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Abstract
This paper investigates the energy efficiency of a full duplex (FD) cognitive radio (CR) system in the low-power regime
under a practical self-interference cancellation performance and imperfect spectrum sensing. We consider an opportunistic
spectrum access network in which the secondary user (SU) is capable of self-interference suppression (SIS). The SIS ability
enables the SU to work in simultaneous transmit and sense (TS) mode in order to increase the quality of channel sensing.
Towards this goal, we first study the sensing performance, i.e., false-alarm and miss-detection probabilities, of the FD CR
networks using TS, and compare the results with traditional half duplex (HD) CR systems using transmit only mode (TO).
In the next step, we show that due to imperfect spectrum sensing, the secondary network channel is best characterized as a
Gaussian-Mixture (GM) channel, which is widely used to capture the asynchronism in heterogeneous cellular networks. We
then analytically characterize the low-signal-to-noise-ratio (low-SNR) metrics of the minimum energy per bit and wideband
slope of the spectral-efficiency curve, and obtain these fundamental limits in closed-form. Furthermore, the characterization
of these fundamental metrics allows us to identify practical signaling strategies that are optimally efficient in the low-SNR
regime for the considered FD CR system. The benefits in terms of energy efficiency offered by FD CR over HD CR are also
clearly demonstrated.

Keywords Energy efficiency · Full duplex radio · Cognitive radio · Spectrum sensing · Fundamental limits

1 Introduction

Recent years have witnessed an explosive growth in
mobile data traffic generated by wireless devices, which
is predicted to reach almost 50 billion users within the
next decade. To keep pace with such demands, future
generations of cellular networks are being designed to have
multi-tier heterogeneous architectures involving macrocells,
microcells, femtocells, device-to-device (D2D) links, Wi-Fi
access points, and cognitive radio (CR) networks. Among
these, CR has been considered as a revolutionary wireless
communication paradigm due to its flexibility to improve
spectrum efficiency by allowing cognitive users to access
spectrum resources that are unoccupied by primary users
(PUs) [1–7]. While research on CR is still an active area, the
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robust spectrum access offered by CR is undoubted, and it
will directly benefit a broad spectrum of applications.

Among different access mechanisms, CR under the
context of opportunistic spectrum access (OSA), i.e.,
interweave paradigm, has received significant attention (see
[8–12] and references therein. In CR with OSA, the SU
is compelled to monitor the availability of temporal white
spaces before transmitting. This operation is referred as
spectrum sensing. The literature on the analysis of OSA for
improving spectrum efficiency and throughput/capacity in
CR is vast, but mostly under the constraint of half-duplex
(HD) communication, where a SU senses the channel before
it can transmit. Given the recent development of several
encouraging full-duplex (FD) designs to overcome the self-
interference problem [13–16], the integration of full-duplex
(FD) radio in CR has also been explored [17–30]. More
specifically, the ability of FD cognitive users in sensing
primary activity or receiving information while they are
transmitting allows more flexibility in utilizing the spectrum
holes and/or improving the throughput and reliability. For
example, the ability of simultaneous transmit-and-sense
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(TS) and simultaneous transmit-and-receive (TR) in FD
CR has been investigated in [24, 25]. Under a similar
TS framework, references [26, 27] proposed a “listen-and-
talk” protocol for better spectrum utilization and sensing
accuracy. In recent works in [28–30], CR networks assisted
with FD relaying have also been investigated.

While spectrum sensing in CR is important, it is a
challenging task and, unfortunately, it is never perfect
in practice. Such imperfections must be taken taken into
account in evaluating the sensing/throughput trade-off of the
SU link. To date, existing works in the literature for both
HD CR and FD CR with imperfect spectrum sensing rely
on a traditional approach of treating aggregate interference
from collisions due to the simultaneous spectrum access
under occasional but consistent miss-detection as Gaussian
[10, 11, 31]. While the Gaussian assumption greatly
simplifies the analysis and has been prominent, this
Gaussian assumption is unrealistic. For example, miss-
detection occurs when the SU fails to detect an active PU
at a given moment. In this event, PU transmissions generate
interference to SU communication. The SU channel is
therefore no longer Gaussian. In a similar manner, it has
been shown in [32] that the use of finite-constellation inputs
in primary networks leads to non-Gaussian interference plus
noise that follows Gaussian mixture (GM) distributions in
CR networks. In addition, it has been widely recognized that
co-channel interference plus noise can be more accurately
modeled as GM noise in heterogeneous wireless networks
[33–36]. The realistic SU channel is therefore no longer
Gaussian and the well-known expression log(1 + SNR)
cannot be used. The consideration of realistic non-Gaussian
co-channel interference plus noise will lead to a completely
new link and network behavior of CR network, but it
also poses difficult challenges. It is because even the
information-theoretic limits for a basic communication link
with non-Gaussian interference are not known [37–41].
Recently, the work in [42, 43] demonstrates that the optimal
signaling scheme for a channel subject to GM noise is
discrete in amplitude. However, numerical methods are
still needed in order to compute the link capacity and the
corresponding optimal input.

In wireless networks, especially CR, energy is at a
premium, since energy resources are scarce and have to
be conserved. As such, minimizing the energy cost per
unit transmitted information will improve the efficiency.
In the literature, the energy required to reliably send
one bit is a widely adopted metric to measure the
performance. Therefore, the energy efficiency is related
to the fundamental limits through the channel capacity
and optimal signaling schemes in the low-power regime.
It is also worth mentioning that this low-power regime is
the region in which both spectral efficiency and energy-
per-bit are relatively low. As such, the low-power regime

can also be referred to as the wideband regime [44–46].
There is a rich literature addressing fundamental limits
on energy efficiency in CR, e.g., in [47–51], but mostly
for half-duplex systems under the assumption of Gaussian-
distributed aggregate interference. To our knowledge, no
previous work in CR has examined energy efficiency in GM
environments.

