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Abstract— Motion optimization for legible robot intent has
largely ignored the robot’s dynamics, citing burdensome com-
plexity that prevents online deployment. Even where the origi-
nal task (to be communicated) could be solved on the dynamical
system, the legibility problem (to communicate that task’s
intent) could not. This work simplifies the legibility objective
to have equivalent computational complexity as the original
objective to be communicated. This enables any optimal control
algorithm that can solve the original task to also solve the legible
version of that task.

Along the way, we expand the definition of “intent” to include
any parameter of the optimal control problem, thereby opening
the door to extend communications beyond merely desired end-
points to running preferences or even, in the future, hard
capabilities or safety constraints. We demonstrate how this
method can replicate the properties introduced in previous com-
municative motion state-of-the-art (like legibility, exaggeration,
and anticipation) as well as apply to non-holonomic dynamical
systems.

1. INTRODUCTION

Every good collaboration is founded upon mutual un-
derstanding. Unfortunately, the old paradigm of factory-
caged robots has no methods for informing other agents of
their intent. It is essential for robots to synchronize their
task understanding and communicate task intent to their
human collaborators. For example, even when coordinating
something as simple as handing over an object, task intent
of “what”, “when”, and “where” must be synchronized [21].
This problem of conveying action intent is tackled by the
nascent field of “Explainable Agency”. The goal here is for
the agent to explain their latent planning variables, such as
preferences or future plans, to other relevant agents to aid
collaboration [26], create transparency, or increase trust (the
three most popular motivations in a recent literature review
of the area [1]). Agents can generate and communicate
explanations of their intent through a variety of modalities:
text, graphical user interfaces, and expressive lights, amongst
others [1]. Yet each of these approaches requires receivers
to monitor a channel outside the task that occupies them.

Instead of investing resources and attention into a side
channel, recent research has focused on using the perfor-
mance of the task itself to communicate its goals. Hand-
animated performances of robot characters improved test
subjects’ confidence and accuracy at interpreting the robot’s
intent [23]. Human-performed gestures were analyzed and
re-mapped to robot motions by automatically detecting the
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Fig. 1.  Overview: A human observes three possible robot motions with
bicycle dynamics. The black path (top) is ignorant of needing to avoid
the human and its control-minimizing path is a collision course. The gray
path (middle) is optimized with a collision avoidance term in addition to
minimizing control effort. It’s path succeeds in avoiding the human, but
to minimize control cost it comes concerningly close. The light green path
(bottom) is optimized to evidence its awareness of the human’s needs so the
human is informed. This legibility optimization metric was historically too

complex to apply to non-holonomic dynamics tractably (see conclusions of
[5]). This work derives a tractable equivalent metric.

salient keyframes of the gesture and emphasize them on
robot kinematics [10]. Eschewing human data generation
in favor of animation’s first principles, Szafir et alius [22]
proposed three motion primitives they hypothesized would
signal future motions for their flying robots. Similarly, Zhao
et alius [27] identified motion primitives and signaling fea-
tures for their robot handover task. These identified features
are specific to the robot morphology and task-type being
conveyed (e.g. robot flying or manipulator handover), and
so must be re-designed for new application contexts.

In an attempt to identify a generalizable principle, re-
searchers have turned to models of human interpretation.
Particularly amenable to robotics usage, is the “theory the-
ory” that humans construct and test models from observed
data [11][12]. Particularly, action interpretation has been de-
scribed as Bayesian inferences on latent planning preferences
[31[4][14][17]. Designers of explainable Als have turned this
cognitive model of action understanding into an optimization
objective for motion planning [7][9][13].

Instead of identifying trajectory-space features like [27],
Dragan and Srinivasa [8] derived an optimization metric
they dub “legibility” based on principles of how humans
observe and interpret robot motion. Optimizing trajectories
with respect to this metric [7] recovered behaviors like
arcing and exagerating identified in previous approaches (like
Szafir et alius [22]). Furthermore, this principle promises



to generalize to a variety of morphologies and applications,
such as self-driving vehicles [5].

