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Abstract— Hybrid dynamical systems have proven to be
a powerful modeling abstraction, yet fundamental questions
regarding their dynamical properties remain. In this paper,
we develop a novel solution concept for a class of hybrid
systems, which is a generalization of Filippov’s solution concept.
In the mathematical theory, these hybrid Filippov solutions
eliminate the notion of Zeno executions. Building on previous
techniques for relaxing hybrid systems, we then introduce a
family of smooth control systems that are used to approximate
this solution concept. The trajectories of these relaxations vary
differentiably with respect to initial conditions and inputs, may
be numerically approximated using existing techniques, and
are shown to converge to the hybrid Filippov solution in the
limit. Finally, we outline how the results of this paper provide
a foundation for future work to control hybrid systems using
well-established techniques from Control Theory.

I. INTRODUCTION

The hybrid dynamical systems framework has been used
as an effective modeling technique for a wide range of
engineering systems. However, the flexibility the framework
provides does not come without its challenges. Despite
considerable efforts to extract classic systems theoretic prop-
erties from hybrid systems [1], [2], [3], fundamental ques-
tions regarding even the existence and uniqueness of their
executions remain, as the interplay between their discrete
and continuous dynamics is not fully understood.

Zeno executions [4], executions which undergo an infinite
number of discrete transitions in finite time, have proven
particularly troublesome to analyze. Numerous frameworks
have been proposed to regularize [5], relax [6], or otherwise
transform Zeno hybrid systems [7], [8] into approximations
or continuations which do not display Zeno phenomena. Yet,
a single solution concept which directly describes executions
past the Zeno point has remained elusive.

Meanwhile, significant progress has been made towards
characterizing the topological structure of hybrid systems
[1], [6], [9], [8]. In this paper, we consider a class of
hybrid systems similar to those analyzed in [1], which may
be endowed with the structure of a smooth manifold, or
hybridfold. In particular, we find these systems appealing
in light of the results from [9], which demonstrated hybrid
models naturally reduce to this class of hybrid systems near
periodic orbits, and broad efforts to control legged robots on
low dimensional hybrid models [10].

As our first contribution, we generalize the solution con-
cept of Filippov [11] to this class of hybrid systems. These
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hybrid Filippov solutions are defined using the solution to a
single differential inclusion over a smooth topological man-
ifold. These solutions are not defined using discrete transi-
tions, thus the notion of Zeno executions cannot apply to this
solution concept. We then relax the problem, introducing a
family of smooth, stiff vector fields over the relaxed topology
from [6], which can be used to approximate the hybrid
Filippov solution in both continuous and discrete time. These
relaxed vector fields are an extension of Teixeira’s method for
regularizing classical Filippov systems [12], and intuitively
these vector fields can be thought of as a generalization
of the regularization in space from [5] and the smoothing
techniques from [1] and [9]. Convergence guarantees for
these relaxed hybrid trajectories to the hybrid Filppov so-
lution are provided, suggesting hybrid dynamics are merely
the limit of a family of stiff interactions. Numerous well-
established control techniques [13], [14] immediately apply
to our relaxations, opening new avenues to control hybrid
dynamical systems using the results we establish here.

II. MATHEMATICAL NOTATION

In this section we fix mathematical notation used through-
out the paper. We assume a strong background in topology
and differential geometry. If the reader is unfamiliar with any
of the concepts used throughout the paper, they are refered
to [15] or [14, Appendix C] for comprehensive introductions
to these topics.

Given a set D, ∂D is the boundary of D and int(D) is
the interior of D. For a topological space V , we let B(V )
denote all subsets of V . Given a metric space (X, d), we
denote the ball of radius δ centered at x ∈ X by Bδ(x).
The 2-norm is our metric of choice for finite-dimensional
real spaces, unless otherwise noted. We use coS to denote
the convex closure of a set S, which is a subset of some
vector space V . Given a collection of sets {Di}i∈I the dis-
joint union of this collection is

∐
i∈I Di =

⋃
i∈I Di × {i},

which is endowed with the piecewise topology. For a
topological space S and a function f : A → B, where
A,B ⊂ S , we define the following equivalence relation:
A ∼ B =

{
(a, b) ∈ S × S : a ∈ f−1(b)

}
, and denote the set

of equivalence classes of S under ∼ by S
Λf

. There is a
natural quotient projection π : S → S

Λf
taking each s ∈ S

to its equivalence class [s] ∈ S
Λf

and we endow S
Λf

with the
finest topology that makes π continuous [15, Theorem A.27],
the quotient toplogy. The reader is referred to [6] or [1] for
details on how these concepts will used throughout this paper.

A topological space M is said to be a topological n-
manifold if it is covered by an atlast of coordinate charts
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{Uα, ϕα}α∈A, where each Uα ⊂M is open and ϕα : Uα →
Rn is a homeomorhpism onto its range. We say that M is a
topological manifold with boundary if we instead remove the
requirement that Uα is open and we have ϕα : Uα → Hn,
for each α ∈ A, where Hn = {(x1, . . . , xn) : xn ≥ 0}. We
say that a topological manifold is smooth if its coordninate
charts are smooth. In particular, when we say the coordinate
charts are smooth we mean that ϕi ◦ ϕ−1

j is a smooth
diffeomorphism over ϕj(Ui ∩ Uj), for i, j ∈ A such that
Ui ∩ Uj is non-empty. Each point x ∈ M is endowed with
a tangent space TxM , which is an n-dimensional vector
space, and we denote the tangent bundle of M as TM =∐
x∈M TxM .
Inspired by [14, Definition 4.3.1], we define a control

system to be a 3-tuple S = (M, U, F ) where M is a n-
dimensional topological manifold, U ⊂ Rm is a space of
admissible inputs, and F : M× U → TM is a vector field
defining the dynamics of the system, recalling that TM
is the tangent bundle of M. We say that S is a smooth
control system if M is smooth topological manifold and F
is a smooth map. Throughout the paper, we will consider
input signals in the space of piecewise continuous controls,
which we denote with PC([0, T ], U). The trajectories of
smooth control systems are unique, and vary differentiably
with respect to their initial conditions and inputs (see e.g.
[14, Chapter 4]). Given two smooth n-manifolds M,N and
a mapping P : M → N , then at each x ∈ M there is an
associated linear map DP (x) : TxM → TP (x)N , known as
the pushforward. In coordinates, DP is simply the Jacobian
of P . If P is a diffeomorphism, then a smooth vector field
F : M×U → TM pushes forward to a unique smooth vector
field DP ◦F : N ×U → TN . Throughout the paper we use
the term smooth to mean infinitely differentiable and it is
understood that diffeomorphisms are smooth mappings.