Motivated by the above observations, this paper attempts
to develop new low-signal-to-noise-ratio (low-SNR) funda-
mental metrics of minimum energy per bit and wideband
slope of the spectral-efficiency curve for CR systems under
GM aggregate interference. The focus is on FD CR using
simultaneous transmit-and-sense (TS) mode within the con-
text of OSA, i.e., interweave paradigm, under the effect
of miss-detection and false-alarm events due to imperfect
spectrum sensing. For completeness of the solutions, we
shall also compare with the traditional listen-before-talk
operation in HD CR, which is referred to as transmit only
(TO) mode. The developed information-theoretic findings
on energy efficiency shall certainly provide useful results
that lead to more efficient use of resources and shed light on
the trade-off between bandwidth and power in CR networks.

In the first part of the paper, we first study the sensing
performance, i.e., false-alarm and miss-detection probabil-
ities, of the considered FD CR networks. The results are
useful for the characterization of the low-SNR fundamental
metrics of minimum energy per bit and wideband slope of
the spectral-efficiency for the secondary network Gaussian-
mixture channel under imperfect spectrum sensing. Instead
of trying to maximize the mutual information or determine
the optimal input directly, we will make use of the charac-
terization that the first derivative of the capacity with respect
to SNR at SNR= 0 (or equivalently capacity per unit cost
or minimum energy per bit when capacity is a concave
function of SNR) can be determined from the Kullback-
Leibler divergence without identifying the optimal input
[52], [45, Equation (42)]. As a result, the minimum energy
per bit and wideband slope can be obtained in closed-
form. The characterization of these two fundamental metrics
allows us to identify practical signaling strategies that are
optimally efficient in the low-SNR regime for the con-
sidered FD CR system. The benefits in terms of energy
efficiency offered by FD CR over HD CR are also clearly
demonstrated.

2 Systemmodel

We consider a CR network in which a secondary user
(SU) use the primary channels opportunistically; i.e SUs
only start transmitting if the channel is sensed free. We
assume that only one SU link is active at a time; i.e., SUs
transmit using appropriate multiple access methods [53, 54].
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In addition, the primary user (PU) activity is considered as
an alternating ON/OFF random process with P1 and P0 as
probability of primary user being ON and OFF, respectively
[24–27].

2.1 Secondary channel model under imperfect FD
spectrum sensing

The ability of sensing and transmitting simultaneously in
FD allows more flexibility in detecting the presence of
PUs. Specifically, as illustrated in Fig. 1, with FD, the SU
transmits to its peer SU a data frame of length T , and, at the
same time, it senses the channel for a potential transmission
in the next frame [26, 27]. If the channel is sensed as busy
at sensing decision time, the SU stops transmitting and only
senses the channel until the next sensing decision time.
The SU then starts transmitting again once the channel is
sensed empty. This operation is referred to as simultaneous
transmit-and-sense (TS) mode. In the case of traditional
HD operation, sensing is initially performed in the first Ts

seconds of a frame. If the channel is empty, the remaining
time slot shall be used exclusively for data transmission,
as shown in Fig. 1. If the channel is occupied, the SU is
refrained from transmitting until the next sensing decision.

Depending on the sensing techniques applied, e.g, energy
detection, a practical spectrum sensing performance can be
characterized by the probabilities of miss-detection Pm and
false alarm Pf . Because of the FD operation, these two
parameters also depend on the quality of self-interference
suppression (SIS), and will be analyzed in the next section.
Now, let H0 be the hypothesis that the channel is empty,
and Ĥ0 be the hypothesis that SU transmitter perceives the
channel to be free. On the other hand, H1 is the hypothesis
that the channel is busy, while Ĥ1 corresponds to the
case that the channel is sensed as busy. Clearly, in the
events of false alarm with the average probability Pf or
correct detection with the average probability 1 − Pm, the
SU channel outputs are respectively noise and noise plus
interference only (i.e., without SU transmission). Therefore,
in those two events, channel erasure can be declared.
Otherwise, SU transmits signal x, and the output y is either

HD operation with
TO

FD operation with
TS

Sensing Data Transmission Silent

T

Ts

Fig. 1 FD operation with simultaneous transmit-and-sense (TS) mode
versus HD operation with transmit only (TO) mode

y = hsx+n under H0 and Ĥ0, or y = hsx+n+w under H1

and Ĥ0. Here, n is the Gaussian thermal noise with variance
per real dimension N0

2 , w is PU interference, and hs is the
SU channel gain. Taking these events into consideration, the
SU channel output can be written as

y = behsx + n + αw. (1)

In Eq. 1, be and α are binary indicator random variables
with state space {0, 1}. be = 0 represents the event that
SU transmitter perceives the time-slot to be busy, which
includes both false alarm and correct-detection of an active
PU, and α = 1 denotes the event that PU is active; i.e.,
P (α = 1) = P1. In addition, α = 1 given be = 1 represents
the event that SU fails to detect an active PU, and the
corresponding probability P(α = 1 | be = 1) can be
calculated as:

P(α = 1 | be = 1) = 1 − P(α = 0 | be = 1) = 1 − P H0 | Ĥ0

= 1 − 1 − Pf P0

P0 1 − Pf + P1Pm

. (2)

It is also worth mentioning that α = 0 | be = 1 is the event
that SU transmits without collision.

Now, given that the SU is transmitting; i.e., be = 1,
let z = n + αw. If the PU interference w follows a
Gaussian distribution, we have z as a mixture of two
Gaussian distributions, which is no longer Gaussian. In
a more practical fading scenario where we have multiple
primary transmitters using modulated signals, both w and
z follow a GM distribution [32]. As such, in this work, we
consider w as a mixture of p circularly symmetric complex
Gaussian distributions, each with mean 0 and variance per
real dimension σ 2

w,i , as follows:

fW (w) =
p

i=1

γiCN (w, 0, σ 2
w,i), (3)

where γi is the mixing probability satisfying p

i=1 γi = 1.
As a result, z is a mixture of (p + 1) Gaussian distributions
as:

f
Z (z) =

P(α = 0 | be = 1)CN (z, 0,
N0

2
) + P(α = 1 | be = 1)

p

i=1

γiCN (z, 0, σ 2
w,i + N0

2
)

=
p+1

i=1

iCN (z, 0, σ 2
i ), (4)

where i = P(α = 1 | be = 1)γi , 1 ≤ i ≤ p, and

p+1 = P(α = 0 | be = 1). In addition, σ 2
i = σ 2

w,i + N0
2

for 1 ≤ i ≤ p, and σ 2
p+1 = N0

2 . It can also be verified that z

has mean of 0 and variance of σ 2
z = 2 p+1

i=1 iσ
2
i .
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2.2 Preliminaries on fundamental limits

