that can be obtained with this algorithm. The results
provide an explanation for several phenomena observed in practice, including the
deterioration in the training error with increased depth, the hardness of estimating
linear mappings with large singular values, and the distinct performance of deep
residual networks.

1 Introduction

The depth of a neural network determines the size of the class of functions that it can represent. As the
depth is increased, this class of functions expands provided that the new layers are able to express
the identity mapping. Therefore, the minimum training error that can be achieved by a network
diminishes as its depth is increased. However, the training error of most neural networks degrades
in practice once the number of layers exceeds a certain value; and deeper networks start to perform
worse than their shallower counterparts, as shown in Figure 1 (He et al., 2016). This deterioration
in the training error with increased depth indicates a problem with the method used for training the
neural network; namely, a problem with the convergence of the gradient descent algorithm.

When gradient descent is used to minimize a function, say f : R™ — R, it leads to a discrete-time
dynamical system:

zlk + 1] = z[k] — 6V f(x[k]), (1)

where x[k] is the state of the system, which consists of the parameters updated by the algorithm, and
d is the step size of the algorithm. Every fixed point of the system (1)) is called an equilibrium of the
system, and they correspond to the critical points of the function f.

Unless f is a quadratic function of the parameters, the system described by (I) is either a nonlinear
system or a hybrid system that switches from one dynamics to another over time. Consequently, the
system (I)) can exhibit behaviors that are typically observed in nonlinear and hybrid systems, such as
convergence to an orbit but not to a fixed point, or dependence of the convergence on the initialization.
The step size of the gradient descent algorithm has a critical effect on these behaviors, as shown in
the following two examples.
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Figure 1: Training error of a 20-layer and a 56-layer neural network on CIFAR-10 dataset. The deeper
network leads to a significantly larger training error. Step size of the gradient descent is divided
by 10 at iterations 32k and 48Kk; these instants are shown with the dashed lines. Right after the step
size is decreased, the training error plummets. It cannot be the case that the parameters are slowly
converging to a local optimum before the step size is changed, nor can they be stuck near a local
optimum or a saddle point, because decreasing the step size would have further slowed down the
convergence in those cases. This behavior can only be explained by the fact that the initial step size
is too large for certain regions in the parameter space and the parameters keep oscillating around
a local optimum until the step size is changed. Once the step size is decreased, the magnitude of
the oscillations around the local optimum diminishes, and so does the training error. The figure is
adapted from (He et al., 2016).

Example 1. Convergence to a periodic orbit: Consider the continuously differentiable and convex

function f(z) = §|x|3/ 2, which has a unique local minimum at the origin. The gradient descent
algorithm on this function yields

_ ) zlk] = 0/z[k],  z[k] >0,
alk+1) = { k] + 6+/—a[k], w[k] < 0.

As expected, the origin is the only equilibrium of this system. Interestingly, however, x[k| converges
to the origin only when the initial state x[0] belongs to a countable set S:

S={0,6-6%...}.

For all other initializations, z[k] converges to an oscillation between 62 /4 and —&2 /4. This implies
that, if the initial state x[0] is randomly drawn from a continuous distribution, then almost surely,
x[k] does not converge to the origin, yet |z[k]| converges to §2 /4. In other words, with probability
1, the state x[k]| does not converge to a fixed point, such as a local optimum or a saddle point, even
though the estimation error converges to a finite non-optimal value.

Example 2. Dependence of convergence on the initialization: Consider the function f(z) = z*
where L € N is an even number larger than 2. The gradient descent results in the system

x[k + 1] = x[k] — §Lx[k]* L.
The state x[k] converges to the origin if the initial state satisfies z[0]X~2 < (2/L¢) and z[k] diverges
if 2[0]£2 > (2/LJ).
These two examples demonstrate:
1. the convergence of training error does not imply the convergence of the gradient descent
algorithm to a local optimum or a saddle point,

2. the step size determines the magnitude of the oscillations if the algorithm converges to an
orbit but not to a fixed point,

3. the step size influences the convergence of the algorithm differently for each initialization.



