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Abstract— When an expert operates a safety-critical dynamic
system, constraint information is tacitly contained in their
demonstrated trajectories and controls. These constraints can
be inferred by modeling the system and operator as a con-
strained Markov Decision Process and finding which constraint
is most likely to generate the demonstrated controls. Prior
constraint inference work has focused mainly on determinis-
tic dynamics. Stochastic dynamics, however, can capture the
uncertainty inherent to real applications and the risk tolerance
that requires.

This paper extends maximum likelihood constraint inference
to stochastic applications by using maximum causal entropy
likelihoods. Furthermore, this extension does not come at
increased computational cost, as we derive an algorithm that
computes constraint likelihood and risk tolerance in a unified
Bellman backup, thereby keeping the same computational
complexity.

1. INTRODUCTION

Optimization-based control (notably, model predictive
control) promises autonomous behavior [3] even in nonlinear
[13] or stochastic dynamics [20][4]. It has already impacted
industrial practice [15] as “model-predictive control”, and
its recent incarnation as “reinforcement learning” [13][18]
pushes the paradigm further by leveraging large datasets and
computing clusters.

Yet these optimizations only work if the clients’ goals can
be encoded as reward functions and their concerns encoded
as safety constraint sets. One approach to this translation
is to first solve the inverse of optimal control: given near-
optimal demonstrations from the client, recover the reward
function whose optimum would match the demonstrator’s
performance [8]. After fitting the task specification in this
way, the objective can then be optimized to imitate the expert
behavior [1] or used to predict human motion [23].

Often, inverse optimal control focuses on inferring the
magnitude of the reward function. But as optimal control
increasingly emphasizes working within constraints, inverse
optimal control is interested in identifying those constraints
[2][7][10][14][17]. Chou et al. [6] inferred constraints along
the paths that would be low cost but were never observed.
This intuition was grounded into a probabilistic (Bayesian)
framework by Scobee and Sastry [17] by translating maxi-
mum entropy inverse reinforcement learning [22] to work for
hard constraints. Unfortunately, the maximum entropy used
in [17] only works for deterministic systems.

Non-deterministic models capture the uncertain dynam-
ics inherent in applications. That uncertainty is especially
important to consider when designing for robust safety
constraint satisfaction. Stochasticity can model a variety of
unpredictable dynamics in applications: from unpredictable

power sources in renewable power systems [9] to hard-to-
model turbulence in road conditions [20], from tumor cell
growth in cancer treatment [16] to unforeseen changes in
stormwater reservoirs [5].

The maximum entropy likelihoods can be extended to
uncertain transition dynamics by conditioning the entropy at
each time step only on the previously revealed state transi-
tions [21]. This maximum causal entropy has been extended
from running state-based rewards to learn signal temporal
logic specifications [19]. Focusing this to just inclusion-
for-all-time specifications that make up safety constraints
allows for simpler algorithms as Scobee and Sastry [17] did
for deterministic systems. This paper similarly focuses on
constraints, paralleling [17], but can model stochasticity by
factoring in the causality of dynamics as in [21].

A. Contributions and Guide

This work advances prior art [17] in inferring state-action
constraints:

• by respecting causality using the principle of maximum
causal entropy for likelihood generative models

• by extending the hypothesis family to include risk-
tolerating chance constraints

• and by streamlining the algorithm into one backwards
pass, thereby maintaining the same computational com-
plexity as the non-stochastic version [17]

2. BACKGROUND

Fitting models entails choosing the model out of some
hypothesis class that is “best” along some metric. A natural
metric is how likely the model would be to generate the
true, observed demonstration data x̂i for i ∈ [0, 1, · · · , T ].
Formally, assuming the space of possible models (called the
hypothesis family) is indexed by some vector of parameters
θ, the best model is the one with the highest probability of
observing the dataset:

θ = argmax
θ∈Θ

Pθ(X0 = x̂0, X1 = x̂1, · · ·XN = x̂T )

(1)

Which is the maximum likelihood estimate of the parameter
θ of the probability distribution Pθ.