The mutual information (MI) between the input x and the
outputs y and be is given as

I(x; y, be) = I(x; be) + I(x; y|be) = P(be = 1)I(x; y|be = 1), (5)

where P(be = 1) = P0 1 − Pf + P1Pm. For notational
convenience, we define yb as the channel output y

conditioned on be = 1, i.e., yb (y|be = 1) =
hsx + n + αw. Now, assume that an average power
constraint E(||x||2) ≤ Pin is imposed on the input. The
channel capacity is the supremum of the mutual information
between the channel input and output over the set of all input
distributions, and it can be expressed as

C = sup
fX(·)

EX x 2 ≤Pin

P(be = 1) I(x; y|be = 1). (6)

Equivalently, the channel capacity can be written as

C = P(be = 1) · Cb. (7)

and Cb is the channel capacity of the GM channel yb =
hsx + n + αw. In the recent work in [43], it was shown that
the optimal input for a GM channel has discrete amplitude
with independent uniform phase. However, the explicit
expression of the channel capacity still remains unknown.

On the other hand, energy efficiency is related to the
channel capacity in the low-power regime and can be
effectively measured by the energy per bit normalized by
noise power. Generally, energy efficiency is maximized
when energy-per-bit is minimized. For a given signal-

to-noise ratio (SNR) defined as SNR = EX x 2

N0
, this

normalized energy per bit is given as

Eb

N0
= SNR

C (SNR)
. (8)

Then the minimum energy per bit required for reliable
communication can be calculated as [45]

Eb

N0 min
= lim

SNR→0

SNR

C (SNR)
= loge 2

Ċ(0)
. (9)

Here, Ċ(0) is the first derivative of the channel capacity at
SNR = 0. An input distribution is therefore considered first-
order optimal if the first derivative of input/output mutual
information at SNR = 0 denoted as İ (0) is equal to Ċ(0).

Besides Eb

N0 min
, the wideband slope of the spectral

efficiency as a function of Eb/N0 calculated as C Eb

N0
=

C (SNR) (in bits/sec/Hz) is another important fundamental

limit in the low-power regime. This wideband slope (in
bits/s/Hz per 3dB) is given by [45]

S0 = 2 Ċ (0)
2

−C̈ (0)
, (10)

where Ċ (0) and C̈ (0) are the first and second derivatives
of the capacity at zero SNR. An input distribution is said to
be second-order optimal if it is the first-order optimal and
the second derivative of the input/output mutual information
at SNR = 0 denoted as Ï (0) is equal to C̈ (0). By using a
second-order optimal input signal, we can achieve a given
rate at a given power with the minimum possible bandwidth.

3 Energy efficiency: minimum energy per bit
and wideband slope

In this section, we establish in closed-form the minimum
energy per bit Eb

N0 min
and the wideband slope for the consid-

ered FD CR channel. Due to the lack of explicit expressions
of both channel capacity and mutual information, we fol-
low the approach in [45, 52] and rely on the relative entropy
or Kullback-Leibler divergence without the need to identify
the optimal input. Towards this end, in the following, we
first calculate the two sensing metrics Pf and Pm taking into
account the imperfectness of FD spectrum sensing. While
spectrum sensing can be performed by different methods,
such as energy detection, cyclostationary detection, and
cooperative sensing, we simply consider energy detection
[55–57]. The use of other methods is also possible, which
simply leads to different sensing performances.

3.1 Sensingmetrics: Pf and Pm

At a given sensing duration, whether or not the SU
transmitter transmits data depends on the previous sensing
result. In other words, unlike traditional cognitive radio
systems, the statistics of the received energy at the SU
which is used for sensing is not only a function of
PU activity status, but also a function of SU activity.
Consequently, based on the activity of PU and SU, there
can be four different states at each sensing decision instant,
Hij i,j∈{0,1}, where Hij represent the state of Ĥi and Hj .

As such, to calculate Pf and Pm, we first need to examine
two different cases of sensing: FD sensing where SU
transmits and senses simultaneously, or HD sensing where
only sensing is performed due to the negative result from
the previous sensing decision. To describe these processes
in further details, we can follow a similar approach in [26]
and model the changes among the four states using two
discrete-time Markov chains, as depicted in Fig. 2. Note that
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Fig. 2 SU state transitions for
TS mode

in this structure we have assumed that PU activity changes
sufficiently slow with respect to one SU time slot and we
can neglect the rare time slots in which PU changes its state
[24, 26, 58, 59].

We can then apply the steady-state analysis of Markov
chains to calculate the probability of the system staying in
each state P Hij . It is then clear that Pm = P (H01), and
Pf = P (H10).

In the case that PU is active, we have
⎧⎨
⎩

P (H11) P HD
m = P (H01) 1 − P FD

m

P (H01) + P (H11) = 1
. (11)

So we can conclude that miss-detection probability is

Pm = P (H01) = P HD
m

1 + P HD
m − P FD

m

. (12)

Moreover, if the PU is not active, we have
⎧
⎨
⎩

P (H10) 1 − P HD
f = P (H00) P FD

f

P (H00) + P (H10) = 1
, (13)

and probability of false alarm is

Pf = P (H10) = P FD
f

1 + P FD
f − P HD

f

. (14)

To further evaluate Pm and Pf , let first consider the case
of FD sensing. With energy detection-based sensing, the
energy is calculated as

M = 1

fsTs

fsTs

n=1

|y (n)|2 , (15)

where y (n) is the nth sampled signal at SU, and fs and
Ts are the sampling frequency and the sampling time,

respectively. By comparing M with a pre-defined threshold
, the false alarm and miss-detection probabilities are

calculated as

P FD
f = Pr [ | H0] , (16)

and

P FD
m = Pr [ | H1] . (17)

Under FD sensing, due the the presence of the data signal
x, the hypothesis tests of the the sampled signal y (n) are as
follows:

y (n) = hsi (n) x (n) + n (n) ,H0

w (n) + hsi (n) x (n) + n (n) ,H1
(18)

where y (n) is the nth sample of the received signal at
the SU receiver. In addition, and hsix (n) is the residual
self-interference due to FD operation. In this work, we
consider a realistic SI model in [60–62] in which hsi is
modeled by a complex Gaussian distribution with zero mean
and variance χ2. This variance can be understood as the
ratio of residual self-interference to the self-interference
before suppression. Then we have the following proposition
regarding the distribution of energy detected at SU receiver
in FD mode, MFD .