However, this generalization to dynamic control is rare
amongst interpretable motion optimization (both inference-
model base [7][9][13] and otherwise [6][18]). This is
likely due to the prohibitive computation costs required of
dynamically-constrained optimizations with complex objec-
tive functions; the only prior work on legibility optimization
for nonlinear dynamics [5] emphasized that the algorithm
lacked the efficiency to run online.

This paper derives a simplified equivalent metric for legi-
bility that has the identical complexity class for access as the
originally intended task to be signaled. That is, optimizing
the legibility problem requires no extra complexity over the
non-legible version.

A. Contributions and Outline

The main contribution of this paper is the simplified
legibility formulation that will be laid out in Section 4. Along
the way, a more powerful hypothesis class for modeling
“intent” is introduced in Section 3. This broader class opens
the door to communicating more than just endpoints, as
illustrated in Fig. 1. The beginnings of this will be illustrated
in Section 6 while the promising future directions will be
discussed in Section 7.

2. MATHEMATICAL BACKGROUND

The robotic motion problem is to select actions u from
the set of available choices U = R™ to steer the evolving
state x in the state space X = R"». The actions influence
the state through the dynamic difference equation:

z(t+1) = f(x(t), u(t)),

for discrete-time systems or through the dynamics differ-
ential equation:

vtE[O,L-”,T] (1)

o(t) = f(x(t), u(t)),

for continuous time systems. Here the time-indexing set
[0,1,---,T] C Z or [0,T) C R is called the time horizon
T with T being the final time. Let X be the set of functions
x(-) : T — X and U be the set of functions u(-) : T — U.

Aside: For the rest of this paper, we will focus on
the continuous-time case but the mathematics will apply
straightforwardly to discretely-indexed functions. Similarly
we focus attention on continuous state and action spaces,
but the contributions can be re-derived for discrete state or
action spaces with some change in notation.

Actions can be chosen following a variety of paradigms.
This paper follows the optimization-based paradigm for
reflecting goal-driven “intelligent” behavior. Here possible
action choices, along with their resultant state trajectories
starting from some given initial state x(0) = 1z, are
ranked by some objective function J(z(-), u(-)). Often these
objectives are time-decomposable and so can be broken into
a running cost L(z(t), u(t)) and terminal cost ¢(x(T)) as:

vt € [0,T) )

The goal is to choose the actions to achieve an extremum
of this objective function (a minimum when J is considered
a cost or a maximum when J is considered a reward). This
is notated mathematically:

min J(z(-), u(*))

subject to
(t) = flx,u,t) VteT
z(0) = o “)

Algorithms focused on planning the path abstract the
problem by allowing the agent to directly choose states z.
This configuration is equivalent to setting the action space
equal to the state space U = X and setting

flr,ut) =u (5)

which is a linear, fully controllable dynamic system mak-
ing it simple to optimize. Applied systems rarely have this
luxury, but sacrificing dynamic feasibility is often made
in order to tackle more complex objectives, like in joint
task-and-motion planning or for non-convex human-factors
objectives (like in [18]). This work will simplify the legibility
metric enough that it can be optimized with respect to even
nonlinear dynamics.

For notational concision and to focus on the actual de-
cision variable u(-), we will combine the cost function

J(z(+),u(-)) with the constraints (t) = f(x,u,t) VYVt T
and z(0) = zo
Hy(u(-) = J(p(u(-), o), u(-), (6)

using the unique solution map p(u(-), zg) (that exists from
the Picard-Lindelof theorem). We will narrow U to the set of
piecewise continuous functions and require that the dynamics
f(x,u,t) are Lipschitz continuous in state z, continuous in
u and piecewise continuous in .

3. EXTERNAL OBSERVER MODELING

Traditionally, when animating a robot using optimal con-
trol, the robotic agent optimizes its behavior to concord
with some agenda J(z(-),u(-)) (e.g. merge onto a highway
without collisions). Yet optimizing just a task objective
ignores the needs of external observers working around the
robot. Robots do not operate in an informational vacuum.
As robots start working in human-spaces, these other agents
will observe and interpret the robot’s motion to understand
their behavior. In this work, we are particularly interested
in how humans understand the robot’s intended goals. These
can be encoded as optimization parameters. So the human’s
interpretation is deciding between hypothesized optimization
problems that might be generating the robot’s behavior. Call
these hypotheses H; each corresponding to optimizing a



different metric j, (u(-)). This paper focuses on binary
hypothesis testing: the human is deciding between a default
case Hy and an alternative I1;. Multiple hypothesis testing
can be performed as iterated binary hypothesis testing with
corrections (e.g. Bon Ferroni), but this problem is left for
future work.