This probability distribution Pθ(X0, X1, · · ·XT ) can fac-
tor into simpler terms when the Xi are states sampled over
time from a causal dynamical system. If the state Xi contains
all the evolving information, then the Markov property means
that datapoints only depend on the past through the most
recent preceding state. In particular:



Pθ(Xi|Xi−1, Xi−2, · · · , X0) = Pθ(Xi|Xi−1) (2)

When these probabilistic dynamics over state are con-
trolled by some exogenous input a to optimize some cost
R(x, a), these Markov dynamics become a Markov Decision
Problem (MDP). In this work, we focus on discrete time and
discrete state and action spaces, so the MDP can be written
as a 4-tuple:

• state space X = {x0, x1, · · · , xNX},
• set of actions A = {a0, a1, · · · , aNA},
• transition probability function

P (Xt+1 = xt+1|Xt = xt, at) = S(xt, at, xt+1)

where S : X ×A× X → [0, 1],
• and objective metric R(x[0:T ], a[0:T−1]) : Ξ → R

where Ξ = X T × AT−1 is the space of trajectories
ξ = (a[0:T−1], x[0:T ]). This work assumes the reward to
have a form that is decomposable over timesteps:

R(x[0:T ], a[0:T−1]) = w(xT ) +

T−1∑
t=0

r(xt, at) (3)

where w(xT ) is the final reward and r(x, a) is the
running reward.

This probabilistic model can statistically fit to trajectory
datasets; either tuning Sθ(xt, at) to model fit to the dynamics
or tuning Rθ(ξ) to model the expert demonstrator them-
selves. This latter modeling is the inverse optimal control ap-
proach to the imitation learning problem: to replicate expert
performance given a set of their demonstrated trajectories
D = {ξ1, ξ2, · · · , ξM}.

Continuing with using the maximum likelihood framework
to estimate parameters θ, all that is needed is a likelihood
that a particular Rθ(x, a) will generate a[0:T−1] and thereby
x[1:T ]. Ziebart et al [22] introduced a random distribution
on a designed to be robust to possible reward phenomena
outside the necessarily limited hypothesis class. Specifi-
cally, they assume that the parameter to be estimated θ
will multiply candidate feature functions ϕ(x, a) that will
form the spanning basis functions of the hypothesis class.
Mathematically:

rθ(x, a) = θTϕ(x, a) (4)

The estimation, then, is able to choose the best distribution
along the ϕ(x, a) basis set, but is incapable of describing
distributions outside of this linear subspace of function space.
With the goal of remaining maximally agnostic to (and
therefore robust to) this non-capturable space, Ziebart [21]
deploys the distribution that maximizes entropy outside the
candidate ϕ(x, a):

Pθ(x[0:T ]) =
ew(xT )+

∑T−1
t=0 θTϕ(xt,at)

Zθ
(5)

where Zθ is a normalizing constant.

This exponential family distribution makes trajectories
that are equally rewarding equally likely and more optimal
trajectories exponentially more likely. This likelihood can
be used to estimate what rewards r(x, a) would generate
the demonstrated behavior [23] which can in turn be used
to replicate that expert performance [22]. This works well
for modeling preferences and ideas of optimality, but is
insufficient to learn the expert’s safety rules that must be
satisfied to avoid dangers (e.g. how bicyclists avoid potholes
or drivers avoid black ice). This question of finding the
feasible domain of the reward function R(x, a) is addressed
by Scobee and Sastry [17] as an optimization with the pre-
identified reward magnitudes as an input. The task then
becomes to find the constraint set C that will form the
support of the maximum entropy distribution as:

PC,θ(x[0:T ]) =

{
ew(xT )+

∑T−1
t=0 θT ϕ(xt,at)

ZC
, if ξ ∈ C

0 , if ξ /∈ C
(6)

where ξ ∈ C means that all of trajectory ξ’s states x0:T and
actions a0:T−1 are safe.

Similarly to how we decomposed the reward function over
time into a sum of r(xt, at), we focus on the class of con-
straints that rule on individual timepoints’ states xt ∈ CX or
actions at ∈ CA for all time. To model some risk-tolerance,
we allow some small probability ψ(x) of transitioning to an
x ∈ CX :

P (Xt+1 = x̄|Xt = xt, at) ≤ ψ(x̄), ∀x̄ /∈ CX (7)

To deterministically constrain out a state x set ψ(x) = 0.
On the other hand, setting ψ(x) = 1 means the constraint is
inactive and transitioning to x is freely allowed. Therefore
the set of state constraints CX can be encoded as a ψ(x) over
all states x ∈ X . Then the indicator that taking an action a
from state x is safe is:

ΦC(a, x) =

= I[a ∈ CA

∩ (P (Xt+1 = x̄|Xt = x, a) ≤ ψ(x̄)∀x̄ /∈ CX)]
(8)