Proposition 1 Under H0, MFD follows a Gaussian
distribution with the following mean and variance

E [MFD | H0] = χ2σ 2
s + N0, (19)

and

V ar [MFD | H0] = 1

fsTs

χ4σ 4
s (2κs − 1) + N2

0 + 2χ2σ 2
s N0 . (20)
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On the other hand, under H1, MFD is also Gaussian
distributed, but with the following mean and variance

E [MFD | H1] = 2
p

i=1

γiσ
2
w,i + χ2σ 2

s + N0, (21)

and

V ar [MFD | H1] = 1

fsTs

8
p

i=1

γiσ
4
w,i + χ4σ 4

s (2κs − 1)

+4
p

i=1

γiσ
2
w,i −

p

i=1

γiσ
2
w,i + N0 + 2χ2σ 2

s 2
p

i=1

γiσ
2
w,i + N0 + N2

0 , (22)

Given that, P FD
m and P FD

f can be calculated as:

P FD
m = 1 − Q FD

− E [MFD | H1]√
V ar [MFD | H1]

, (23)

and

P FD
f = Q FD

− E [MFD | H0]√
V ar [MFD | H0]

. (24)

The proof of this proposition is given in the Appendix. In
the case of HD sensing, P HD

m and P HD
f can be obtained in

a similar manner, but under the assumption that there is no
residual SI, i.e., using χ = 0 in Eqs. 23 and 24. Finally,
substituting P HD

f , P HD
m , P HD

f , and P HD
m into Eqs. 12 and

14, we obtain Pm and Pf , respectively.
Given the above Pm Pf , we are ready to find the

minimum energy per bit and the wideband slope, which is
presented in the following subsection.

3.2 Minimum energy per bit and wideband slope

3.2.1 Minimum energy per bit

Based on the findings in [52], the first derivative of the
capacity at zero SNR in nats can be calculated using the
following equation:

Ċ (0) = N0sup
x0

D fY |X=x0(y) fY |X=0(y)

x0
2

, (25)

where fY |X=x0(y) and fY |X=0(y) are the conditional PDFs
of the output when the input x = x0 and x = 0, respectively
and D(·) denotes the relative entropy between the two
distributions. From earlier (9), it is clear that in order to
calculate the minimum energy per bit for TS mode, it is
enough to find the first derivative of capacity at zero SNR:

Eb

N0 min
= lim

SNR→0

SNR

C (SNR)
= loge 2

P (be = 1) Ċb (0)
. (26)

For convenience, from Eq. 4, let q = p + 1. It can then be
verified that

fYb|X=0(y) =
q

i=1

iCN (y, 0, σ 2
i ), (27)

and

fYb|X=x0(y) =
q

i=1

iCN (y, hsx0, σ
2
i ). (28)

Using the log-sum inequality, the relative entropy in Eq. 25
can be upper bounded as

D fYb |X=x0 (y) fYb |X=0(y)

=
∞

−∞

q

i=1

iCN (y, hsx0, σ
2
i ) log

q

i=1 iCN (y, hsx0, σ
2
i )

q

i=1 iCN (y, 0, σ 2
i )

dy

≤
∞

−∞

q

i=1

iCN (y, hsx0, σ
2
i ). log

CN (y, hsx0, σ
2
i )

CN (y, 0, σ 2
i )

.dy

=
q

i=1

iD CN (y, hsx0, σ
2
i ) CN (y, 0, σ 2

i )

=
q

i=1

i

hsx0
2

2σ 2
i

log e. (29)

The equality in Eq. 29 holds when iCN (y,hsx0,σ
2
i )

q
i=1 iCN (y,hsx0,σ

2
i )

=
iCN (y,0,σ 2

i )
q
i=1 iCN (y,0,σ 2

i )
for all i. In other words, the equality is

achieved when x0 = 0. Following from Eq. 25, the
supremum is achieved as x0 0 and we have:

Ċ (0) = P (be = 1) σ 2
z sup

x0

D fYb|X=x0(y) fYb|X=0(y)

x0
2

= P (be = 1) σ 2
z hs

2
q

1

i

2σ 2
i

= P (be = 1) hs
2

q

i=1

2 iσ
2
i

q

i=1

i

2σ 2
i

. (30)

Therefore, from Eq. 9, the minimum bit energy can be
calculated in closed-form as:

Eb

N0 min
= loge 2

hs
2 P (be = 1)

p+1
i=1 iσ

2
i

p+1
i=1

i

σ 2
i

.

(31)

Note that in the case of traditional HD operation in TO
mode, the minimum energy per bit can be obtained in a
similar manner. Specifically, in this case, the calculations
of P (be = 1) and P (α | be = 1) as well as the noise
parameters in Eq. 4 are modified accordingly before
(31) can be used to find Eb

N0 min
. For the brevity of the

presentation, we omit these steps.

3.2.2 Wideband slope

In this section, we obtain the wideband slope in Eq. 10 in
closed-form. Having found Ċ (0) in previous part, we need
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to formulate the second derivative of the capacity at zero
SNR:

C̈ (0) = P (be = 1) C̈b (0) .

Given that the capacity-achieving input distribution of
the channel yb = hsx + z denoted as PX∗

b
(x) is used, we

have [45]

C̈b (0) = 2 lim
SNR→0

Cb (SNR) − Ċb (0) SNR

SNR2
. (32)

As the capacity-achieving input distribution is the first-order
optimal input, we can then simplify C̈(0) as

C̈ (0) = −2P (be = 1) lim
SNR→0

D fY ∗
b
(y) fYb|X=0(y)

SNR2
,

(33)

where fY ∗
b
(y) is the output PDF when PX∗

b
(x) is used.