III. FILIPPOV SOLUTIONS

We now briefly introduce Filippov’s solution concept
[11] for differential equations with discontinuous right-hand
sides. Let g : Rn → R be a smooth regular map, and let
D+ = {x ∈ Rn : g(x) > 0}, D− = {x ∈ Rn : g(x) < 0},
and let Σ = {x ∈ Rn : g(x) = 0} be a smooth (n − 1)-
manifold separating D+ and D−. Define f : Rn×U → TRn
by

f(x, u) =

{
f+(x, u) if x ∈ D+

f−(x, u) if x ∈ D−,
(1)

where f+ and f− are smooth globally Lipschitz continuous
functions from Rn×U → TRn, and U is a space of admis-
sible controls. Note that f is undefined and discontinuous
along Σ. The Filippov Regularization of f is the set-valued
map F [f ] : D × U → B(TRn), where

F [f ](x, u) = co
⋂
δ>0

⋂
µ(S)=0

f(Bδ(x)− S, u), (2)

and
⋂
µ(S)=0 denotes the intersection over all sets of non-

zero measure. We say that a Filippov solution for this system
on the time interval [0, T ], given data x0 ∈ D and u ∈

PC([0, T ], U), is an absolutely continuous curve x : [0, T ]→
D satisfying the differential inclusion with conditions x(0) =
x0 and

ẋ(t) ∈ F [f ](x(t), u(t)) a.e t ∈ [0, T ]. (3)

The following is a sufficient condition for the uniqueness
of Filippov solutions from [11, Chapter 2.10, Theorem 2].

Lemma 1: Assume that for each x, u ∈ Σ×U that either
∇gT (x) · f−(x, u) > 0 or ∇gT (x) · f+(x, u) < 0. Then
the Filippov solutions for the discontinuous system (1) are
unique.

IV. HYBRID DYNAMICAL SYSTEMS

In this section we introduce the class of hybrid dynamical
systems considered in this paper. The following definition is
inspired by [6].

Definition 1: A hybrid dynamical system is a seven-tuple

H = (J ,Γ,D,U ,F ,G,R), (4)

where:
• J is a finite set indexing the discrete states of H;
• Γ ⊂ J × J is the set of edges, forming a graphical

structure over J , where edge e = (j, j′) ∈ Γ corre-
sponds to a transition from j to j′;

• D = {Dj}j∈J is the set of domains, where Dj ⊂ Rn
is a smooth n-dimensional manifold with boundary;

• F = {fj}j∈J is the set of vector fields, where each
fj : Rn × U → TRn is smooth and globally Lipschitz
continuous, and defines the continuous dynamics of the
system on Dj ;

• G = {Ge}e=(j,j′)∈Γ is the set of guards, where each
G(j,j′) ⊂ ∂Dj is a smooth embedded (n−1)-manifold;

• R = {Re}e=(j,j′)∈Γ is the set of reset maps where, for
each e = (j, j′) ∈ Γ, Re : Rn → Rn is smooth and
globally Lipschitz continuous and Re(Ge) ⊂ ∂Dj′ .

Taking after [9], let us define G =
∐
e∈ΓGe and D =∐

j∈J Dj , where we note that ∂D =
∐
j∈J ∂Dj . Next,

define the map R : G → ∂D by R(x) = Re(x) for each
x ∈ Ge, and e ∈ Γ. We endow our hybrid systems with
the quotient topology introduced in [1], but borrow our
notation from [6]. We define the hybrid quotient space to
be M =

∐
j∈J Dj

ΛR
. The construction of the hybrid quotient

space for a simple two-mode hybrid system is depicted in
Figure 1. Intuitively, the hybrid quotient space is constructed
by attaching Ge to Re(Ge), so that M is a connected
topological space. When interpreted on this space, there are
no loner any jumps in hybrid trajectories. In fact, trajectories
of hybrid systems, to be defined formally in the sequel, are
absolutely continuous on M with respect to the following
metric from [6]. Let d : Rn × Rn → R+ be a metric, then
define dM : M×M→ R+ for x, y ∈M by

dM(x, y) = inf
k∈N

{
k∑
i=1

d(pi, qi) : x = p1, y = qk, qi ∼ pi+1

}
.

(5)
Though we refer the reader to [6] for further details,

intuitively, for two points x, y ∈ M the distance dM(x, y)



Fig. 1: Construction of the Hybrid Quotient Space (right)
from the disjoint union of the continuous domains (left) for
a bimodal hybrid system with a single edge.

is simply the shortest curve connecting the two points on
M. Throughout the rest of the paper, whenever we refer to
trajectories onM as absoloutely continuous, it is understood
to be with respect to this metric. Next, we invoke an
assumption inspired by those made in [1] and [9, Section 3]
that ensures M is a smooth manifold [9, Theorem 3].

Assumption 1: The map R is a diffeomorpshism onto its
range. 1

As demonstrated by our examples, hybrid models for me-
chanical systems undergoing elastic impacts satisfy this
Assumption. It was also shown in [9] that hybrid systems
collapse to (sub)-systems satisfying this hypothesis near
periodic orbits. We make one final assumption about our
hybrid systems, which is not made in [1] or [9]:

Assumption 2: For each e = (j, j′) ∈ Γ there exists unit
vectors ĝe, r̂e ∈ Rn and scalars ce, de such that Ge ⊂ Ĝe
and Re(Ge) ⊂ R̂e, where

1) Ĝe : =
{
x ∈ Rn : ge(x) : = ĝTe x− ce = 0

}
; and,

2) R̂e : =
{
x ∈ Rn : re(x) : = r̂Te x− de = 0

}
,

and ge(x) ≤ 0 for each x ∈ Dj , and re(x) ≥ 0 for each
x ∈ Dj′ .

In other words, each guard set and its image are subsets
of (n−1)-dimensional planes. As was demonstrated in [16],
it is often possible to transform a hybrid system with non-
linear guard sets into an equivalent hybrid systems satisfying
Assumption 2 by adding auxiliary continuous states to the
hybrid system. Employing this additional Assumptions will
enable us to develop a set of techniques which will greatly
simplify our analysis of the executions of hybrid systems, as
will become apparent in Section VI.