Let the set of all such safety constraints be C.
Scobee and Sastry’s [17] central insight to identify these

constraints is that narrowing the support C after fixing θ will
uniformly scale the distribution for all likelihoods still within
the support C. As long as the demonstrations stay inside this
C, tightening the constrained safe regions will increase the
likelihood of observing those demonstrations. To avoid over-
fitting to ruling out all non-visited states and unused actions,
states and actions would be inferred as unsafe one-by-one
until improvement rate tapered off. The best such xi or aj

to cut out would be the one that produces the best scaling
factor corresponding to the new normalizing constant ZC+



where C+ denotes the constraint set C after the candidate
xi or aj is ruled out.

ZC+ =
∑
ξ∈C+

ew(xT )+
∑T−1

t=0 θTϕ(xt,at) (9)

Which can be tractably computed for all candidate con-
straint sets C+ ∈ C by forward simulation of the dynamics
(similar to Ziebart’s backward-forward algorithm in [22]),
since this quantity ZC+ is directly proportional to the
summed probability of all trajectories satisfying C+:

PC0,θ(ξ ∈ C+) =

=

∑
ξ∈C+ ew(xT )+

∑T−1
t=0 θTϕ(xt,at)

ZC0,θ
(10)

where C0 ∈ C is the baseline constraint set with no
additional xi or aj cut out, and so ZC0,θ is a constant
across all candidates’ forward simulations. This means that
the PC0,θ(ξ ∈ C+) will form an equivalent ranking on C+

as ZC+ would, and can be used interchangeably to identify
the likelihood maximizing C+.

Unfortunately the distribution in Equation 5 (and thereby
the constrained distribution in Equation 6 derived from it)
only work for non-stochastic dynamics as shown in [21]: the
distribution does not factor in how the probabilistic dynamics
reveal transition information over time and thereby makes
the agents’ selection of x non-causal. That paper solved the
problem (for θ inference) by incorporating the dynamics’
information structure via a recursive definition between the
actions and succeeding states:

Pθ(at|xt) =
eQ

soft
θ,t (at,xt)

eV
soft
θ,t (xt)

(11)

Qsoft
θ,t (at, xt) = r(xt, at) + EXt+1

V soft
θ,t+1(xt+1) (12)

V soft
θ,t (xt) = log

∑
at

eQ
soft
θ,t (at,xt) (13)

= softmax
at

Qsoft
θ,t (at, xt)

where Qsoft can be interpreted as a state-action soft-optimal
value-to-go and V soft the state’s soft-optimal value-to-go.

The present work will apply this improved causal distribu-
tion from [21] to the constraint inference approach designed
in [17] in order to apply constraint inference to stochastic
demonstrations. Towards this end, constraints can be added
to Equations 11, 12, 13 as:

PC(at|xt) =
eQ

soft
C,t (at,xt)

eV
soft
C,t (xt)

ΦC(at, xt) (14)

Qsoft
C,t (at, xt) = r(xt, at) + EXt+1V

soft
C,t+1(xt+1) (15)

V soft
C,t (xt) = log

∑
at

ΦC(at, xt)e
Qsoft

C,t (at,xt) (16)

= softmax
at

ΦC(at, xt)Q
soft
C,t (at, xt)

3. DERIVATION OF CONSTRAINT STATISTICS FOR
CAUSAL STOCHASTIC DEMONSTRATIONS

The first step to applying the Scobee and Sastry’s [17]
key insight to the causal maximum entropy distribution
defined in Equations 14-16 is writing the distribution joint
over all timesteps in a horizon [t : T ] (with any starting
t ∈ [0, 1, 2, · · · , T ]) as:

PC(A[t:T ] = a[t:T ]|Xt = xt) (17)

=

 e
E[R(X[t:T ],a[t:T ])]

e
V

soft
C,t

(xt)
, if a[t:T ] ∈W

[t:T ]
C

0 , if a[t:T ] /∈W
[t:T ]
C

(18)

where W [t:T ]
C is the set of feedback-controller sequences that

satisfy the condition in Equation 8 for all times τ ∈ [t : T ].
This distribution over controls, rather than states as in the
non-causal Equation 6, means that the dynamics’ probability
distribution S(xt, at, xt+1) is truly incorporated.