As we are studying static channel, we can rewrite the
channel as yb = x + z where x = hsx. Using the polar
coordinates, we rewrite the input and output as x = rejθ

and yb = vejφ where r = hs x . It can then be verified
that

D fY ∗
b
(y) fYb |X=0(y) = D fY ∗

b
(y) fYb |X =0(y) = D fV ∗ (v) fV |r=0(v) (34)

where fV ∗(v) is the PDF of the optimal output amplitude.
In order to calculate the relative entropy in Eq. 34 we use
the characterization of the optimal input, PX∗

b
(x), having

discrete amplitude and independently uniform phase that
was shown recently in [43]. The PDF of the output v can
then be written as[43]:

fV ∗(v) =
∞

0
K (v, r) dFR∗ (r) , (35)

where FR∗ (r) is the CDF of the optimal input amplitude
and the Kernel K (v, r) is

K (v, r) =
q

i=1

i

σ 2
i

ve
− v2+r2

2σ2
i I0

vr

σ 2
i

. (36)

Here, I0(·) is the zero-order modified Bessel function. Since
the amplitude of PX∗

b
(x) consists of a finite number of mass

points, let {pk} and {rk} be the probabilities and locations of
these mass points, with 1 ≤ k ≤ K . The PDF of the output
amplitude under PX∗

b
(x) can then be expressed as

fV ∗(v) =
K

k=1

pkK (v, rk) . (37)

Moreover, we have

fV |r=0(v) = K (v, 0) . (38)

Then, using the log-sum inequality, we find the following
upper bound on

D fV ∗(v) fV |r=0(v) :

D fV ∗(v) fV |r=0(v) ≤
K

k=1

pkD (K (v, rk) K (v, 0)) .

(39)

It is straightforward to verify that the equality in Eq. 39 is
obtained if and only if rk → 0 for k = 1, 2, · · ·K , which

can be translated to SNR =
K
k=1 pkr

2
k

σ 2
z

→ 0. Consequently,

we have

lim
SNR→0

D fV ∗ (v) fV |r=0(v) = lim
SNR→0

K

k=1

pkD (K (v, rk) K (v, 0)) . (40)

Without loss of generality, let’s assume r1 < r2 < · · · <

rK . As the function D (K (v, r) K (v, 0)) is an increasing
function of r , we obtain:

lim
SNR→0

D fV ∗ (v) fV |r=0(v) ≥ lim
SNR→0

K

k=1

pkD (K (v, r1) K (v, 0)) . (41)

Based on Eqs. 33, 34, and 41, we then conclude that

C̈ (0) ≤ −2P (be = 1) lim
SNR→0

D (K (v, r1) K (v, 0))

SNR2
.

(42)

Now, we need to show that the equality in Eq. 42 can
be satisfied; i.e., the upper-bound is achievable. By using
an input with one mass point amplitude and uniformly

distributed phase we have SNR = r2
1

hs
2σ 2

z

. For such input,

it can easily be verified that the first derivative of the mutual
information at zero SNR is equal to Ċ (0) (calculated in
Eq. 30), which means that this input is first-order optimal.
Moreover, it can be seen that this input achieves the upper-
bound in Eq. 42. Consequently, Eq. 42 is satisfied with
equality.

Furthermore, by applying the log-sum inequality to the
right-hand side of Eq. 42, we have

D (K (v, r1) K (v, 0)) ≤
q

i=1

iD (Ki (v, r1) Ki (v, 0)) ,

(43)

where

Ki (v, r) = 1

σ 2
i

ve
− v2+r2

2σ2
i I0

vr

σ 2
i

. (44)
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It is clear that the equality in Eq. 43 is achieved when
r1 = 0. Thus, C̈ (0) can be formulated as

C̈ (0) = −2P (be = 1) σ 2
z

2
hs

4 ×

lim
r→0

1

r4

q

i=1

i

σ 2
i

∗
∞

0
ve

− v2+r2

2σ2
i I0

vr

σ 2
i

× log e
− r2

2σ2
i I0

vr

σ 2
i

dv. (45)

Because the integrand in Eq. 45 and its derivatives are
continuous in r for 0 ≤ r, v < ∞, we use Leibniz integral
rule and L’Hospital’s rule to simplify (45). In particular,
by applying L’Hospital’s rule for four times, we obtain the
following:

C̈ (0) = −2P (be = 1) σ 2
z

2
hs

4
q

i=1

i

σ 2
i

∞

0
e
− v2

2σ2
i

3v5

64σ 8
i

− v3

4σ 6
i

+ v

4σ 4
i

dv

= −2P (be = 1) hs
4

q

i=1

2 i σ
2
i

2 q

i=1

i

8σ 4
i

. (46)

Then from Eq. 10, we can find the wideband slope for TS
mode as

S0 = 2P (be = 1)

p+1
1

i

σ 2
i

2

p+1
1

i

σ 4
i

. (47)

Note that the expression in Eq. 47 is in closed-form, and the
wideband slope can be easily calculated. As similar to the
calculation of Eb

N0 min
, the wideband slope for the traditional

HD in TO mode can also be obtained by using modified
P (be = 1).

4 Optimal signaling schemes for FD CR
under imperfect spectrum sensing

Now that we have found both the minimum energy per bit
and the wideband slope in closed-form, it is of interest to
analyze the first-order and second-order optimal signaling
schemes.

As we discussed in previous section, an input distribution
is considered first-order optimal if İ(0) is equal to Ċ(0) and
a first order optimal input distribution is said to be second-
order optimal if Ï(0) is equal to C̈ (0). Therefore in the
next following parts of this section, we derive a necessary
condition for an input to be first-order optimal and examine
several practical inputs to investigate their second-order
optimality.

4.1 A necessary condition for first-order optimality

In this part, we find a necessary condition for first-order
optimality of an input. As we stated before, an input is

considered to be first-order optimal if

lim
SNR→0

I (x, y)

SNR
= Ċ (0) . (48)

For a specific input distribution, the mutual information
between the output and the input is:

I (x, y) = P (be = 1) I x, yb .