Following the hypothesis testing framework, we assume
there is a null hypothesis that the observer will default to
believing and an alternative hypothesis that describes the
true characteristic of our robotic agent. These could be
some essential binary (e.g. safe/unsafe) or a choice between
two options (reaching for the left object or the right one).
Applications like these are explored further in Sections 6 and
7.

For any binary hypotheses, the uniformly most powerful
test that an observer can use to judge the robot’s performance
is a Likelihood Ratio Test:

if A(u(-)) <n
if Afu()) >n
where the deciding factor is the ratio between the prob-

ability of observing the robot’s choices given the different
hypotheses P(u(-)|H;):

, rejects Hy
, fails to reject Hy

 P(u()|Hy)
M) = B

Following cognitive scientific models such as [17][19],
we formulate the hypothesized likelihood of observing a
performed motion as an exponential distribution with cost
as the sufficient statistic:

(7

e—Hu; (u())
Plu()| Hy) x “—— ®)

This distribution models the human observer as expecting
optimal behavior (according to their hypothesized H j,),
but leaving sub-optimal behaviors as possible due to their
inconfidence in H 7, [19][28]. This distribution is reffered to
as the “Boltzmann distribution” by analogy to the statistical
mechanical equilibrium distribution where the negative cost
function is interpreted as the energy.

This Boltzmann distribution was used in the prior state-
of-the-art [7], but required calculating the normalization
constant Z;. This requires integrating over all possible time-
varying controllers:

e_HJi (u())

Z;

= 9
Juy e M du) )

P(u()|Hy) =

Unfortunately, this is an infinite dimensional space. Dra-
gan and Srinivasa sidestepped this Sisyphean task by approx-
imating it instead by fully solving for the optimal cost-to-
go in the control problem. For their focus on unconstrained

planning problems with quadratic costs, this could be done
in closed form. Unfortunately, when working with nonlinear
dynamics, the problem can no longer be solved analytically.

In the next section we will introduce an equivalent op-
timization problem that does not require calculating the
partition function Z; at all.

4. OPTIMIZING CONTROLS FOR INFORMATIVENESS

The model of human action interpretation in Section 3
classifies some actions as evidence for the null hypothesis
and others as evidence for the alternative. Our robot can
optimize its chosen actions to ensure it evidences the correct
alternative:

Lemma 4.1. For every likelihood ratio testing observer, the
control that optimizes:

min A(u(+)) = min P(u()|Ho)

_ 10
s L BT {10

is guaranteed to be evidence to reject the null hypothesis
for every obsever with non-empty rejection region:

Rove = {2500 = pocdi <nf 2o ap

Proof of Lemma 4.1. From the assumed property (11) there
exists an u,.(-) € Ryp that, by definition, satisfies:

A(ur(-)) <1

Yet this u,(-) cannot have smaller A(u(-)) than u*(-) since
u*(+) optimizes A. Indeed,

A (1) < Aur(4) <m

Therefore the optimizer is in the rejection region for any
testing value of 7.
]

This optimization turns out to have a simple form in terms
of the hypotheses’ costs:

Theorem 4.2 (Simplified Equivalent of Maximizing Self-Ev-
idence). The problem of maximizing the observer’s likelihood
ratio in favor of the alternative hypothesis:

: _ . Pu()[Ho)
A S Ry
has the same optima as:
min i, (u(-)) = Hao (u(-)) (13)

Call this equivalent objective:

L(u(:)) = H, (u(-)) = Hy (ul))



Proof of Theorem 4.2.