Note that these are consequences of the nonlinear dynamics of the algorithm and not of the
(non)convexity of the function to be minimized. While both of the functions used in the examples
are convex, the identical behaviors are observed during the minimization of nonconvex cost functions
of neural networks as well. In fact, only these behaviors can provide a satisfactory explanation for a
phenomenon observed in Figure 1: right after the step size of the algorithm is decreased, the training
error plummets. It cannot be the case that the parameters are slowly converging to an equilibrium right
before the step size is changed, nor can they be stuck near a local optimum or a saddle point, because
if either were the case, decreasing the step size would have further slowed down the convergence.
These sharp falls can only be explained by the fact that the initial step size is too large for some
regions in the parameter space, and the parameters are oscillating around a local optimum right
before the step size is changed. Once the step size is decreased, the radius of the oscillations around
the equilibrium point diminishes, the distance to the equilibrium point in the parameter space falls
sharply, and consequently, so does the training error.

While training a deep neural network, the dynamical system created by the gradient descent will
usually have multiple equilibria, which coincide with the critical points of the training cost function.
Convergence to these equilibria is in general affected unequally by the step size. For example, for
a given step size, the algorithm might be able to converge to a subset of the local optima but not
to the others independent of the initializations. Therefore, the step size also plays a critical role in
understanding why some solutions are more likely to be obtained instead of the others when the
gradient descent algorithm is used.

1.1 Our contributions

In this paper, we study the gradient descent algorithm as a discrete-time dynamical system during
training deep neural networks, and we show the relationship between the step size of the algorithm
and the solutions that can be obtained with this algorithm. In particular, we achieve the following:

1. We highlight that one of the reasons the training error stops decreasing during training is the
fact that the step size of the algorithm becomes larger than it should be for certain regions in
the parameter space, and the parameters keep oscillating around a local optimum rather than
slowly converge to it or be stuck near a saddle point. In particular, for every fixed step size,
there is a significant possibility that the algorithm converges to an orbit instead of a critical
point of the training cost function.

2. We analyze the Lyapunov stability of the gradient descent algorithm on deep linear networks
and find different upper bounds on the step size to enable convergence to each solution. We
show that for every step size, the algorithm can converge to only a subset of the local optima,
and there are always some local optima that the algorithm cannot converge to independent
of the initialization.

3. We show that symmetric positive definite matrices can be estimated with a deep linear
network by initializing the weight matrices as the identity, and this initialization allows the
use of the largest step size. Conversely, the gradient descent is most likely to converge for
an arbitrarily chosen step size if the weight matrices are initialized as the identity.

4. We show that symmetric matrices with negative eigenvalues cannot be estimated with the
identity initialization, and the gradient descent converges to the closest positive semidefinite
matrix in the Frobenius norm.

5. For 2-layer neural networks with ReLLU activations, we obtain an explicit relationship
between the step size of the gradient descent and the output of the solution that the algorithm
can converge to.

1.2 Related work

It is a well-known problem that the gradient of the training cost function can become disproportionate
for different parameters when training a neural network. Several works in the literature tried to address
this problem. For example, changing the geometry of optimization was proposed in (Neyshabur et al.,
2017) and a regularized descent algorithm was proposed to prevent the gradients from exploding and
vanishing during training.



Deep residual networks, which is a specific class of neural networks, yielded exceptional results in
practice with their peculiar structure (He et al., 2016). By keeping each layer of the network close to
the identity function, these networks were able to attain lower training and test errors as the depth of
the network was increased. To explain their distinct behavior, the training cost function of their linear
versions was shown to possess some crucial properties (Hardt & Ma, 2016). Later, equivalent results
were also derived for nonlinear residual networks under some conditions (Bartlett et al., 2018a).

The effect of the step size on training neural networks was empirically investigated in (Daniel et al.,
2016). A step size adaptation scheme was proposed in (Rolinek & Martius, 2018) for the stochastic
gradient method and shown to outperform the training with a constant step size. Similarly, some
heuristic methods with variable step size were introduced and tested empirically in (Magoulas et al.,
1997) and (Jacobs, 1988).

Two-layer linear networks were first studied in (Baldi & Kornik, 1989). The analysis was extended to
deep linear networks in (Kawaguchi, 2014), and it was shown that all local optima of these networks
were also the global optima. It was discovered in (Hardt & Ma, 2016) that the only critical points of
these networks were actually the global optima as long as all layers remained close to the identity
function during training. The dynamics of training these networks were also analyzed in (Saxe et al.,
2013) and (Gunasekar et al., 2017) by assuming an infinitesimal step size and using a continuous-time
approximation to the dynamics.