Notation: For the rest of the paper let π : D → M
denote the quotient map induced by R. For each j ∈ J ,
define aj : Dj → Dj′ × {j} by aj(x) = x × {j}, for each
x ∈ Dj . Subsequently, let πj : Dj → π ◦ aj(Dj) be defined
by πj = π ◦ aj , a diffeomorphism which takes each domain
from Rn to the hybrid quotient space. For each j ∈ J
we define Nj = {e ∈ Γ: ∃j′ ∈ J s.t. e = (j, j′)}, to be the
neighborhood of mode j as in [6].

1This Assumption has several implications. First, it implies that
G

∐
R(G) = ∂D. Next, it implies that, for each e ∈ Γ, Re is a

diffeomorphism onto its range. Finally, the Assumption implies that for
each pair of distinct edges e, e′ ∈ Γ that if Ge ∩ Ge′ 6= ∅, then e and
e′ can be combined into a single edge ê, where Gê = Ge ∪ Ge′ , and
R̂ê : Gê → ∂D is a diffeomorphism onto its range and Rê(x) = Re(x)
if x ∈ Ge and Rê(x) = Re′ (x) if x ∈ Ge′ . Thus, as far as our notation
in this paper is concerned, we will proceed as if guards do not overlap.

Fig. 2: Construction of the relaxed hybrid quotient space
(right) from the disjoint union of the relaxed continuous
domains (left) for a bimodal hybrid system with a single
edge e = (1, 2).

V. RELAXED HYBRID TOPOLOGY

We construct our relaxations on the relaxed hybrid topol-
ogy from [6], which is constructed by attaching an ε-thick
strip to each of the guard sets. The novelty of our relaxations
arise from the smooth vector fields we impart over this
topology, to be defined in Section VII. Here, we simply
introduce the relaxed topology from [6] for use later.

Concretely, for each e ∈ Γ we define the relaxed strip

Sεe := {p+ ĝeq ∈ Rn : p ∈ Ge and q ∈ [0, ε]} (6)

and then for each j ∈ J define the relaxed domain Dε
j =

Dj ∪e∈Nj
Sεe . Next, for each e = (j, j′) ∈ Γ we then define

the relaxed guard set

Gεe :=
{
x ∈ Sεe : gεe(x) : = ĝTe x− (ce + ε) = 0

}
. (7)

We then define Rεe : Rn → Rn by

Rεe(x) = Re(x− ĝeε), (8)

and we note that Rεe(G
ε
e) = Re(Ge).

Define Dε =
∐
j∈J D

ε
j and let Gε =

∐
e∈ΓG

ε
e. Sub-

sequently define Rε : Gε → ∂Dε by Rε(x) = Rεe(x) if
x ∈ Gεe, for each e ∈ Γ, and then define the relaxed hybrid
quotient space to be Mε = Dε

ΛRε
. The construction of the

relaxed hybrid quotient space is depicted in Figure 2.
Proposition 1: Assume H satisfies Assumption 1. Then,

for each ε > 0, Mε is a smooth topological manifold.
Proof: Note that for each j ∈ J the domain Dε

j is a
smooth topological manifold with boundary. Furthermore, if
Assumption 1 holds for a given hybrid system, then it also
holds for its ε-relaxations. Thus,Mε is a smooth topological
manifold, by an appeal to [9, Theorem 3].

As shown in [6], a relaxed distance metric on Mε,
which we denote dMε : Mε ×Mε → R+, may be defined
analogously to how dM was defined in (5). We also borrow
the following metric between curves (trajectories) on Mε

from [6], which will be used to study the convergence of our
relaxed trajectories. Let γ1, γ2 : [0, T ]→Mε, then define

ρε(γ1, γ2) = sup{dMε(γ1(t), γ2(t)) : t ∈ [0, T ]}. (9)

Notation: Let πε :
∐
Dε
j → Mε denote the quotient

projection induced by Rε. For each j ∈ J , define aεj : Dε
j →

Dε
j×{j} by aεj(x) = x×{j}, then let πεj : Dε

j → πε◦aεj(Dε
j )

be defined by πεj = πε ◦ aεj .



VI. HYBRID FILIPPOV SOLUTIONS

In this section, we generalize Filippov’s solution concept
to our class of hybrid systems. We begin with a number of
definitions which will make our intuition for this solution
concept clear. First, for each e = (j, j′) ∈ Γ we define

Σe : = πj(Ge) = πj′(Re(Ge)), (10)

and then define

De : = πj(int(Dj))
⋃
πj′(int(Dj′))

⋃
Σe. (11)

Note that, as depicted on the right of Figure 4, Σe is an (n−
1)-dimensional manifold, which forms a surface separating
the two open sets πj(int(Dj)) and πj′(int(Dj′)). We will
extend the Filippov regularization to the following vector
field over M, the hybrid vector field:

Definition 2: Let H be a hybrid system. We define the
hybrid vector field to be F : M× U → TM where

F (πj(x), u) = Dπj ◦ fj(x, u) if x ∈ int(Dj). (12)
That is, we simply push forward each vector field fj ontoM
using πj . Much like the piecewise smooth vector field (1),
F is a piecewise smooth vector field, which is discontinuous
and undefined along Σe, for each e ∈ Γ. Thus the tuple
(M, U, F ) is a non-smooth control system and we find it
natural to extend the Filippov regularization to describe its
trajectories.

In order to accomplish this, for each edge e ∈ Γ,
we will construct a set D̂e ⊂ Rn and a diffeomorphism
πe : D̂e → De. We will then be able to represent the
flow of F on D̂e using the pushed forward vector field
fe = Dπ−1

e ◦ F |De×U , and we can subsequently apply the
classical Filippov regularization to this local representation
of F . In order to define each of these objects, we require
some intermediate definitions.