: -)) = min M
111}(11)1/\(1!( ) = u() P(u() Hy)
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u(-) Zo

An objective can be composed with any non-decreasing
function and have equivalent optima. Since the partitions Z;

are non-negative and the logarithm is non-decreasing we can
compose an equivalent objective as:

L(u() = g 2 AGu())

_ log [ 2021 o=ty )+, (u()
Zy Zo

— log (efH.m(u(»)wh <u<->>)

= —H, (u()) + Mo, (ul))

= Ho (u() = Hp(ul) (14)

Therefore the equivalent objective L(u(-)) defined in
Equation 14 can be used instead of the likelihood ratio,
thereby avoiding calculating partition functions Z;. This goal
can be understood as aiming to improve the alternative hy-
pothesis’ cost while performing worse at the null hypothesis’
cost. The simple linearity of Equation 14 makes informative
control as tractable as the original optimization:

Corollary 4.2.1 (Time Complexity of Theorem 4.2’s objec-
tive). For any gradient-based control optimization method,
finding the optima of the likelihood ratio inherits the order
of time-complexity from the original (non-communicative)
optimizations in equation (4) (whichever has higher time-
complexity) .

Proof of Corollary 4.2.1. The optima of the likelihood ratio
can be found as the optima of Equation 14. Because of
the linear form of Equation 14, all queries to the objective
function and its derivatives must only query the two hypothe-
ses’ respective lookups and combine them. Therefore the
computational complexity of each iteration will be at most
the sum of the two hypotheses’ complexities. Thus they will
share the same growth-rate/order of time-complexity.

|

The hypotheses’ rewards are combined linearly with equal
weights in Theorem 4.2. However, if the designer desires the
robot to not only optimally communicate but also optimize
the original reward, more weight on the H; term can be
added in:

min L(u()) + @, (u( )

= min(l+ a) A, (u(-) = Ho (ul-)) (15)

This weight a could be interpreted formally as a La-
grange multiplier on a sub-optimality bound as suggested
in Section VI of [7]. This relative weighting between the
original optimization and the informativeness objective can
be dynamically shifted to create another desirable property:
anticipativeness.

5. ANTICIPATION THROUGH RECEDING HORIZON
CONTROL
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Fig. 2. Optimized paths through x-y space reaching for either the leftwards
destination (Hp) or the rightwards destination (H1). The anticipative
trajectory (in green) that optimizes A leads rightwards early; as opposed to
the non-anticipative trajectories (in gray) which indicate much more slowly.
The H; trajectory takes three times longer to move rightwards to x = 2

Previous work emphasized the importance of communi-
cating intent earlier in the motion. Gielniak and Thomaz
[10] promoted the concept of “anticipativeness” and tweaked
motions to express salient gestures earlier on in the time
horizon.

Dragan and Srinivasa [7] incorporated this concept of
anticipativeness by ensuring that unfininshed viewings of
the motion plan would also push the Bayesian observer
towards the correct conclusion. They formulated this early
expressiveness by optimizing for all incomplete viewings on
time horizons [0, t] for ¢ € [0, T] simultaneously. They chose
to combine these multiple sub-objectives through a weighted
linear combination:

/T (T — t)P(Hy|u(0 : t))dt
t=0

This sum of probabilities again requires weighting by
the normalizing partition constants. Instead, an equivalent
prioritization of legibility for earlier controls can be accom-
plished through receding horizon control. Anticipativeness
can be obtained by reweighting informativeness more heavily
during earlier horizons and then shifting to prioritizing pure



efficiency in later horizons by increasing the « in Equation
15.

Let the problem be replanned at times %o, %1, --tpr. Let
a(t) be some increasing function of time that will priori-
tize efficiency over communicativeness in later replanning
horizons. Let 4;(-) be the optimal controls from one of M
optimization problems on horizons [¢;, T)

i = argmin(a(t) + DH, (u(-) = Ha(u()) - (16)
The robot will follow the controls from @;(-) for all times

t; <t <tiyr.

Whereas the original path planning problem would have
been too expensive to replan, the streamlined objective in
Theorem 4.2 is tractable enough to replan online. In fact,
for the problem in Dragan and Srinivasa [7] it becomes
a Linear-Quadratic Regulator (LQR). This is because they
use the path-planning approximation of Equation (5) for the
dynamics and a quadratic penalty:

L@m»w»:wuﬂ—gm§+4 lu@Zde (7

where g; was one of two goals the robot could be reaching
to grab.

This receding horizon anticipation optimization was used
to recreate Dragan and Srinivasa’s [7] exagerated arcing path
plans, as seen in Figure 2. Unlike that method, the solutions
could be found analytically thanks to the streamlined objec-
tives of Equation (13) leaving the LQR structure intact.