Lyapunov analysis from the dynamical system theory (Khalil, 2002; Sastry, 1999), which is the
main tool for our results in this work, was used in the past to understand and improve the training of
neural networks — especially that of the recurrent neural networks (Michel et al., 1988; Matsuoka,
1992; Barabanov & Prokhorov, 2002). State-of-the-art feedforward networks, however, have not been
analyzed from this perspective.

We summarize the major differences between our contributions and the previous works as follows:

1. We relate the vanishing and exploding gradients that arise during training feedforward
networks to the Lyapunov stability of the gradient descent algorithm.

2. Unlike the continuous-time analyses given in (Saxe et al., 2013) and (Gunesekar et al.,
2017), we study the discrete-time dynamics of the gradient descent with an emphasis on the
step size. By doing so, we obtain upper bounds on the step size to be used, and we show
that the step size restricts the set of local optima that the algorithm can converge to. Note
that these results cannot be obtained with a continuous-time approximation.

3. For deep linear networks with residual structure, (Hardt & Ma, 2016) shows that the gradient
of the cost function cannot vanish away from a global optimum. This is not enough, however,
to suggest the fast convergence of the algorithm. Given a fixed step size, the algorithm may
also converge to an oscillation around a local optimum, as in the case of Example 1. We
rule out this possibility and provide a step size so that the algorithm converges to a global
optimum with a linear rate.

4. We recently found out that the convergence of the gradient descent algorithm was also studied
in (Bartlett et al., 2018b) for symmetric positive definite matrices independently of and con-
currently with our preliminary work (Nar & Sastry, 2018). However, unlike (Bartlett et al.,
2018b), we explicitly give a step size value for the algorithm to converge with a linear rate,
and we emphasize the fact that the identity initialization allows convergence with the largest
step size.

2 Upper bounds on the step size for training deep linear networks

Deep linear networks are a special class of neural networks that do not contain nonlinear activations.
They represent a linear mapping and can be described by a multiplication of a set of matrices:

WiWr_q---WolWy,

where W, € R *"i-1 for each i € [L] := {1,2,..., L}. Even though the functions they represent
are linear, their training cost is not a quadratic function of the parameters, and therefore, the dynamics
of the gradient descent is always nonlinear during training of these networks. For this reason, they
provide a simple model to study some of the nonlinear behaviors observed during training.



The training cost functions of the deep linear networks always have multiple optima. In fact, given a
cost function £ (W Wp_1 - -- Wy W), if the point {I¥; }ieqz) is alocal minimum, then {o;W; Fielr)
is also a local minimum for every set of scalars {c; }ie(z) satlsfying ajog - - -ap = 1. Consequently,
independent of the function £, none of the local optima is isolated in the parameter space, and the
cost function is not strongly convex at any point.

Although multiple local optima attain the same training cost for deep linear networks, the dynamics
of the gradient descent algorithm exhibits distinct behaviors around these points. In particular, the
step size required to render each of these local optima stable in the sense of Lyapunov is very different.
Since the Lyapunov stability of a point is a necessary condition for the convergence of the algorithm to
that point, the step size that allows convergence to each solution is also different, which is formalized
in Theorem 1.

Theorem 1. Given a nonzero matrix R € R":*"° and a set of points {x;};c|n) in R™ that satisfy

~ Zfil z;x] = I, assume that R is estimated as a multiplication of the matrices {W;};e(r) by
minimizing the squared error loss

1 N
ﬁ Zi:l ||RI171 — WLWL—l e W2W1I1||§ (2)

where W; € R™*" = for all j € [L]. Then the gradient descent algorithm can converge to a
solution {W;} ;c(r) only if the step size § satisfies
2
0 < = 3 3 (3)
Zj:l D 149541

where A o o .
p; = HWJ . "W2W1’U||, q; = ||’LLTWLWL_1 . W]H V] € [L],

and u and v are the left and right singular vectors of R=W. - W, corresponding to its largest
singular value.

Considering all the solutions {aiWi}ie[L] that satisfy ajas - - -, = 1, the bound in can be
arbitrarily small for some of the local optima. Therefore, given a fixed step size J, the gradient descent
can converge to only a subset of the local optima, and there are always some solutions that the gradient
descent cannot converge to independent of the initialization.