For each e = (j, j′) ∈ Γ, let pe : Rn → R̂e be defined
by pe(x) = x − r̂ere(x), the Euclidian projection onto R̂e.
Next, define the diffeomorphism Pe : Rn → Rn by

Pe(x) = R−1
e ◦ pe(x) + ĝere(x), (13)

and consider the domain Pe(Dj′), which we depict in Figure
3, and is the result of smoothly attaching Dj′ to Dj , by
passing Dj′ through Pe. To understand this action, we first
note that, as depicted in Figure 3, each point x ∈ Dj′ may
be decomposed as pe(x) + r̂ere(x), where pe(x) ∈ R̂e and
r̂ere(x) is a vector of length re(x) units in the direction
r̂e. The map Pe decomposes x into pe(x) + r̂ere(x), and
sends pe(x) to R−1

e ◦ pe(x) ∈ Ĝe, while sending r̂ere(x)
to ĝere(x), which is a vector of length re(x) units in the
direction ĝe. In other words, Pe attaches R̂e to Ĝe via
R−1
e , and rotates the coordinate that is transverse to R̂e (the

direction r̂e) to align with the coordinate that is transverse

Fig. 3: The domain D2 is smoothly attached to domain D1

using the map Pe, resulting in Pe(D2), where e = (1, 2).
The various components of Pe are illustrated.

to Ĝe (the direction ĝe). 2 Finally, for each e = (j, j′) ∈ Γ,
let

D̂e := int(Dj) ∪ int(Pe(Dj′)) ∪Ge. (14)

Proposition 2: For each e = (j, j′) ∈ Γ the the mapping
πe : D̂e → De, where

πe(x) =

{
πj(x) if x ∈ int(Dj) ∪Ge
πj′ ◦ P−1

e (x) if x ∈ int(Pe(Dj′))
(15)

is a diffeomorphism.
Proof: The argument largely parallels the proof of

[15, Theorem 9.29], with a mild refactoring of notation.
In particular, it is easily verified that πe is smooth and
full rank on int(Dj) and int(Pe(Dj′)), since πj |int(Dj),
πj′ |int(Pe(Dj′ ))

and Pe are all diffeomorphisms. Continuity
of πe is also easy to establish, as if x ∈ Ĝe then πj(x) =
πj′ ◦Re(x) = πj′ ◦P−1

e (x), which follows since P−1
e |Ĝe

=
Re|Ĝe

. We are now left to determining the smoothness of πe
along Σe, which follows by an argument analogous to the
one used to establish the smoothness of the map Φ̃ in [15,
Theorem 9.29]. In particular, we note that if V is any open
set in De, then (V, π−1

e |V ) is a smooth chart on M.
Other authors [9], [1] have demonstrated that it is theo-

retically possible to smoothly attach one domain of a hybrid
system to another. However, to the best of our knowledge,
we provide the first explicit representation of the diffeomor-
phisms (15) required for this proccess, which we are able
to construct largely by virtue of Assumption 2. When either
Ge or Re(Ge) is a general non-linear surface, it may not
be possible to write down a closed-form expression for the
projections needed to construct Pe or its inverse, and implicit
techniques [1, Lemma 2.8], [6, Theorem 3] are required.

Resuming our construction, for each e = (j, j′) ∈ Γ define
the piecewise smooth vector field fe : D̂e × U → TRn by

fe(x, u) = Dπ−1
e ◦ F (πe(x), u). (16)

2It is easy to verify that Pe is a diffeomorphism, since each of its terms are
smooth and it has a closed-form inverse P−1

e (x) = Re ◦µe(x)+ r̂ege(x),
where µe(x) = x− ĝege(x) is the Euclidian projection onto Ĝe. Indeed,
note that P−1

e ◦Pe(x) = Re ◦µe(R−1
e ◦pe(x)+ ĝere(x))+ r̂ege(R−1

e ◦
pe(x) + ĝere(x)), but µe(R−1

e ◦ pe(x) + ĝere(x)) = µe(R−1
e ◦ pe(x))

and ge(R−1
e ◦ pe(x) + ĝere(x)) = re(x), thus P−1

e ◦ Pe(x) = Re ◦
µe(R−1

e ◦ pe(x)) + r̂ere(x) = pe(x) + r̂ere(x) = x, as desired.



Fig. 4: A hybrid Filippov solution x with initial condition
x(0) flows from one domain to another, crossing Σe, where
e = (1, 2). This flow is diffeomorphic to the curve γ (which
is a classical Filippov solution for F [fe] with initial condition
γ(0) = π−1

e (x(0))) where we have x = πe ◦ γ.

By appropriately evaluating the arguments of Dπ−1
e one can

obtain the following explicit representation of fe:

fe(x, u) =

{
fj(x, u) if x ∈ int(Dj)

DPe ◦ fj′(P−1
e (x), u) if x ∈ int(Pe(Dj′)).

(17)
We now define the hybrid Filippov regularization, using the
classical Filippov regularizations of the vector fields {fe}e∈Γ

and the maps {πe}e∈Γ.
Definition 3: Let H be a hybrid system. The hy-

brid Filippov regularization of F is the set-valued map
F̂ [F ] : M× U → B(TM) where

F̂ [F ](πe(x), u) = Dπe(F [fe](x, u)) if x ∈ D̂e. (18)
In other words, the hybrid Filippov regularization is con-

structed by taking the classical Filippov regularizations of
the vector fields {fe}e∈Γ, and then pushing each element of
the resulting set-valued maps forward to TM.

Definition 4: Let x0 ∈ M and u ∈ PC([0, T ], U). We
say that an absolutely continuous curve x : [0, T ]→M is a
hybrid Filippov solution for this data if x(0) = x0 and

ẋ(t) ∈ F̂ [F ](x(t), u(t)), a.e. t ∈ [0, T ]. (19)
Example 1: (Bouncing Ball) Consider the following sim-

plified model of a ball that is bouncing vertically and loses a
fraction of its energy during each bounce, which we borrow
from [1]. The ball has two identical modes, Jbb = {1, 2}. 3

For j ∈ {1, 2} the continuous dynamics are given by

Dj = {(x1, x2) : x1 ≥ 0} and fj(x1, x2) = (x2,−g)
T
,

where g is the gravitational constant. Each mode has a single
edge leaving it to the other mode:

G(j,1−j) = {(x1, x2) : x1 = 0, x2 ≤ 0} and

R(j,1−j)(x1, x2) = (x1,−cx2)T ,

where c ∈ (0, 1] is the coefficient of restitution.
The hybrid quotient space for the bouncing ball, Mbb,

as well as a hybrid Filippov solution for this system are
depicted on the left in Figure 5, for c < 1. The trajectory
flows between the two modes an infinite number of times by

3As noted in [1], the use of two identical modes ensures the hybrid
quotient space for the bouncing ball is a smooth manifold.

