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These notes represent an introduction to the theory of optimal control and the linear
quadratic regulator (LQR).

There exist two main approaches to optimal control:

1. via the Calculus of Variations (making use of the Maximum Principle);

2. via Dynamic Programming (making use of the Principle of Optimality).

Both approaches involve converting an optimization over a function space to a pointwise
optimization. The methods are based on the following simple observations:

1. For the calculus of variations, the optimal curve should be such that neighboring curves
do not lead to smaller costs. Thus the ‘derivative’ of the cost function about the optimal
curve should be zero: one takes small variations about the candidate optimal solution
and attempts to make the change in the cost zero.

2. For dynamic programming, the optimal curve remains optimal at intermediate points
in time.

In these notes, both approaches are discussed for optimal control; the results are then spe-
cialized to the case of linear dynamics and quadratic cost.

The notes in Sections 1 and 2 are from Shankar Sastry’s notes for the course EECS 290A
[1], which provide an excellent summary of the two approaches. The notes in Section 3 are
from Forrest Laine’s notes for the course EE 291E (from Spring 2018).

1 Optimal Control based on the Calculus of Variations

There are numerous books on optimal control. Commonly used books which we will draw
from are Athans and Falb [2], Berkovitz [4], Bryson and Ho [5], Pontryagin et al [6], Young
[7], Kirk [8], Lewis [9] and Fleming and Rishel[10]. The history of optimal control is quite
well rooted in antiquity, with allusion being made to Dido, the first Queen of Carthage, who



when asked to take as much land as could be covered by an ox-hide, cut the ox-hide into a
tiny strip and proceeded to enclose the entire area of what came to be know as Carthage in a
circle of the appropriate radius!. The calculus of variations is really the ancient precursor to
optimal control. Iso perimetric problems of the kind that gave Dido her kingdom were treated
in detail by Tonelli and later by Euler. Both Euler and Lagrange laid the foundations of
mechanics in a variational setting culminating in the Euler Lagrange equations. Newton used
variational methods to determine the shape of a body that minimizes drag, and Bernoulli
formulated his brachistochrone problem in the seventeenth century, which attracted the
attention of Newton and L’Hopital. This intellectual heritage was revived and generalized
by Bellman [3] in the context of dynamic programming and by Pontryagin and his school in
the so-called Pontryagin principle for optimal control ([6]).

Consider a nonlinear possibly time varying dynamical system described by

T = f(z,u,t) (1)

with state z(t) € R™ and the control input u € R™. Consider the problem of minimizing the
performance index
ty
T =otalts)ty) + [ (o) ule) )i 2)
to
where ¢, is the initial time, ¢; the final time (free), L(z,u,t) is the running cost, and
¢(x(ty), ty) is the cost at the terminal time. The initial time ¢, is assumed to be fixed
and ty variable. Problems involving a cost only on the final and initial state are referred
to as Mayer problems, those involving only the integral or running cost are called Lagrange
problems and costs of the form of equation (2) are referred to as Bolza problems. We will
also have a constraint on the final state given by

Y(x(ty), ty) =0 (3)

where 1) : R" xR — RP is a smooth map. To derive necessary conditions for the optimum, we
will perform the calculus of variations on the cost function of (2) subject to the constraints
of equations (1), (3). To this end, define the modified cost function, using the Lagrange
multipliers A € R?, p(t) € R",

J = o(x(ty), ty) + ATp(x(ty), ty) + / ' [L(z,u,t) +p" (f(z,u,t) — i)] dt (4)

to

Defining the Hamiltonian H(x,u,t) using what is referred to as a Legendre transformation

H(z,p,u,t) = L(z,u,t) + p’ f(x,u,t) (5)

'The optimal control problem here is to enclose the maximum area using a closed curve of given length.



The variation of (4) is given by assuming independent variations in du(), dz(), dp(), I\, and
(%fi
0J = (D1¢ + DTNz, + (Dag + DotbTN)5t|, + 9T 6A
+ (H —p"&)dt|s, (6)
+ [ [DiHéx + DyHou — pToi + (D HT — i) Top] d
The notation D;H stands for the derivative of H with respect to the i th argument. Thus,
for example,
oOH 0H
3 (x7p7u7 ) au 1 ('Iap7u7 ) ox
Integrating by parts for [ p’didt yields

6J = (D¢ + DT\ = pT)ox(ty) + (Do + Dop™ X + H)dty + 1pT 5N )
+ [ [(DyH + pT)ox + DsHou + (DY H — ) Top) dt

An extremum of J is achieved when §J = 0 for all independent variations o\, 6z, du, op.
These conditions are recorded in the following

Table of necessary conditions for optimality:

Table 1
Description Equation Variation
Final State constraint ¢ (z(ts),ts) =0 P
State Equation T = %—IZT op
Costate equation p= —%—Ix{T ox
Input stationarity 9H _ () ou

u
Boundary conditions D¢ —p" = =Dy Ay, dx(ty)
H+ Dy = —Dyp" Ay, bty

The conditions of Table (1) and the boundary conditions z(tg) = zo and the constraint on
the final state ¢ (x(tf),tf) = 0 constitute the necessary conditions for optimality. The end
point constraint equation is referred to as the transversality condition:

Dio—p" = —Dyi"\ -
H+ Dyp = —Dyp"X
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The optimality conditions may be written explicitly as

. T
&= % (x,u",p)

. T %
p= _83_];1 ([L’,U 7p)

with the stationarity condition reading

oH, .
%(%u ,p) =0

and the endpoint constraint ¢ (z(ts),ts) = 0. The key point to the derivation of the nec-
essary conditions of optimality is that the Legendre transformation of the Lagrangian to
be minimized into a Hamiltonian converts a functional minimization problem into a static
optimization problem on the function H(x,u,p,t).

The question of when these equations also constitute sufficient conditions for (local) opti-
mality is an important one and needs to be ascertained by taking the second variation of .J.
This is an involved procedure but the input stationarity condition in Table (1) hints at the
sufficient condition for local minimality of a given trajectory z*(-),u*(-), p*(-) being a
local minimum as being that the Hessian of the Hamiltonian,

being positive definite along the optimal trajectory. A sufficient condition for this is to ask
simply that the n; x n; Hessian matrix

D3H(x,u,p,t) (11)

be positive definite. As far as conditions for global minimality are concerned, again the
stationarity condition hints at a sufficient condition for global minimality being that

u*(t) = argmin H(z*(t),u,p"(t),t 12
(t) {mgmoveru} (@*(t), u,p"(t),t) (12)

Sufficient conditions for this are, for example, the convexity of the Hamiltonian H(x,u,p,t)
in u.

Finally, there are instances in which the Hamiltonian H(x,u, p,t) is not a function of u at
some values of z, p,t. These cases are referred to as singular extremals and need to be treated
with care, since the value of u is left unspecified as far as the optimization is concerned.

1.1 Fixed Endpoint problems

In the instance that the final time ¢ is fixed, the equations take on a simpler form, since
there is no variation in ¢¢;. Then, the boundary condition of equation (8) becomes

p' (ty) = Dio+ Dﬂ/JTMtf (13)
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Further, if there is no final state constraint the boundary condition simplifies even further
to

plty) = Do’ |, (14)
1.2 Time Invariant Systems
In the instance that f(z,u,t) and the running cost L(z,u,t) are not explicitly functions of

time, there is no final state constraint and the final time t; is fixed, the formulas of Table
(1) can be rewritten as

State Equation T = %—’ZT = f(z,u*)
Costate Equation p= —%—ZIT =—-DifTp+ D, LT

Stationarity Condition 0="20 = D,L" + Dy fTp
Transversality Conditions D¢ — pT = —DyypT A

H(t;) =0
In addition, it may be verified that
dH* OH* OH*
- ; ) =0 15
= gy (@P)E+ o P (15)

thereby establishing that H*(¢) = 0.

1.3 Connections with Classical Mechanics

Hamilton’s principle of least action states (under certain conditions 2) that a conservative
system moves so as to minimize the time integral of its “action”, defined to be the difference
between the kinetic and potential energy. To make this more explicit we define ¢ € R™ to be
the vector of generalized coordinates of the system and denote by U(q) the potential energy
of the system and T'(q,q) the kinetic energy of the system. Then Hamilton’s principle of
least action asks to solve an optimal control problem for the system

q=u

2For example, there is no dissipation or no nonholonomic constraints. Holonomic or integrable constraints
are dealt with by adding appropriate Lagrange multipliers. If nonholonomic constraints are dealt with in
the same manner, we get equations of motion, dubbed vakonomic by Arnold [11] which do not correspond to
experimentally observed motions. On the other hand, if there are only holonomic constraints, the equations
of motion that we derive from Hamilton’s principle of least action is equivalent to Newton’s laws.



with Lagrangian
L(g,u) = T(g,u) = U(q)

The equations (9) in this context have H(q,u,p) = L(q,u) + pTu. u* = u*(p,q) is chosen
so as to minimize the Hamiltonian H. A necessary condition for stationarity is that u*(p, q)
satisfies
OH 0L
ou  Ou
The form of the equations (9) in this context is that of the familiar Hamilton Jacobi equations.
The costate p has the interpretation of momentum.