With this causal correction in place, the insight from
Scobee and Sastry [17] applied to Equation 6 can be applied
to Equation 18. Changing the constraint set C only changes
the normalizing constant ZC,t:

ZC,t = eV
soft
C,t (xt) (19)

Therefore incrementing from a constraint set C0 to any
tighter constraint set C+, as long as this C+ still includes
the demonstrations, will strictly increase the likelihood of
the observed demonstrations. To clarify the connection to
the quantity in Equation 10 that was tracked in [17], note
that:

PC0,θ(ξ ∈ C+) =
ZC+,t

ZC0,t
=
e
V soft

C+,t
(xt)

e
V soft

C0,t
(xt)

(20)

which is the ratio for converting between C0’s normalizing
constant and C+’s normalizing constant. For brevity, we
will denote this probability by FC+,t(xt). Most crucially, the
probability of a trajectory starting at xt and staying inside
C+ and C0 scales by 1/FC+,t(xt). Therefore this F forms a
ranking on possible tightened constraint sets C+; whichever
has the smaller FC+,t(xt) will have larger likelihoods.

This fact will be used to infer CX and CA, but first
note how we can infer ψ(x). Inspired by the chance level
specifications used in Vazquez-Chanlatte et al. [19], we
observe the following:

Lemma 3.1. When considering constraining out a single
state x into CX , it will maximize the likelihood to choose
the lowest possible ψ(x) that doesn’t rule out any demon-
strations.

Proof: Consider two candidate constraints C+ and C+
−

that differ only by C+
− having exactly one ψ(x) lower than

C+ has. C+
− will always have FC+

− ,0(x0) ≤ FC+,0(x0).
Since a smaller FC+

−,0(x0) means that C+
− will have a larger

likelihood of observing the demonstrated trajectories if and



only if it doesn’t rule out those trajectories as infeasible,
the smallest possible ψ(x) will be the maximum likelihood
estimator.

The ratio FC+,t(xt) can be computed by modifying the
soft Bellman backup defined in Equations (14) - (16). This
modified backup procedure is described in the theorem
below:

Theorem 3.2. Let C0 be a set of constraints and C+ be an
augmented version of C0 with more states constrained. Then
FC+,t(xt) can be computed as:

FC+,t(xt)

= Eat∼PC0

[
ΦC+(at, xt)e

Ext+1
log(FC+,t+1(xt+1))

]
Proof: It will be helpful to notate the set of legal actions

from x under constraint set C as
AC(x) = {a | ΦC(a, x) = 1}

FC+,t(xt) =
e
V soft

C+,t
(xt)

e
V soft

C0,t
(xt)

=

∑
at∈AC+ (xt)

e
Qsoft

C+,t
(at,xt)

e
V soft

C0,t
(xt)

=
∑

at∈AC+ (xt)

e
r(xt,at)+Ext+1

V soft

C+,t+1
(xt+1)

e
V soft

C0,t
(xt)

It will be convenient to define the logarithm of our FC,t.
Let it be ∆t

C :

∆t+1
C+ (xt+1) = log

(
FC+,t+1(xt+1)

)
= log

e
V soft

C+,t+1
(xt+1)

e
V soft

C0,t+1
(xt+1)


= V soft

C+,t+1(xt+1)− V soft
C0,t+1(xt+1)

Then the ratio can be redefined in terms of previously
calculated terms on C0 and our iterating FC,t

FC+,t(xt) =
∑

at∈AC+ (xt)

e
r(xt,at)+Ext+1

V soft

C0,t+1
(xt+1)

e
V soft

C0,t
(xt)

· eExt+1
∆t+1

C+ (xt+1)

=

∑
at∈AC+ (xt)

eQC0 (xt,at)+Ext+1
∆t+1

C+ (xt+1)

e
V soft

C0,t
(xt)

=
∑

at∈AC+ (xt)

eQC0 (xt,at)

e
V soft

C0,t
(xt)

eExt+1
∆t+1

C+ (xt+1)

=
∑

at∈AC+ (xt)

PC0(at|xt)eExt+1
∆t+1

C+ (xt+1)

= Eat∼PC0ΦC+(at, xt)e
Ext+1

∆t+1

C+ (xt+1)

(21)

4. ALGORITHM

Theorem 3.2 implies that an algorithm can compute the
conversion ratios FC(x) (which will correspond to how much
the distribution shrunk by) for all candidate constraints at
the same time as the Bellman backup for the baseline set
of constraints C0. The Greedy Iterative Constraint Inference
procedure pioneered in [17] suggests this selection can be
performed iteratively adding just one constraint at a time.
This iterative approach can be shown to be bounded sub-
optimal compared to selecting all the constraints simultane-
ously [17]. In this iterative approach, the FC+ optimizing
C+ will become the baseline set of constraints for the next
iteration Ci.