Remark 1. Theorem 1 provides a necessary condition for convergence to a specific solution. It does
not state that given a step size 4, the algorithm converges to a solution which satisfies (3)). It only
rules out the possibility of converging to a large subset of the local optima. It might be the case, for
example, that the algorithm converges to an oscillation around a local optimum which violates (3)
even though there are some other local optima which satisfy (3).

As a necessary condition for the convergence to a global optimum, we can also find an upper bound
on the step size independent of the weight matrices of the solution, which is given next.

Corollary 1. For the minimization problem in Theorem 1, the gradient descent with step size ¢
cannot converge to a global optimum unless the step size 0 satisfies

2
? S TompTE @

where p(R) is the largest singular value of R.

Remark 2. Corollary 1 shows that, unlike the optimization of the ordinary least squares problem, the
step size required for the convergence of the algorithm depends on the parameter to be estimated, R.
Consequently, estimating linear mappings with larger singular values requires the use of a smaller
step size. Moreover, the step size used during training gives information about the solution obtained
if the algorithm converges, which is stated next.

Corollary 2. Assume that the gradient descent with step size 6 has converged to a local optimum
R=W,...W for the minimization problem in Theorem 1. Then the largest singular value of R

satisfies
. 9\ L/(2L-2)
< | = .
p(R) < ( L5)



3 Identity initialization allows the largest step size for estimating symmetric
positive definite matrices

Corollary 1 provides only a necessary condition for the convergence of the algorithm, and the bound
(@) is not tight for every estimation problem. However, if the matrix to be estimated is symmetric and
positive definite, the algorithm can converge to a solution with step sizes close to (@), which requires
a specific initialization of the weight parameters.

Theorem 2. Assume that R € R™*"™ is a symmetric positive semidefinite matrix, and given a set of
points {x;};c(n) which satisfy Zi\;l x;x] = I, the matrix R is estimated as a multiplication of
the square matrices {W} () by minimizing

N
1 2
ﬁ Z ||AR£L'Z - WL v Wlmin-
i=1

If the weight parameters are initialized as W;[0] = I for all i € [L] and the step size satisfies

f<mindy, — L1
=W T Tp(RRT-D/L [
then each W; converges to R''© with a linear rate.

Remark 3. Theorem 2 shows that the algorithm converges to a global optimum despite the noncon-
vexity of the optimization, and it provides a case where the bound (@) is tight. The tightness of the
bound implies that for the same step size, most of the other global optima are unstable in the sense
of Lyapunov, and therefore, the algorithm cannot converge to them independent of the initialization.
Consequently, using identity initialization allows convergence to a solution which is most likely to be
stable in the sense of Lyapunov for an arbitrarily chosen step size.

Remark 4. The fact that the identity initialization allows convergence to a global optimum even for
large step sizes is remarkable. Given that the identity initialization on deep linear networks is equiva-
lent to the zero initialization of linear residual networks (Hardt & Ma, 2016), Theorem 2 provides an
explanation for the exceptional performance of residual networks as well (He et al., 2016).

When the matrix to be estimated is symmetric but not positive semidefinite, the bound () is still tight
for some of the global optima. In this case, however, the eigenvalues of the estimate cannot attain
negative values if the weight matrices are initialized with the identity.

Theorem 3. Let R € R™*"™ in Theorem 2 be a symmetric matrix such that the minimum eigenvalue
of R, Amin(R), is negative. If the weight parameters are initialized as W;[0] = I for all i € [L] and
the step size satisfies

d < min 1 1 1
- 1 — Amin(R)’ L’ Lp(R)2(L-D/L [’

then the estimate R = W, --- W, converges to the closest positive semidefinite matrix to R in
Frobenius norm.

4 Effect of step size on training two-layer networks with ReLLU activations

In Section 2, we analyzed the relationship between the step size of the gradient descent algorithm and
the solutions that can be obtained by training deep linear networks. A similar relationship exists for
nonlinear networks as well. The following theorem, for example, provides an upper bound on the
step size for the convergence of the algorithm when the network has two layers and ReLU activations.

Theorem 4. Given a set of points {x; }ic[n] in R", let a function f : R" — R™ be estimated by a
two-layer neural network with ReLU activations by minimizing the squared error loss:

1 N 2
1;(1{/13 3 Zi:l [Wg(Va; —b) — f(z:)][5,

where g(-) is the ReLU function, b € R" is the fixed bias vector, and the optimization is only over the
weight parameters W € R™*" and V' € R"*". If the gradient descent algorithm with step size §

converges to a solution (W, V), then the estimate f(x) = Wg(Va — b) satisfies

R 1
) ) < .
max |l F (=)l < 5



Theoremshows that if the algorithm is able to converge with a large step size, then the estimate f (x)
must have a small magnitude for large values of ||z||.