Fig. 5: The hybrid quotient space Mbb (left) and relaxed
hybrid quotient space Mε

bb (right) for the bouncing ball,
where c ∈ (0, 1). A hybrid Filippov Solution and a relaxed
hybrid trajectory are depicted. For both figures, the axes
denote the orientation of the states in each mode.

some finite time t∞ (see [5] for details), before coming to
rest at π1((0, 0)) = π2((0, 0)) for all t ≥ t∞. In other words,
previous notions of hybrid executions (e.g. [5], [2], [1], [6],
[3]) for the bouncing ball are Zeno, as they require an infinite
number of reset map evaluations to define. On the other hand,
the hybrid Filippov solution defines such trajectories using
the solution of a single differential inclusion. 4 Of course,
in practice constructing such trajectories poses numerous
challenges, as even classical Filippov solutions are non-
trivial to simulate [17], motivating the construction of our
relaxations in the following section. We conclude this section
by presenting conditions under which the Hybrid Filippov
solution is unique.

Assumption 3: Let H be a hybrid system. For each e =
(j, j′) and (x, u) ∈ Ge × U either ĝTe · fj(x, u) > 0 or
r̂Te · fj′(Re(x), u) < 0.

Remark 1: For a given edge e = (j, j′) ∈ Γ, by carefully
inspecting Pe, one observes that if Assumption 3 holds then
the hypothesis of Lemma 1 is saticefied for fe. Intuitively,
this follows from the fact that Pe rotates vectors in the
direction r̂e to align with the vector ĝe.

Theorem 1: Let H be a hybrid system satisfying Assump-
tion 3. Then the hybrid Filippov solutions of H are unique.

Proof: Let x : [0, T ] → M be a hybrid Filippov
solution for some data x0 ∈ M and u ∈ PC([0, T ], U).
By our construction of {πe}e∈Γ and {fe}e∈Γ, there is a
diffeomorphic correspondence between each segment of the
curve x and a segment of a classical Filippov solution for
one of the regularizations {F [fe]}e∈Γ, as depicted in Figure
4. By Remark 1 we conclude that each of these segments is
unique.

Note that the conditions for uniqueness in Theorem 1 are
sufficient but not necessary. For example, though we do not
prove it formally, it is possible to show that the boucing
ball admits a unique, infinite hybrid Filippov solution, even
though careful inspection reveals it does not satisfy the
hypothesis of Theorem 1.

4This solution concept should not be conflated with solutions of the
”Hybrid Inclusion” [3], which defines solutions using a (possibly infinite)
sequence of flows and jumps.



VII. RELAXED HYBRID VECTOR FIELDS

In this section we introduce the relaxed hybrid vector
fields which we use to approximate the hybrid Filippov
solution. This family of vector fields will be constructed
by extending Teixeira’s method [12], which approximates
classical Filippov solutions using a family of smooth, stiff
vector fields. The result of this relaxation will be a vector
field F ε such that the tuple (Mε, U, F ε) is a smooth control
system. We begin by defining relaxed analogues to some of
the objects defined in the previous section. First, for each
edge e = (j, j′) ∈ Γ, we define

Σεe = πεj (S
ε
e), (20)

and then define

Dε
e : = πεj (Dj)

⋃
πεj′(Dj′)

⋃
Σεe. (21)

As depicted in Figure 6, Σε(j,j′) forms a strip separating
πj(Dj) and πj′(Dj′). The main idea behind our relaxation
technique is to smoothly transition between the dynamics
of mode j and the dynamics of mode j′ along Σ(j,j′).
For each edge e = (j, j′) we define the diffeomorphism
P εe : Rn → Rn by

P εe (x) = (Rεe)
−1 ◦ pe(x) + ĝere(x), (22)

and consider the domain P εe (Dj′), the result of attaching Dj′

to Dε
j via P εe , which is depicted on the left of Figure 6. 5

We then define

D̂ε
e := int(Dj) ∪ int(P εe (Dj′)) ∪ Sεe . (23)

The proof of the following result is analogous to that of
Proposition 2.

Proposition 3: For each e = (j, j′) ∈ Γ the mapping
πεe : D̂ε

e → Dε
e where

πεe(x) =

{
πεj (x) if x ∈ int(Dε

j ) ∪ Sεe
πεj′ ◦ (P εe )

−1
(x) if x ∈ int(P εe (Dj′)).

(24)

is a diffeomorphism.
Next, we will construct a set of smooth vector fields

{fεe }e∈Γ where fεe : D̂ε
e ×U → TRn, that will be used with

the maps {πεe}e∈Γ to define F ε. We use the following set
of functions to smoothly transition between the dynamics of
neighboring modes along the relaxed strips:

Definition 5: [18] We say that ϕ : R → [0, 1] is a transi-
tion function if it is smooth and

1) ϕ(a) = 0 if a ≤ 0;
2) ϕ(a) = 1 if a ≥ 1; and,
3) ϕ is monotonically increasing on (0, 1).

For the rest of the paper, we assume a single transition
function has been chosen. Then, for each e = (j, j′) ∈ Γ
and ε > 0 let us define ϕεe : Rn → [0, 1] by

ϕεe(x) = ϕ

(
ge(x)

ε

)
, (25)

5It is again easy to check that P ε
e is a diffeomorphism, whose inverse is

(P ε
e )−1(x) = Rε

e ◦ µεe(x) + r̂egεe(x), where µεe(x) = x− ĝegεe(x).

and then define fεe : D̂ε
e × U → TRn by

fεe (x, u) = (1− ϕεe(x))fj(x, u)

+ ϕεe(x)DPe ◦ fj′
(
(P εe )−1(x), u

)
. (26)

For edge e = (j, j′), note that when ge(x) ≤ 0 (and x ∈
Dj) we have fεe (x, u) = fj(x, u). When ge(x) ≥ ε (and x ∈
Pe(Dj′)) we have that fεe (x, u) = DP εe ◦ fj((P εe )

−1
(x), u).

And finally when 0 ≤ ge(x) ≤ ε (and x ∈ Sεe ) fεe produces a
convex combination of these two vector fields. The following
result follows from the main construction in [12].