6. EXPERIMENTAL APPLICATIONS

Beyond replicating previous art with greater efficiency, the
legible model predictive control (LMPC) algorithm can solve
entirely new problems:

A. Responsiveness to Updates
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Fig. 3. Optimized paths in x-y space: After the instructor corrects the
robot to avoid the red region around the origin, the robot must demonstrate
its new understanding. The dark path is the optimum pre-correction Ho
(from Equation 18), the gray path is the optimum post-correction H; (from
Equation 19), and the green path is the optimum for informing the corrector
of the successful correction A; all here with g = [2, —2}T, a1 = 40,
a2 =25, a3 = 1.

Section 3 extended the communicatable payload from
just end-destinations (as was the case in [7][9]) to include

the dynamic cost and constraints as well. This opens the
door to communicate differences in running costs as in
[13] but through communicative motion instead of scenario
generation. This could help improve in-task teaching (like
the physical in-task value alignment in [2]) by confirming
whether the lesson was learned correctly, thereby completing
the communication loop proposed in [1]’s roadmap. Figure
3 takes the use case of [2] where the user corrects the robot
and adds a penalty on approaching the obstacle at the origin:

T
Jo(af('),U('))=a1\|$(T)—gH§+/O az||u(®)|3dt  (18)
Ji(@(),u() = a1 * [&(T) - gI3

T
+Atmwm@—%mwﬁwa%

By accentuating the alternative hypothesis H; the robot
disambiguates whether or not it’s understood the correction.
If the human likes the robot’s understanding of .J; they can
rest easy. If they find the new behavior still unsatisfactory,
they are now informed to know what else must be added.

B. Legibility for Nonlinear Systems
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Fig. 4. The informative control optimization can even apply to nonlinear
dynamics. After adding a quadratic penalty to nearing state [2, —2]T, the
avoidant optimum to H; (in gray) indeed has a farther integral than the
ignorant optimum to Ho (in black), but the path still looks qualitatively
the same. In contrast, the informative optimizer to A makes its avoidance
obvious. Here g = [2, —1]T, h = [-2,2]7, a1 = 800, a2 = 10, a3 = 2.

Not only does the reformulation in Section 3 allow com-
municating differences in running costs, it is also built to
apply to systems with running dynamic constraints. And
the new formulation in Section 4 is lightweight enough to
be tractable for the numerical methods often necessary for
nonlinear optimal control.

This capacity is demonstrated in Figure 4 for the following
example nonlinear dynamical control problem. The stream-
lined objective in Equation 14 can be optimized for nonlinear
dynamics using established nonlinear control frameworks,
for example the iterative Linear Quadratic Regulator ap-
proach [25][24]. Consider the three dimensional Dubins
vehicle with constant velocity v = 3:



= (veon(on(6) 20)
—x(t) = | vsin(xs(t
dt u(t)

The null hypothesis minimizes the control effort added to
the final distance from the goal = — y point g = [2, —1] (it
is agnostic to angle), while the alternative hypothesis also
quadratically penalizes proximity to an undesirable © — y
position at @ = [—2,2]:

Jo(z (), u(-)) = ar|| Px(T) —g\|§+/0 azllu(t)3dt 21)
Ji(x(-),u(-)) = a1 | P(T) - gl3

T
+/’@mmﬁ—%wn@—wwt
0
(22)

where P is the projection from the three dimensional state
of planar position and angle down only to planar position:

100
P<010)

C. Predictability versus Legibility Discussion

Section 4 proved the interchangeability of motion com-
municativeness with the streamlined objective L(u(-)) along
with time-complexity and outcome guarantees. The linear
structure of L(u(-)) also clarifies a disagreement in the
literature on the relation of “predictablity” and “legibility”.
Dragan and Srinivasa [7] emphasized the distinction between
“predictablity”, defined as optimizing expectedness given the
task H1(u(-)), and “legibility”, defined as optimizing making
the task clear which in our binary hypothesis setting is
A(u(+)). Crucially they state in [8]:

“Predictability and legibility are fundamentally dif-
ferent and often contradictory properties of mo-
tion.”