Similar to Corollary 1, the bound given by Theorem 4 is not necessarily tight. Nevertheless, it high-
lights the effect of the step size on the convergence of the algorithm. To demonstrate that small
changes in the step size could lead to significantly different solutions, we generated a piecewise
continuous function f : [0, 1] — R and estimated it with a two-layer network by minimizing

S W (Ve —0) — f ()

with two different step sizes § € {2-107%,3 - 107%}, where W € R'*20, vV ¢ R?0p ¢ R0,
N = 1000 and z; = /N for all ¢ € [N]. The initial values of W, V" and the constant vector b were
all drawn from independent standard normal distributions; and the vector b was kept the same for both
of the step sizes used. As shown in Figure 2, training with § = 2 - 10~* converged to a fixed solution,
which provided an estimate f close the original function f. In contrast, training with § = 3 - 10~4
converged to an oscillation and not to a fixed point. That is, after sufficient training, the estimate kept
switching between fodd and feven at each iteration of the gradient descent.

§=2-10"* §=3-10"14
3.8} - ‘ ‘ ‘ 1 3.8} - - ‘
—  fl) —  flx)
33— @) I Y J:c“d(z)
- - fo,vou(w) “."‘

1.8 \ \ \ \
0 . . .

Figure 2: Estimates of the function f obtained by training a two-layer neural network with two
different step sizes. [Left] When the step size of the gradient descent is § = 2 - 10™%, the algorithm
converges to a fixed point, which provides an estimate f close to f. [Right] When the step size is
5§ =3-107%, the algorithm converges to an oscillation and not to a fixed solution. That is, after

sufficient training, the estimate keeps switching between fodd and feven at each iteration.

5 Discussion

When gradient descent is used to minimize a function, typically only three possibilities are considered:
convergence to a local optimum, to a global optimum, or to a saddle point. In this work, we considered
the fourth possibility: the gradient descent may not converge at all — even in the deterministic setting.
The training error may not reflect the oscillations in the dynamics, or when a stochastic optimization
method is used, the oscillations in the training error might be wrongly attributed to the stochasticity
of the algorithm. We underlined that, if the training error of an algorithm converges to a non-optimal
value, that does not imply the algorithm is stuck near a bad local optimum or a saddle point; it might
simply be the case that the algorithm has not converged at all.

We showed that step size of the gradient descent influences the dynamics of the algorithm substantially.
It renders some of the local optima unstable in the sense of Lyapunov, and the algorithm cannot
converge to these points independent of the initialization. It also determines the magnitude of the
oscillations if the algorithm converges to an orbit around an equilibrium point in the parameter space.

In Corollary 2 and Theorem 4, we showed that the step size required for convergence to a specific
solution depends on the solution itself. This reveals that some solutions, such as linear functions with



large singular values, are harder to converge to. Given that there exists a relationship between the
Lipschitz constants of the estimated functions and their generalization error (Bartlett et al., 2017),
this result could provide a better understanding of the generalization of deep neural networks.
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Appendix

A Proof of Theorem 1 and Corollary 1

Lemma 1. Let A, B € R™*" be symmetric and positive semidefinite. Then, (A, B) > 0

Proof. We can write Bas B =Y., A\ju;u; , where A; > 0 forall i € [n] and u u; = 0if i # j.
Then,

(A, B) = trace { AB} = trace {AZ Aiuu; } Z:;l i, Au; > 0. |

Lemma 2. Let f : R™*™ — R™*™ e a linear map defined as f(X) = Ele A; X B;, where
A; € R™*™ gnd B; € R™*™ are symmetric positive semidefinite matrices for all i € [L]. Then, for
every nonzero u € R™ and v € R", the largest eigenvalue of f satisfies

Amax(f) Z WZ’L 1 u A U)( TB U)

Proof. First, we show that f is symmetric and positive semidefinite. Given two matrices X,Y &€
R™*"™ we can write

(X, f(Y)) = trace {Z, XTAiYBi} = trace {Zv BiYTAZ-X} =Y, f(X)),
(X, f(X)) = trace {Z XTAiXBi} =3 (XTAX,B) >0,

where the last inequality follows from Lemma 1. This shows that f is symmetric and positive
semidefinite. Then, for every nonzero X € R™*" we have

1
(X, X)

Amax(f) 2 (X, F(X)).