Lemma 2: For each e ∈ Γ the vector field fεe is smooth.
We are now ready to define the relaxed vector field we

impart over Mε, for each ε > 0.
Definition 6: Let H be a hybrid system. We define the

relaxed hybrid vector field F ε : Mε × U → TMε by

F ε(πεe(x), u) = Dπεe ◦ fεe (x, u) if x ∈ D̂ε
e. (27)

In other words, F ε is constructed by pushing for-
ward the smooth vector fields {fεe }e∈Γ to Mε. Note that
F ε(πεj (x), u) = Dπεj ◦ fj(x, u) if x ∈ Dj .

Theorem 2: Let H be a hybrid system. Then the tuple
(Mε, U, F ε) is a smooth control system.

Proof: The result follows from a straightforward appli-
cation of Proposition 3 and Lemma 2.

The construction of the relaxed vector field F ε can be
thought of as a generalization of the regularization in space
introduced in [5]. This vector field also approximates the
smoothing discussed in [1, Section 5] and [9, Section 3], but
we emphasize that we provide a constructive, explicit means
to accomplish this smoothing, unlike either of these works.
We also consider hybrid systems with continuous control
inputs, a necessary development for the Control and Robotics
communities.

We define relaxed hybrid trajectories as flows of F ε:
Definition 7: Given x0 ∈ M and u ∈ PC([0, T ], U), we

say that the absolutely continuous curve xε : [0, T ] → Mε

is a relaxed hybrid trajectory for this data if x(0) = x0 and

ẋε(t) = F ε(xε(t), u(t)), ∀t ∈ [0, T ]. (28)
Relaxed hybrid trajectories are unique and vary differentiably
with respect to their initial conditions and inputs, due to
(Mε, U, F ε) being a smooth control system, as noted in
Section II. As depicted in Figure 6, each segment of a
relaxed hybrid trajectory may be explicitly constructed using
an integral flow of fεe and the map πεe , for some e ∈ Γ.
The algorithmic technique for integrating vector fields on
the relaxed hybrid quotient space presented in [6] can be
used to explicitly construct a full relaxed hybrid trajectory.
We close this section by studying the convergence of relaxed
hybrid trajectories to the hybrid Filippov solution. We leave
the proofs of the following results to the Appendix, as they
rely on supportive lemmas contained therein.

Theorem 3: Let Assumption 3 holds for H. Let x0 ∈ M
and u ∈ PC([0, T ], U), and let x : [0, T ] → M be the
corresponding hybrid Filippov solution, guaranteed to be
unique by Theorem 1. Let xε : [0, T ]→Mε be the relaxed



Fig. 6: A relaxed hybrid trajectory xε with initial condition
xε(0) flows from one domain to another, crossing Σεe, where
e = (1, 2). This flow is diffeomorphic to the curve γε (which
is a solution of the vector field fεe with initial condition
γε(0) = (πεe)

−1
(xε(0))) where we have xε = πεe ◦ γε.

hybrid trajectory corresponding to this data. Then ∃C > 0
such that ρε(x, xε) ≤ Cε for each ε small enough.

In other words, when Assumption 3 is satisfied, and the
hybrid Filippov solution is unique, relaxed hybrid trajectories
converge to the hybrid Filippov solution at a rate that is
linear in ε. Next, we demonstrate that our relaxations always
converge to a unique, well-defined limit even when the
corresponding hybrid Filippov solution may be non-unique.

Theorem 4: For x0 ∈ M and u ∈ PC([0, T ], U), let
xε : [0, T ] →Mε be the resulting relaxed hybrid trajectory,
for each ε > 0. Then there exists an absolutely continuous
x0 : [0, T ]→M such that limε→0 ρ

ε
(
xε, x0

)
= 0.

Due to the uniqueness of this limit, we have found it
convenient to think of hybrid systems as the limit of our
relaxations, analogously to [8]. In Figure 5 we depict the
relaxed hybrid quotient space of the bouncing ball, Mε

bb,
and a relaxed hybrid trajectory evolving on this space. The
trajectory spirals towards an equilibrium point on the relaxed
strips separating the two domains. Although we do not prove
it formally, it can be shown that the relaxed trajectories
for the bouncing ball converge to the corresponding hybrid
Filippov solution as one takes ε→ 0, even though Theorem
3 does not apply to this system. A similar result holds for
our second example presented in the following section.

VIII. NUMERICAL IMPLEMENTATION

In this section we demonstrate how to implement the of
numerical approximations for relaxed hybrid systems in [6]
for the smooth vector fields we introduced in the previous
section. Before defining these integrators, we first require
some additional notation.

For each j ∈ J we then define

D̂ε
j = Dε

j

⋃
e=(j,j′)∈Nj

P εe (Dj′), (29)

then define π̂εj : D̂j → ∪e∈Nj
De by

π̂εj (x) =

{
πεj (x) if x ∈ Dε

j

πεj′ ◦ (P εe )
−1

(x) if x ∈ Pe(Dj′),
(30)

and finally define f̂εj : D̂ε
j × U → TRn by

f̂εj (x, u) = fεe (x, u) if x ∈ Dε
e, ∀e ∈ Nj . (31)

These constructions will prove use full since we may
not a priori which of the edges in Nj a trajectory might
leave mode j through. We will extend the following class of
integrators to construct numerical approximations for relaxed
hybrid trajectories.

Definition 8: [6] Given a hybrid system H, we say
A : Rn × U × J × R → Rn is a numerical integrator of
order ω, if for each j ∈ J and h = T/N (where N ∈ N),
and each x0 ∈ Dj and u ∈ PC([0, T ], U) we have

sup
(∥∥x(kh)− zε,h(kh)

∥∥ : k ∈ {0, 1, . . . , N}
)

= O(hω),

where x(0) = x0 and d
dtx = fεj (x, u), and zε,h(0) and

zε,h((k + 1)h) = A(z(kh), u(kh), j, h).
As was noted in [6], this definition of a numerical integra-

tor is compatible with a large class of discretization schemes,
including Euler and the Runge-Kutta family.

Definition 9: Given a relaxed hybrid system H, initial
condition πεj (x0) ∈ πεj (Dj), input u ∈ PC([0, T ], U), step
size h = T

N (where N ∈ N), we construct the discrete
approximation zε,h : [0, t]→Mε according to the following
algorithm.

1) Let zε,h(0) = x0, t = 0, k = 0 and j ∈ J .
2) If k = N , terminate the execution. Otherwise, let

γk+1 = A
(
zε,k(kh), u(kh), j, h

)
.