A. Determining Chance Constraint Risk Levels from Demon-
strated Transitions

Lemma 3.1 shows that this set of candidates can be
further reduced to only those whose newly added ψ(x)
are as exclusive as possible without excluding any of the
demonstrations (x̃0:T , ã0:T ) ∈ D. That is, when adding
state constraints, the newly added exclusion threshold ψ(x)
must be as low as possible while still being greater than all
transition probabilities to x that were chosen by the expert
in their demonstrations. For simplicity, we will lowerbound
ψ(x) to prevent any precursor states of x from having all its
available actions ruled out thereby dooming any trajectory
entering that precursor state to necessarily violate the chance
constraint on x. Therefore this lowerbound ψ(x) must be
defined:

ψ(x′) = max
{x|∃â∋P (x′|x,â)>0}

min
a
P (x′|x, a) (22)

This implies that the new ψ(x) should be:

ψ(x) = max{ψ(x),
max
ξ∈D

max
t∈[0:T−1]

S(xt, at, x)} (23)

B. Comparing States and Actions Satisfaction Frequencies

Let C+i ⊂ C be the subset of constraint sets that restrict
only one more action or state than the nominal constraint
set Ci. The most likely constraint C ∈ C+i is whichever still
allows the observed demonstrations while having the smallest
satisfaction frequency FC+,0(x0) from the starting state. This
quantity can be computed via our proposed algorithm as
described in Algorithm 1’s pseudocode.

Note that Algorithm 1 has computations on the order of
O(|X |2(|X |+ |A|)), identical to the computational complex-
ity of prior art in maximum likelihood constraint inference
[17].



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0

0.05

0.1

0.15

0.2

0.25

0

1

2

3

4

5

6

7

8

9
10-3

0

0.5

1

1.5

2

2.5

3

3.5

10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 F C
+

/C
1(x

0)

(A) TRUE MDP WITH  FROM THE 
DEMONSTRATION DATA

ψ(x)

F C
+

/C
2(x

0)
F C

+
/C

3(x
0)

F C
+

/C
6(x

0)
F C

+
/C

5(x
0)

F C
+

/C
4(x

0)

F C
+

/C
0(x

0)
C

H
A

N
C

E 
LE

V
EL

S 
ψ

(x
)

(B1) CHOOSING THE FIRST 
CONSTRAINT

(B2-4) ACCUMULATING CONSTRAINTS (B5-7) DIMINISHING RETURNS

Fig. 1. The constraint inference algorithm was evaluated on a gridworld synthetic dataset with stochastic dynamics. The synthetic demonstrator optimized
the task of finding the shortest path from the origin (O) in the bottom left to the starred goal in the bottom right. In the panels, the states and actions that
are constrained out are marked with a red X. (A) The demonstration dataset is generated with the constraints shown in Panel A. The dark squares are states
and actions the demonstrator never took. Conversely, the light state and actions squares were those chosen by the demonstrator. The relative shading on the
states corresponds to the largest chance of transition to that state that was demonstrated in D. That transition chance is as low as the risk threshold ψ(x)
on that state can be set for a constraint without rejecting the demonstrations as infeasible and making their likelihood 0. Therefore, inferred constraints
will have ψ(x) equal to that largest demonstrated transition chance. (B) The sequence of inferred constraints alongside the value of adding other candidate
constraints in addition. Cell shading corresponds to how much further partition mass would be eliminated by introducing a constraint on that action or
chance constraint on that state. This FC+/Ci value equals the probability that the demonstrator would happen to avoid that state even without a constraint
(following Ci which doesn’t count that state as dangerous like C+ would). Only states that would be unlikely to be completely avoided the way they
were in the demonstrations are likely to have constraints on them. (B1) The F values of choosing the first constraint over the empty constraint set C0.
Note especially the bottom middle square that only has a 29% chance of being avoided like the demonstrator did. In other words, it has a probability of
1− 0.29 = 0.71 of being transitioned to with a transition chance S(x−, a, x) higher than those demonstrated chances ψ(x). The likely explanation for
why the demonstrator avoided this straightshot state is that there was a constraint there. (B2-4) Adding the next three constraints continues to scale up the
likelihood of observing D and infers true constraints of the groundtruth demonstrator (B5-7) After the fourth constraint gets inferred, the continued scaling
shrinks by an order of magnitude and then effectively halts as F retracts to F = 0.96. This corresponds to inferring an untrue constraint. The final three
true constraints can not be inferred since the demonstrator never traversed that unrewarding half of the grid.