By writing the mutual information I (x, y) in the canonical
form, we then obtain:

I(x, y) =
P (be = 1) EX D fYb |X=x (y) fYb |X=0(y) − D(fYb

(y) fYb |X=0(y)) . (49)

From previous section, we have D fYb|X=x(y) fYb|X=0

(y)) ≤ hs
2 q

1
i . x 2

2σ 2
i

. Therefore,

EX D fYb |X=x (y) fYb |X=0(y) ≤ hs
2 EX

q

i=1

i . x 2

2σ 2
i

= hs
2 EX x 2

q

i=1

i

2σ 2
i

. (50)

When SNR → 0, EX x 2 approaches zero. As a result,
the input distribution behaves like a Dirac Delta function,
i.e., fX(x) approaches δ (x − EX [x]). Hence,

lim
SNR→0

P (be=1) EX D fYb |X=x(y) fYb |X=0(y)

SNR

= lim
SNR→0

σ 2
z

P (be=1) EX D fYb |X=x(y) fYb |X=0(y)

EX x 2

=Ċ (0) . (51)

So the first term on the right-hand side of Eq. 49
approaches Ċ (0) when SNR → 0. As such, we now
need to find a condition from which the term D(fYb

(y)

fYb|X=0(y)) in Eq. 49 is o(SNR). Therefore, this condition
guarantees the first order optimality of an input. Toward this
end, we re-write the output distribution as follows:

fYb
(y) =

q

i=1

ihi(y). (52)

Here, hi(y) is the convolution of hsx and ith term of
noise distribution, f

Z
. It is then clear that hi(y) has mean

hsEX [x] and covariance matrix σ 2
i I 2×2+ hsx , where hsx

is the covariance matrix of the distribution of hsx. We then
have the following inequality:

D fYb
(y) fYb |X=0(y) ≤

q

i=1

iD hi(y) CN (y, 0, σ 2
i ) . (53)
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Each term on the right-hand side of Eq. 53 can be further
expanded as:

D hi(y) CN (y, 0, σ 2
i ) = D hi(y) φhi

(y) +D φhi
(y) CN (y, 0, σ 2

i ) ,

(54)

where φhi
(y) is a Gaussian distribution with the same mean

and covariance matrix as hi(y). In [63], it is proved that

D hi(y) φhi
(y) = o (SNR) . (55)

As a result, we need to focus only on the second term
D φhi

(y) CN (y, 0, σ 2
i ) . For that, we have the following

lemma:

Lemma 1 For an input x, if

lim
SNR→0

EX [x] 2

EX x 2
= 0, (56)

then D φhi
(y) CN (y, 0, σ 2

i ) = o (SNR)

Proof We have

D φhi
(y) CN (y, 0, σ 2

i ) = hs
2 EX [x] 2

σ 2
i

+ log det σ 2
i I

− log det σ 2
i I + hsx + T r σ−2

i I σ 2
i I + hsx − I (57)

= − log det I + σ−2
i hs x + T r σ−2

i hs x + hs
2 EX [x] 2

σ 2
i

(58)

≤ 1

2σ 4
i

2
hsx

) + hs
2 EX [x] 2

σ 2
i

(59)

≤ 1

2σ 4
i

T r2 ( hx) + hs
2 EX [x] 2

σ 2
i

(60)

= hs
2

2σ 4
i

T r2 ( x) + hs
2 EX [x] 2

σ 2
i

. (61)

Note that in Eqs. 57 and 58, we have used the following:

D CN (y,m0 1) CN (y,m1 0) =
log (det 0) − log (det 1) + (m1 − m0)

T −1
0 (m1 − m0) + T r −1

0 1 − I (62)

and

log (det (I + A)) ≥ T r (A) − 0.5T r A2 . (63)

for a non-negative matrix A. Equation 60 also comes from
the fact that T r hsx = hs

2 T r ( x) because hs is a
known value. Then combining Eqs. 60 and 53, we have:

D fYb
(y) fYb |X=0(y) ≤ hs

2 T r2 ( X)

q

1

i

2σ 4
i

+ EX [x] 2
q

1

i

σ 2
i

.

(64)

As EX x 2 = T r ( x), it is then clear that the
condition in Eq. 56 guarantees D fYb

(y) fYb|X=0(y) =
o (SNR).

Based on Lemma 1, it is clear that Eq. 56 is a necessary
condition for the first order optimality of an input.

4.2 Second-order optimal signaling

In previous part, we found a necessary condition for first-
order optimality. Based on this condition, it is clear that
a wide range of inputs are first-order optimal. Thus, It
is of interest to investigate simple distributions that are
second-order optimal. Therefore, we are consider several
practical input signaling schemes to analyze their second-
order optimality. As such we consider: i) An input having
a single mass point amplitude and independently uniform
phase; ii) a Gaussian input; iii) BPSK; and iv) QPSK.

4.2.1 An input with a single mass point amplitude and
independently uniform phase

Using numerical results, it was shown in [43] that this
input is capacity-achieving for Gaussian-Mixture channels
at sufficiently low SNRs. Besides, it is straightforward to
verify that the equality in Eq. 42 is achieved by using an
input with a single mass point amplitude and independently
uniform phase. Hence, the results on Eb/N0min and the
wideband slope, analytically confirms that this input is
optimal in the low-SNR regime.

4.2.2 A Gaussian input

We consider a Gaussian input with mean 0 and variance per
dimension σ 2

X, which is first-order optimal. The output PDF
can then be written as:

fYb
(y) =

q

i=1

iCN (y, 0, σ 2
i + hs

2 σ 2
X). (65)

Using Log-Sum inequality, we then have:

D fYb
(y) fYb |X=0(y) ≤

q

i=1

iD CN (y, 0, σ 2
i + hs

2 σ 2
X) CN (y, 0, σ 2

i )

=
q

i=1

i log
σ 2

i

σ 2
i + hs

2 σ 2
X

+ hs
2 σ 2

X

σ 2
i

(66)

with equality iff σ 2
X = 0. It then follows that:

Ï (0) = −2P (be = 1) lim
SNR→0

D fYb
(y) fYb |X=0(y)

SNR2

≥ −2P (be = 1) lim
SNR→0

q

i=1 i log
σ 2

i

σ 2
i + hs

2σ 2
X

+ hs
2σ 2

X

σ 2
i

SNR2
. (67)

1758 Mobile Netw Appl  (2021) 26:1750–1764



As SNR = E x 2

σ 2
z

= 2σ 2
X

σ 2
z

, the equality in Eq. 67 is achieved

when SNR → 0. So, we obtain:

Ï (0) = −2P (be = 1) σ 4
z hs

4
q

i=1

i

8σ 4
i

. (68)

As a result, S0 (Gaussian) = 2 Ċ(0)
2

−Ï(0)
=

2P(be=1)
q
i=1

i

σ2
i

2

q
i=1

i

σ4
i

.