3) For each t ∈ [kh, (k + 1)h) set
zε,h(t) = πεj

(
(k+1)h−t

h γk+1 + t−kh
h zε,h(kh)

)
.

4) If γk+1 /∈ D̂ε
j , then let t̄ = inf

{
t : zε,h(t) ∈ D̂ε

j

}
and

return zε,h|[0,t̄]. Terminate the execution.
5) If ∃e = (j, j′) ∈ γ such that γk+1 ∈ Dε

j′,e, set
zε,h((k + 1)h) = (P εe )

−1
(γk+1), set k = k+1, and set

j = j′. Go to step 2.
6) Otherwise, set zε,h((k+ 1)h) and k = k+1. Go to step

2.
We also recover the convergence results from [6] for

completeness.
Theorem 5: Let H be a hybrid system. For a given initial

condition x0 ∈ Dj and input u ∈ PC([0, T ], U), let xε the
corresponding relaxed trajectory, and let zε,h be its numerical
approximation. Then, ∃C > 0 such that ρ

(
xε, zε,h

)
≤ Chω

for each h small enough.
Proof: The proof is analogous to that of Theorem 3,

except that instead of continually appealing to Lemma 3, we
note that we incur an numerical error that of order hω each
time we integrate one of the vector fields

{
f̂εj

}
j∈J

, by the

convergence of A on each of the domains
{
D̂j

}
j∈J

.
In other words, numerical approximations of relaxed hy-

brid systems retain the convergence rate of the integrator A.
Furthermore, when Assumption 3 is satisfied, our discrete
approximations converge to the hybrid Filippov solution.

Corollary 1: Let H be a hybrid system that satisfies
Assumption 3. For data x0 ∈M and u ∈ PC([0, T ], U), let
x : [0, T ] → M be the unique hybrid Filippov solution for
this data. For each ε > 0 and h > 0 let zε,h : [0, T ] →Mε

be the numerical approximation of a relaxed execution corre-
sponding to this data. Then limε→0 limh→0 ρ

ε
(
x, zε,h

)
= 0.



Proof: By a straightforward Application of the triangle
equality and Theorems 3 and 5 we have that

ρε
(
x, zε,h

)
≤ C(ε+ hω) (32)

for some C > 0. The desired result follows by taking the
appropriate limits.

Note that the proof of Corollary 1 also demonstrates the
rate of convergence. In cases where the hybrid Filippov
solution may be non-unique, our discrete approximations still
converge to a well-defined limit.

Corollary 2: Let H be a hybrid system. For data x0 ∈M
and u ∈ PC([0, T ], U), let x : [0, T ]→M let x0 : [0, T ]M
be the limiting trajectory in Theorem 4. For each ε > 0 and
h > 0 let zε,h : [0, T ]→Mε be the numerical approximation
of a relaxed execution corresponding to this data. Then
limε→0 limh→0 ρ

ε
(
x0, zε,h

)
= 0.

Proof: The result follows from Theorems 4 and 5 and
taking the appropriate limits.

It should be noted that since the vector fields
{
fεj
}
j∈J are

stiff, thus in practice in practice we expect the constant C in
Theorem 5 to be large. However, there are two practical ways
to overcome this issue. The first strategy is to simply use a
high-order integrator to, such as a member of the Runge-
Kutta family, to offset integrating vector fields with large
Lipschitz constants. The other strategy is to reduce the step-
size of the integrator when the discrete approximation is in
a relaxed strip. Fortunately, these two effects compound.

Example 2: (Double Pendulum With a Mechanical
Stop)Again, the double pendulum has two identical modes,
Jdp = {1, 2}. For j ∈ {1, 2} the continuous dynamics are
given by

Dj = {x ∈ Rx : x1 ≥ 0} and fj(x) = fL(x)T ,

where the state is ordered x =
(
θ1, θ̇1, θ2, θ̇2

)
, and an ex-

plicit representation of the Lagrangian dynamics prescribed
by fL may be found in [7]. Each mode has a single edge
leaving it to the other mode:

G(j,1−j) =
{
x ∈ R4 : x3 = 0, x4 ≤ 0

}
and

R(j,1−j)(, ) = (x1, θ̇1 +Mcθ̇2, x3,−cx4)T ,

where c ∈ (0, 1] is the coefficient of restitution. We formally
define the corresponding hybrid system in [19]. It was shown
in [7] that when c ∈ (0, 1) classical constructions of hybrid
execution for this system yield Zeno trajectories near points
where θ2 = θ̇2 = 0 and θ1 ≤ 0. Physically, such trajectories
correspond to the second arm being locked in place against
the stop for a time by an imaginary force. The results of
a numerical simulation of the system is depicted on the
right of Figure 7. Time steps where the simulation is in a
relaxed strip are colored black. The second arm is repeatedly
locked into place (during intervals when the blackened time-
steps accumulate) until the imaginary force dissipates, at
which point the second arm swings freely again. In other
words, our relaxation procedure automatically recovers the
completion of Lagrangian Hybrid Systems [7], but does so
using a smooth dynamical system.

m1, L1

m2, L2

θ1

θ2

g

mech. stop

Fig. 7: Schematic of the double pendulum with a mechanical
stop (left), and a numerical simulation for this system (right)
using Euler integration on each domain with system param-
eters c = 0.5, and m1 = m2 = l1 = l2 = g = 1 with initial
condition (θ1(0), θ̇1(0), θ2(0), θ̇2(0)) = (25◦, 0, 35◦, 0), and
simulation parameters ε = 10−6 and a step-size of h = 10−6.

IX. CONCLUSION AND FUTURE WORK

In this paper we developed a novel solution concept
for hybrid systems, which is a generalization of Filippov’s
method, and allows us to described each of the trajectories
of the system using a single differential inclusion. We then
demonstrated that these trajectories can be approximated
using the flows of a parameterized family of smooth control
systems, and discussed how these two solution concepts
compare in the limit. Controller synthesis for smooth control
systems is an established discipline [13], [14] providing a
new angle to control hybrid systems using our relaxations.
In particular, we are currently investigating algorithmic
techniques for explicitly computing variations on relaxed
trajectories, developing gradient-based techniques (see e.g.
[20]) to solve optimal control problems over our relaxations,
and constructing feedback controllers to stabilize mechanical
systems undergoing impacts.
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APPENDIX

This Appendix contains proofs for Theorems 3 and 4. Each
proof relies on a supportive lemma, which we develop before
each of the main results.