In particular, given two nonzero vectors u € R™ and v € R",

Amax(f) = m@UTaJ"(UUT» Wzl . (u" Au)(v" Biv). n

Proof of Theorem 1. The cost function (2) in Theorem 1 can be written as
%trace {Wr--- Wy —R)T(W,--- Wy —R)}.
Let E denote the error in the estimate, i.e. £ = W, ---W; — R. The gradient descent yields
Wilk + 1] = Wi[k] — W, 1 [K] - - W, [K]E[K]W, k] --- W,;L [k] Vi€ [L]. (5)
By multiplying the update equations of W;[k| and subtracting R, we can obtain the dynamics of E as
Ek+1] = —521_ A[kK|E[K]B;[k] + o( E[K]), (6)
where o(+) denotes the higher order terms, and
Ay =WiWpoy - Wi WLy - W W/ vie L],

By =W, W, -+ W, \ W,y - - WoW, ViclL).

Lyapunov’s indirect method of stability (Khalil, 2002; Sastry, 1999) states that given a dynamical
system z[k + 1] = F(z[k]), its equilibrium z* is stable in the sense of Lyapunov only if the
linearization of the system around z*

(xlk+1] —2") = (x[k] —2") + ?Tl; ) (x[k] — z*)

r=x



does not have any eigenvalue larger than 1 in magmtude By usmg this fact for the system defined by

-(@) we can observe that an equilibrium {W }ier) with Wy --- Wi = Ris stable in the sense of
yapunov only if the system

(E[k+ 1] —R+R) - (E[k] —132+R) —52; A (E[k] —R+R) B

does not have any eigenvalue larger than 1 in magnitude, which requires that the mapping

FE) =3 A

1 EB@" .
{W;} {W;}

J

)

does not have any real eigenvalue larger than (2/6). Let u and v be the left and right singular vectors

of R corresponding to its largest singular value, and let p; and g; be defined as in the statement of
Theorem 1. Then, by Lemma 2, the mapping f in . [7) does not have an eigenvalue larger than (2/0)

only if
L 2
2 2
E z‘:lpi_lqi"'l < 5

which completes the proof. ]
Proof of Corollary 1. Note that

Giv1pi = lut WeWr oy - Wi || Wi - - WoWiolly > lu" Wy - Wio|l, = p(R).
As long as p(R) # 0, we have p; # 0 for all ¢ € [L], and therefore,

2
b
7%271%‘2“ > pzlp(R)2~ )]

%

Using inequality (8], the bound in Theorem 1 can be relaxed as

2 _1
§< 2(2%_ pizlp(R)Q) . )

11pi

Since [T, (pi/pi—1) = p(R) # 0, we also have the inequality

2
ZL Pi—1 Lo(R)? > Z P(R)2 *Lp(R)Q(L n/L,
i=1 p i=1 p(R)l L)

and the bound in (9) can be simplified as

- LP(R)2(L—1)/L‘
B Proof of Theorem 2

Lemma 3. Let A\ > 0 be estimated as a multiplication of the scalar parameters {w;};c() by
minimizing % (wy, - - - wowy — A)? via gradient descent. Assume that w;[0] = 1 for all i € [L]. If the
step size § is chosen to be less than or equal to

5, = { LA if A € [1,00),
B (1—A> 1= AVE) ifxe(0,1),

then |w;[k] — AT | < B(0)%|1 — AT | for all i € [L), where

B(8) = L—A=DAYE -1t ifxe (1,00),
T 1 0LAETD/E if X € (0,1].

Proof. Due to symmetry, w;[k] = w;[k] for all k € N for all ¢, j € [L]. Denoting any of them by
wlk], we have

wlk + 1] = w[k] — Sw® k] (w k] — N).