5. RESULTS

Algorithm 1 was implemented in MATLAB and tested
on a synthetic dataset of M = 100 demonstrations. This
dataset was synthesized from simulated trajectories of a
stochastically optimal agent minimizing distance traveled on
a two-dimensional “Gridworld” MDP with movement in all
eight compass directions. These eight directions made up
the action space A along with a loitering terminal action for
once the goal was reached. Each directional action was given
a fixed “slippage” chance of 0.1 where a random direction
out of the other seven was followed instead. All ground-
truth and candidate state constraints were fixed at a constant
chance threshold of ψ = 0.25 for all states.

The simulated demonstrator only noisily optimized the
task, following a Boltzmann choice distribution as described
in Equation (18). The constraint inference algorithm was
evaluated on this dataset as shown in Figure 1. By the fifth
iteration (shown in Figure 1.B6), the algorithm suceeded in

recovering the groundtruth constraints (see Figure 1.A).

6. LIMITATIONS AND FUTURE WORK

The algorithms set forth in this paper focused on dis-
cretized state and action spaces. For controlling many sys-
tems on practical timescales, the state must be handled as
a continuous parameter. Future work should investigate how
gridded state spaces like in Figure 1 could be refined to
approximate continuous state spaces. Reducing the algorithm
to a variant Bellman backup, as we did in Theorem 3.2,
suggests that the continuous variant may just be solving a
Hamilton-Jacobi-Bellman equation. These partial differential
equations have a rich literature investigating their solution,
including toolsets like [12].

Extending constraint inference to stochastic systems raises
questions of whether human experts might be better modeled
using a prospect-theoretic or risk-sensitive measure as in
[11]. Future work should investigate how human heuristics
for statistical prediction might impact the way demonstra-



Algorithm 1: Modified Bellman Backup with Value
Ratio

Data: Final reward w(x) and running reward
r(x, a), Dynamics S(x, a, x′), Vector of
indicators of constraint satisfaction ΦC for
nominal constraint set C0 and all candidate
constraints C+ ∈ C+i .

Result: VCi,t and a column vector F where each
entry corresponds to the FC+,0 for C+ ∈ C+i

1 for x ∈ X do
2 Z(T, x)← exp(w(x))
3 F (T, x)← 1
4 end
5 for t ∈ [T − 1, 0] do
6 for x ∈ X do
7 Z(t, x)← 0
8 F (t, x)← 0
9 for a ∈ A do

10 Q(t, x, a)← r(x, a)
11 D(t, x, a)← 0
12 for x′ ∈ X do
13 Q(t, x, a)+ =

S(x, a, x′) log(Z(t+ 1, x′))
14 D(t, x, a)+ =

S(x, a, x′) log(F (t+ 1, x′))
15 end
16 Z(t, x)+ = ΦCi(x, a) exp(Q(t, x, a))
17 F (t, x)+ = ΦC∈C+

⟩
(x, a) exp(Q(t, x, a))

exp(D(t, x, a))
18 end
19 F (t, x) = F (t, x)/Z(t, x)
20 end
21 end

tions are generated. The algorithm should be designed to be
robust to these biases or even leverage their structure.

7. DISCUSSION AND CONCLUSION

By designing the likelihoods to maximize the causal
entropy (that respects the information flow of state transition
outcome revelation) this work makes maximum likelihood
estimation possible for stochastic dynamics that reflect the
uncertainties inherent in perilous situations. Moreover, by
broadening the hypothesis class to include chance constraints
our algorithm not only learns the constraints from expert op-
erators, but also their risk tolerances. This opens the door to
studying how expert operators plan risk-sensitively and what
prospect-theoretic risk measures they may be employing.

Although increasing the complexity of systems that can
be handled in constraint inference, this algorithm maintains
the same computational complexity of O(|X |2(|X | + |A|))
as prior art. That is, control engineers can extract safety
specifications from expert demonstration data for the same
cost in both stochastic and deterministic dynamics.
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