A. Proof of Theorem 3

Lemma 3: Let e = (j, j′) ∈ Γ and assume that the
hypothesis of Lemma 1 holds for fe. Consider two initial
conditions x0, x

ε
0 ∈ D̂ε

e such that ‖x0 − xε0‖ ≤ C̄ε for some
C̄ > 0, and consider a single input u ∈ PC([0, T ], U). Let
γ : [0, T ] → D̂e be defined by d

dtγ(t) ∈ F [fe](γ(t), u(t))

and γ(0) = x0, and let γε : [0, T ] → D̂ε
e be defined by

d
dtγ

ε(t) = fεe (γε(t), u(t)) and γε(0) = xε0. Then for each ε
small enough ‖γ − γε‖∞ ≤ Cε, for some C > 0.

Proof: First, we show that the result holds for each
û ∈ PCD([0, T ], U) (where PCD denotes the class of
piecewise-continuously differentiable functions), and then
extend the result to our desired class of inputs. We transform
each of the vector fields into a corresponding autonomous
vector field, so that we can inductively call the result
from [18, Lemma 2]. Consider the autonomous vector field
f̄e(γ, z) = (fe(γ, û(z)), 1)T , and the solution to the differ-
ential equation d

dt (γ, z) ∈ F [f̄e](γ, z) where (γ(0), z(0)) =

(x0, 0). Note that z(t) = t,∀t ∈ [0, T ], and thus d
dtγ(t) ∈

F [fe](γ(t), u(t)), ∀t ∈ [0, T ], as desired. Let f̄εe be the ε-
relaxation of f̄e, namely, f̄εe (γε, zε) = (fεe (γε, ū(zε)), 1)T ,
and note that if we let d

dt (γ
ε, zε) = f̄εe (γε, zε) with initial

condition (γε(0), zε(0)) = (xε0, 0), then the solution of γε

is as desired. Next, note that û must be non differentiable
on a finite number of points 0 = t1 < t2 < ... <
tp = T , p ∈ N. Thus, on each interval (ti, ti+1),∀i =
1, 2, . . . , p− 1, f̄e is continuously differentiable in z. Thus,
restricting both trajectories to the time interval [t1, t2], we
have

∥∥(γ, z)|[t1,t2] − (γε, zε)|[t1,t2]

∥∥
∞ ≤ C1ε for each ε

small enough and some C1 > 0, by an argument similar
to [18, Lemma 2]. Then by a straightforward inductive
argument we obtain ‖(γ, z)− (γε, zε)‖∞ ≤ C2ε, for some
C2 > 0, and thus ‖γ − γε‖∞ ≤ Cε, for some C > 0. The
result for our desired u ∈ PC([0, T ], U) follows from noting
that PCD([0, T ], U) is dense in PC([0, T ], U) under the L2

norm, meaning we may select û such that ‖u− û‖2 < δ
for arbitrarily small δ > 0, and then note that γε depends
continuously on its input [20, Lemma 5.6.7].

(Proof of Theorem 3): We will prove the result using
the representations we constructed in Sections VI and VII,
namely the vector fields {fe}e∈Γ and {fεe }e∈Γ, and by
inductive appeals to Lemma 3. Assume that for some t′ ∈
[0, T ] that x(t′), xε(t′) ∈ Dε

e , and that dMε(x(t), xε(t)) ≤
C1ε, for some C1 > 0. Here, as in [6], we view x as a
piecewise continuous curve on Mε. Let γ : [t′, t′′] → D̂e

(for some t′ > 0) be the maximal Filippov solution of
F [fe](γ(t), u(t)) with initial condition γ(t′) = π−1

e (x(t′)),
and let γε : [t′, t′′ε ] → D̂ε

e (for some t′′ε > 0) be the
maximal integral curve of fεe with initial condition γε(t′) =
(πεe)

−1(xε(t′)), and note that ‖γ(t′)− γε(t′)‖ ≤ C2ε, for
some C2 > 0. Let t̄ = min{t′′, t′′ε}. Then by Lemma 3,∥∥γ|[t′,t̄] − γε|[t′,t̄]∥∥∞ ≤ C3ε for some C3 > 0. This implies
that dMε(x(t), xε(t)) ≤ C4ε, for some C4 > 0, and each t ∈
[t′, t̄], since we have that x|[t′,t̄] = πe ◦ γ|[t′,t̄] and xε|[t′,t̄] =
πεe ◦ γε|[t′,t̄], and the result of [6, Theorem 21] guarantees
we incur an additional error of order ε by including x on
M. Note that if ε is small enough then we can find e′ ∈ Γ
such that x(t̄), xε(t̄) ∈ Dε

e′ . The results follows by noting
that x(0) = xε(0), an inductive application of the preceding
argument.

B. Proof of Theorem 4

Lemma 4: Let e ∈ Γ, x0 ∈ D̂e and u ∈ PC([0, T ], U).
For each ε > 0 let γε : [0, T ] → D̂ε

e be the solution to
d
dtγ

ε(t) = fεe (γε(t), u(t)) with initial condition xε0, and
let the map ε → xε0 be Lipschitz continuous and such
that x0

0 = x0. Then there exists γ0 : [0, T ] → D̂e such that
γ0(0) = x0 and limε→0

∥∥γε − γ0
∥∥
∞ = 0.

Proof: Note that fεe is continuously differentiable in ε
for each ε > 0, since it is constructed using a finite number of
compositions and multiplications of functions which are each
continuously differentiable in ε. Thus, ∂f

ε
e

∂ε must be Lipschitz
continuous for each ε ∈ [ε

¯
, ε̄], where ε̄ > ε

¯
> 0, since

continuous functions are Lipschitz on compact domains.
By Lemma 5.6.8 of [20], γε(t) is a Lipschitz continuous
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function of ε, ∀t ∈ [0, T ] and ε ∈ (ε
¯
, ε̄). Thus we have

limε→ε
¯
‖γ − γε¯‖∞ = 0 for some γε¯ : [0, T ] → D̂ε

ē . The
desired result follows by noting that ε

¯
is arbitrary.

(Proof of Theorem 4): The proof is entirely analogous to that
of Theorem 3, except Lemma 4 is called inductively in place
of Lemma 3.
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