10



To show that w|k] converges to A1/, we can write
wlk + 1] = AVF = p(wlk])(w[k] = AVF),
where pw) = 1 5w ZL—l wi \L-1-9)/L
=0
If there exists some 3 € [0, 1) such that
0 < p(wlk]) < Bforall k € N, (10)

then w(k] is always larger or always smaller than '/, and its distance to A/~ decreases by a factor
of (3 at each step. Since u(w) is a monotonic function in w, the condition holds for all k if it
holds only for w[0] = 1 and A\*/%, which gives us d. and 5(4). [ |

Proof of Theorem 2. There exists a common invertible matrix U € R™*" that can diagonalize all
the matrices in the system created by the gradient descent: R = UARU ", W; = UAw, U for all
i € [L]. Then the dynamical system turns into n independent update rules for the diagonal elements
of Ag and {Aw;, }ic[z). Lemma 3 can be applied to each of the n systems involving the diagonal
elements. Since 0. in Lemma 3 is monotonically decreasing in A, the bound for the maximum
eigenvalue of R guarantees linear convergence. ]

C Proof of Theorem 3

Lemma 4. Assume that A < 0 and w;[0] = 1 is used for all i € [L] to initialize the gradient descent
algorithm to solve
. 2
min —(wp ... wowy — N)”.
o, 0 g g (0 w0201 = )

Then, each w; converges to 0 unless § > (1 — \) ™.

Proof. We can write the update rule for any weight w; as
wlk + 1] = wlk] (1 — sow™ 2[k] (w"[k] — \))

which has one equilibrium at w* = \'/% and another at w* = 0. If 0 < § < 1/0(1 — \) and
w[0] = 1, it can be shown by induction that

0<1—éow"2[k] (w"[k] - \) < 1

for all k£ > 0. As a result, w[k] converges to 0. [ ]

Proof of Theorem 3. Similar to the proof of Theorem 2, the system created by the gradient descent
can be decomposed into n independent systems of the diagonal elements of the matrices A and
{Aw; }iez)- Then, Lemma 3 and Lemma 4 can be applied to the systems with positive and negative
eigenvalues of R, respectively. |

D Proof of Theorem 4

To find a necessary condition for the convergence of the gradient descent algorithm to (W, V), we
analyze the local stability of that solution in the sense of Lyapunov. Since the analysis is local and the

function g is fixed, for each point x; we can use a matrix G; that satisfies GZ(Vxl -b) = g(f/xz —b).
Note that G; is a diagonal matrix and all of its diagonal elements are either O or 1. Then, we can
write the cost function around an equilibrium as

1 N
5. trace {[WGi(Vay = b) = f(a)]| WG(Va =) = f(a)]} -
Denoting the error WG;(Vx; — b) — f(x;) by e;, the gradient descent gives

Wik +1 =Wk 6" elk(V[kla; —5)TCT,

11



VIk 1 = VK -3 GTWTelkz]

T

Let e denote the vector (e ... ex)"

. Then we can write the update equation of e; as
ejlk+1] = ¢j[k] = WKIG; Y GIWIK] Tes[Ka ;
—0Y_ eilK(VIkz = b) TG G(VIk]z; — b) + ofe[k]).

Similar to the proof of Theorem 1, the equilibrium (W, V) can be stable in the sense on Lyapunov
only if the system

ejlk+1] = e;[k] —5Zi WGjG;rWTei[k’]x;rxj —5Zi e[k (Vi —b)TG;—Gj(f/xj =b) (11)

does not have any eigenvalue larger than 1 in magnitude. Note that the linear system in (IT)) can
be described by a symmetric matrix, whose eigenvalues cannot be larger in magnitude than the
eigenvalues of its sub-blocks on the diagonal, in particular those of the system

e;lk +1] = e;[k] — SWG,;G] W Tej[k]z] z; — dej[k](Va; —b)TG] G;(Vay; —b). (12
The eigenvalues of the system are less than 1 in magnitude only if the eigenvalues of the system
h(u) = WGjG;WTuijxj +u(Va; — b)TGjTGj(f/xj —b)
are less than (2/0). This requires that for all j € [N] for which f(x;) # 0,

2 <f(fﬁj)7h(f($j))>
 (fxy), fx)))

)
= (IETWT ) P2+ 1) 121GV — b))
@ N v S
o1 (a0 G GTWT f ()| el 4 G, (Ve — B
RICIE I(Va; —b)TGT|? ’ Y
1 ¢ 2 2 9 2
= T — X xX; + GVJ)—b
”Gj(vxj_b)uzllf( D2 lasl* + 1G5 (Va; = )|
> 2 f () lllla5]l-
As a result, Lyapunov stability of the solution (W, V) requires
1 ~
5 = max|| f(a)l]. m
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