It means that the Gaussian input is second-order optimal.

4.2.3 BPSK

Now. let’s consider the BPSK modulation with the
following PDF:

PX(x) = 1

2
δA + 1

2
δ−A. (69)

The output PDF can then be expressed as:

fYb
(y) =

t

i=1

i

2
CN y, hsA, σ 2

i + CN y, −hsA, σ 2
i

=
q

i=1

ihi(y), (70)

where hi(y) is the convolution of distribution of hsx and ith

element of f
Z

and can be written as:

hi(y) = 1

4πσ 2
i

exp −|y − hsA|2
2σ 2

i

+ exp −|y + hsA|2
2σ 2

i

=
exp − hs

2A2

2σ 2
i

2πσ 2
i

exp
− |y|2
2σ 2

i

cosh
A hs

∗y
σ 2

i

= exp
− hs

2 A2

2σ 2
i

cosh
A hs

∗y
σ 2

i

CN (y, 0, σ 2
i ). (71)

Based on log-sum inequality, we obtain

D fYb
(y) fYb|X=0(y) ≤

q

1

iD hi CN (y, 0, σ 2
i ) ,

(72)

with equality iff A = 0. Moreover, it is easy to verify that

D hi(y) CN (y, 0, σ 2
i ) = E {φi (y) log φi (y)} , (73)

where

φi (y) = exp
− hs

2 A2

2σ 2
i

cosh
A hs

∗y
σ 2

i

, (74)

and the expectation is done over a Gaussian distribution with

mean zero and variance 2σ 2
i . due to the fact that

A (hs
∗y)

σ 2
i

follows a Gaussian distribution with variance hs
2A2

σ 2
i

, we

have

D hi(y) CN (y, 0, σ 2
i ) = hs

2 A2

2σ 2
i

2

+ o

⎛
⎝ hs

2 A2

2σ 2
i

2
⎞
⎠ .

(75)

Since SNR = A2

σ 2
z

, we then obtain:

Ï (0) = −2P (be = 1) lim
SNR→0

D fYb
(y) fYb |X=0(y)

SNR2

≥ −2P (be = 1) (N0)
2 lim

A→0

q

1 i
hs

2A2

2σ 2
i

2

+ o
hs

2A2

2σ 2
i

2

A4
(76)

with equality iff A = 0. As a result,

Ï (0) = −2P (be = 1) σ 4
z hs

4
q

1

i

4σ 4
i

, (77)

and the wideband slope can be found as

S0 (BPSK) = 2 Ċ (0)
2

−Ï (0)
=

P (be = 1)
q

1
i

σ 2
i

2

q

1
i

σ 4
i

. (78)

The wideband slope of BPSK is only half of the optimal
one, which means BPSK input is not second-order optimal

4.2.4 QPSK

It is straightforward to verify that

CQPSK (SNR) = 2CBPSK

SNR

2
. (79)

Moreover, we have

Eb

N0 QPSK

= SNR

CQPSK (SNR)
. (80)

Hence, for the same energy per bit, i.e., for

Eb

N0 BPSK

= Eb

N0 QPSK

. (81)

QPSK clearly achieves twice the spectral efficiency of
BPSK, and, consequently, twice the wideband slope. As a
result, QPSK is second-order optimal.

5 Numerical result

In this section, numerical results are provided to confirm
the analysis on the sensing performance and the spectral
efficiency of full duplex cognitive radio systems. Unless
we state otherwise, the following setup is adopted. The
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sampling frequency is chosen at fs = 5MHz, and we

assume σ 2
s

N0
= 20dB, and P0 = P1 = 0.5. Moreover, for

the primary interference on secondary network, we consider
a 3-term Gaussian mixture noise channel with 1 = 0.8,
σ 2

1 = 0.1, 2 = 0.1, σ 2
2 = 1, 3 = 0.1, σ 2

3 = 10.

5.1 Spectrum sensing

Let first examine the sensing performance in the considered
full duplex cognitive radio system under practical self-
interference. For simplicity, we assume that the primary
signal is complex PSK modulated. Similar results can be
obtained for any modulation scheme.

For the sensing performance, we use the receiver
operating characteristic (ROC) curve, which is a helpful
tool to visualize the trade-off between the probability of
false alarm and the probability of miss-detection. The ROC
curves for TS operation for different values of χ are plotted
in Fig. 3. For comparison, the corresponding ROC curve
for traditional TO sensing is also provided in Fig. 3 for
different Ts

T
. First, it is clear that a larger χ results in a

poorer performance of TS-based sensing. It can also be
observed from Fig. 3 that the sensing performance of TS
mode is better than TO-based sensing when the residual
self interference is sufficiently low, e.g., it depends on the
performance of self-interference cancellation.

5.2 Eb
N0 min

and wideband slope

Now, let examine the spectral efficiency of FD CR in terms
of Eb

N0 min
and the wideband slope to demonstrate the benefits

offered by FD CR. It should also be noted that these two
fundamental metrics have been obtained in closed-form,
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vs frame length T achieved by TS operation with

different values of χ

and they can be easily calculated without the need of
simulations.

Figure 4 first shows Eb

N0 min
of the TS-based system

achieved with different values of frame time T and χ . It
is clearly that the quality of self-interference cancellation
plays an important role on Eb

N0 min
. Interestingly, Eb

N0 min
with

χ = 0.01 is almost identical to the case of perfect self-
interference cancellation with χ = 0. Furthermore, it can be
observed from Fig. 4 that for a given χ , when T increases,
Eb

N0 min
is getting smaller. However, the minimum energy

per bit approaches a constant at a sufficiently large T . This
behavior can be confirmed analytically from Eq. 31 where it
can be shown that the quality of sensing cannot be improved
further by increasing T . As a result, Eb

N0 min
asymptotically

approaches a fixed value when T increases.
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Figure 5 compares Eb

N0 min
of TO and TS modes

using practical χ = 0.01 over a wide range of frame
length T . For TO mode, the sensing time is fixed at Ts =
10−3

3 seconds. The benefits of FD over HD can be clearly
observed where the TS-based system achieves significantly
better Eb

N0 min
.