Lichtenthaler and Kirsch questioned this contradictoriness
and concluded that “the two factors are coherent” [16].
Our work clarifies the exact relation between “predictabil-
ity” Hi(u()) and “legibility” A(u(-)) through the simplified
relation stated in Theorem 4.2. By reformulating the legi-
bility problem from A(u(-)) into the equivalent, simplified
linear combination L(u(-)) in Eq. 13, we can state the differ-
ence between predictability and legibility quite simply: legi-
bility L(u(-)) increases linearly with predictability Hy (u(-)),
meaning they are indeed coherent and typically correlated as
[16] asserts, while also having an uncorrelated term (equal to
adding in —Ho(u(-))) that will cause the legibility optimizers
to be fundamentally different from predictability optimizers.

7. FUTURE WORK

We found a formulation for legible control that is on the
exact same order of complexity as the original (illegible)
control problems and demonstrated some legible motions.
Yet this is only a groundwork. Much work remains to be
done exploring how real observers will adapt and the rich
possibilities of extensions. We outline just a few below.

A. Human Modeling

This paper derived a simplified objective for choosing
controls that will communicate the robot’s task-intent. And
every communication requires assuming how receivers will
interpret the signals. We have laid out our assumed model
based on the receiver testing optimally (i.e. uniformly most
powerfully) with respect to binary Boltzmann hypotheses.
Which in turn are optimal distributions around a known char-
acteristic reward function with random hidden preferences
[19][28]. Yet this is not the only tenable receiver model.

There is a rich space of alternative decision models for
human observers. In particular, humans rarely have infinite
computation resources to judge and so will likely use heuris-
tics (e.g. truncated cost-to-gos on their time horizon judge-
ments, or not consider alternative outcomes fully and clip
the infinite support of the Boltzmann distribution Equation
8). And even with infinite computational resources, decisions
may be skewed by risk-averseness (like in [20]) if their
decision has tangible outcomes (e.g. whether or not to trust
an oncoming autonomous vehicle with their safety).

This paper also focused on cases where there are two
clear hypotheses (e.g. left or right, ignorant or corrected).
The binary hypothesis testing could be extended to multiple
hypothesis testing thereby inducing a multi-objective opti-
mization. This could be handled naively as a weighted linear
combination. Or if the likelihood ratio thresholds for the
human can be determined, informativeness could be encoded
as constraints ensuring correct decisions along each pair:

min H; (u)
subject to Hy — Hp1 <m
Hy —Hyo <2

Hy —Hyn <nn

Such an extension could explore experimentally how many
hypotheses a human observer reasonably considers simulta-
neously and how new hypotheses emerge.

B. Communication Extensions

Casting the hypotheses as differentiating between full
optimal control tasks allowed us to communicate about more
than endpoint states. A clear case where demonstrating a
different task understanding is crucial is when being re-
sponsive to users’ value alignment requests. Future work
should explore what cognitive phenomena arise in how



users perceive and plan around systems that communicate
reception of their inputs.

Generalizing the hypotheses from destinations to full op-
timal control problems also opens the possibility of com-
municating what constraints the robot is bound to through
motion. This framework can provide a new perspective on
communicating capability as Kwon et al. prompted in [15].
This constraint communication could also be used to inform
a supervisor whether or not the robot is obeying safety
rules. The hard evidence of performed motion may be a
uniquely suited communication channel to debug system
failures; as the old adage goes “actions speak louder than
words”. For constraint communicating to work, future work
must develop what it means to substract reward-hypotheses
that don’t share the same support. After deriving, we can
explore cognitive phenomena on safety-critical judgement
(such as risk-sensitivity [20]).

8. CONCLUSION

This paper derived the groundwork for informative motion
on the control loop level. By broadening the subject to be
conveyed from endpoint goals (as in [7][9]) to full optimal
control problems, we are able to convey more details about
the agent’s task-intent (as we showed with running costs) and
apply to more complex systems (as we demonstrated with the
Dubins car). By modeling the receiving observer as testing
binary hypotheses, we obtained a communicative motion
optimization problem on the same order of complexity as
the non-commmunicative problem.

This paper was able to recreate the desirable properties
identified by previous work [10][7] through a more efficient
objective that is portable to a cornucopia of optimal control
approaches.
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