Similar results in terms of the wideband slope are also
obtained. In particular, Fig. 6 plots the wideband slope
achieved by the TS-based system using different values of
χ , while the wideband slope comparison between the TS-
based system with χ = 0.01 and TO-based system is shown

in Fig. 7. Note that for the TO-based system, Ts is set at 10−3

3
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Fig. 7 Wideband slope vs frame length T achieved by TS operation

with χ = 0.01 and TO operation. For TO, Ts = 10−3

3 (seconds)

(seconds). It is clear from Fig. 7 that TS operation achieves
a significantly higher wideband slope.

6 Conclusion

In this work, we have proposed an effective way to
evaluate the energy efficiency of full duplex (FD) cognitive
radio (CR) in the low-power regime under practical self-
interference cancellation and imperfect spectrum sensing.
Specifically, the two fundamental limits of minimum energy
per bit and wideband slope of the considered FD CR
systems were established in closed-form. From these limits,
practical yet optimal signaling schemes at the low-SNR
regime were identified. The benefits in terms of both
minimum energy per bit and wideband slope of FD over HD
were also clearly demonstrated.

Appendix

Proposition 2 Using the Central Limit Theorem, for a large
number of samples (fsTs), the distribution of MFD given
H0 can be approximated by Gaussian distribution with the
following mean and variance

E [MFD | H0] = χ2σ 2
s + N0, (82)

V ar [MFD | H0] = 1

fsTs

χ4σ 4
s (2κs − 1) + N2

0 + 2χ2σ 2
s N0 . (83)

Proof

E [MFD | H0] = E y
FD

(n)
2 | H0 = E |hsi (n) x (n) + n (n)|2

= E |hsi (n)|2 |x (n)|2 + |n (n)|2 + hsi (n) x (n) n∗ (n) + h∗
si (n) x∗

s (n) n (n)

= χ2σ 2
s + N0. (84)

Moreover,

V ar [MFD | H0] = 1

fsTs

V ar y
FD

(n)
2 | H0

= 1

fsTs

E y
FD

(n)
4 | H0 − E y

FD
(n)

2 | H0
2

. (85)

We already have E y
FD

(n)
2 | H0 in Eq. 84. So we only

need to calculate E y
FD

(n)
4 | H0 .

E y
FD

(n)
4 | H0 = E |hsi (n) x (n) + n (n)|4

= E |hsi (n)|2 |x (n)|2 + |n (n)|2 + hsi (n) x (n) n∗ (n) + h∗
si (n) x∗

s (n) n (n)
2

= E |hsi (n)|4 |x (n)|4 + |n (n)|4 + hsi (n) x (n) n∗ (n)
2

+ h∗
si (n) x∗

s (n) n (n)
2 + 2 |hsi (n)|2 |x (n)|2 |n (n)|2

= 2χ4κsσ
4
s + 2N2

0 + 4χ2σ 2
s N0. (86)
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In the above expression we have used the fact that for
circularly symmetric complex random varibale X with mean
zero we have

E X2 = E (Xr + jXi)
2 = E |Xr |2 − E |Xi |2 + 2jE [XrXi ] = 0.(87)

By using Eqs. 84, 85, and 86, Eq. 83 is proved.

Proposition 3 Using the Central Limit Theorem, for the
large number of samples (fsTs), the distribution of MFD

given H1 can be approximated by Gaussian distribution
with the following mean and variance

E [MFD | H1] = 2
p

i=1

γiσ
2
w,i + χ2σ 2

s + N0, (88)

V ar [MFD | H1] = 1

fsTs

8
p

i=1

γiσ
4
w,i + χ4σ 4

s (2κs − 1)

+4
p

i=1

γiσ
2
w,i −

p

i=1

γiσ
2
w,i + N0 + 2χ2σ 2

s 2
p

i=1

γiσ
2
w,i + N0 + N2

0 . (89)

Proof

E [MFD | H1] = E y
FD

(n)
2 | H1 = E |w (n) + hsi (n) x (n) + n (n)|2

= E |w (n)|2 + |hsi (n)|2 |x (n)|2 + |n (n)|2 + w (n)h∗
si (n) x∗ (n)

+w (n) n∗ (n) + hsi (n) x (n) w∗ (n) + hsi (n) x (n) n∗ (n)

+w∗ (n) n (n) + h∗
si (n) x∗ (n) n (n)

= 2
p

i=1

γiσ
2
w,i + χ2σ 2

s + N0. (90)

On the other hand,

V ar [MFD | H1] = 1

fsTs

V ar y
FD

(n)
2 | H1

= 1

fsTs

E y
FD

(n)
4 | H1 − E y

FD
(n)

2 | H1
2

. (91)

We already have E y
FD

(n)
2 | H1 in Eq. 90. So we only

need to calculate E y
FD

(n)
4 | H1 .

E y
FD

(n)
4 | H1 = E |w (n) + hsi (n) x (n) + n (n)|4

= E |w (n)|2 + |hsi (n)|2 |x (n)|2 + |n (n)|2 + w (n)h∗
si (n) x∗ (n)

+w (n)n∗ (n) + hsi (n) x (n)w∗ (n) + hsi (n) x (n)n∗ (n)

+w∗ (n)n (n) + h∗
si (n) x∗ (n)n (n)

2

= E |w (n)|4 + |hsi (n)|4 |x (n)|4 + |n (n)|4 + 4 |w (n)|2 |hsi (n) x (n)|2

+4 |w (n)|2 |n (n)|2 + 4 |hsi (n) x (n)|2 |n (n)|2

= 8
p

i=1

γiσ
4
w,i + 2χ4κsσ

4
s + 2N2

0 + 8 χ2σ 2
s + N0

p

i=1

γiσ
2
w,i + 4χ2σ 2

s N0. (92)

In the above expression we have used Eq. 87. By combining
Eqs. 90, 91 and 92 proves Eq. 89.
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