(16)

. oOH* *

= S-(.q) =u*(p,q)

L By (17)
p= —% (0.9

Combining the second of these equations with (16) yields the familiar Euler Lagrange equa-
tons oL d (0L
———|=1]1=0 (18)
dq dt \ 0q

2 Optimal Control based on Dynamic Programming

To begin this discussion, we will embed the optimization problem which we are solving in
a larger class of problems, more specifically we will consider the original cost function of
equation (2) from an initial time ¢ € [to, t¢] by considering the cost function on the interval

[t,tf]i tf
J(x(t). ) = dlalty) ty) + / L(z(r), u(r),7)dr

Bellman’s principle of optimality says that if we have found the optimal trajectory on the
interval from [to, ] by solving the optimal control problem on that interval, the resulting
trajectory is also optimal on all subintervals of this interval of the form [t,¢;] with ¢ > ¢,
provided that the initial condition at time ¢ was obtained from running the system forward
along the optimal trajectory from time ¢y. The optimal value of J(z(t),t) is referred to as
the “cost-to go”. To be able to state the following key theorem of optimal control we will
need to define the “optimal Hamiltonian” to be

H*(z,p,t) == H(x,u",p,t)

Theorem 1 The Hamilton Jacobi Bellman equation



Consider, the time varying optimal control problem of (2) with fized endpoint ty and time
varying dynamics. If the optimal value function, i.e. J*(x(to),to) is a smooth function of
x,t, then J*(x,t) satisfies the Hamilton Jacobi Bellman partial differential equation

07" o

with boundary conditions given by J*(x,t) = ¢(x,ty) for all x € {x : Y(z,t;) = 0}.

Proof: The proof uses the principle of optimality. This principle says that if we have found
the optimal trajectory on the interval from [¢,¢f] by solving the optimal control problem
on that interval, the resulting trajectory is also optimal on all subintervals of this interval
of the form [tq,¢;] with ¢; > ¢, provided that the initial condition at time ¢; was obtained
from running the system forward along the optimal trajectory from time ¢. Thus, from using
t1 =t + At, it follows that

min t+At
J*(x,t) = u(T) [/ L(x,u,7)dr + J*(x + Az, t + At) (20)
t<7<t+At Wt

Taking infinitesimals and letting At — 0 yields that

oJ* min oJ*
SSr= s (pe o) 1)

with the boundary condition being that the terminal cost is

J*(xvtf> = ¢($’tf)

on the surface ¥ (z) = 0. Using the definition of the Hamiltonian in equation (5), it follows
from equation (21) that the Hamilton Jacobi equation of equation (19) holds.

Remarks:

1. The preceding theorem was stated as a necessary condition for extremal solutions of
the optimal control problem. As far as minimal and global solutions of the optimal
control problem, the Hamilton Jacobi Bellman equations read as in equation (21). In
this sense, the form of the Hamilton Jacobi Bellman equation in (21) is more general.



2. The Eulerian conditions of Table (1) are easily obtained from the Hamilton Jacobi
Bellman equation by proving that p’(t) := %(m, t) satisfies the costate equations of
that Table. Indeed, consider the equation (21). Since u(t) is unconstrained, it follows

that it should satisfy

oL, ., .. ofF
o)+ 9 =0 (22)
Now differentiating the definition of p(t) above with respect to ¢ yields
dpT 92T 02 J*
- )+ S ettt 2

Differentiating the Hamilton Jacobi equation (21) with respect to x and using the
relation (22) for a stationary solution yields

02 J* oL 9*J* rOf
- ) = — 2L 24
oo =5 T o TP g (24
Using equation (24) in equation (23) yields
. ofT oL"
P=a P (25)

establishing that p is indeed the co-state of Table 1. The boundary conditions on p()
follow from the boundary conditions on the Hamilton Jacobi Bellman equation.

2.1 Constrained Input Problems

In the instance that there are no constraints on the input, the extremal solutions of the
optimal control problem are found by simply extremizing the Hamiltonian and deriving the
stationarity condition. Thus, if the specification is that u(t) € U C R™ then, the optimality
condition is that

H(z",u*,p*,t) < H(z",u,p",t) YuelU (26)

If the Hamiltonian is convex in u and U is a convex set, there are no specific problems with
this condition. In fact, when there is a single input and the set U is a single closed interval,
there are several interesting examples of Hamiltonians for which the optimal inputs switch
between the endpoints of the interval, resulting in what is referred to as bang bang control.
However, problems can arise when U is either not convex or compact. In these cases, a
concept of a relaxed control taking values in the convex hull of U needs to be introduced.
As far as an implementation of a control u(t) € convU, but not in U, a probabilistic scheme
involving switching between values of U whose convex combination w is needs to be devised.



2.2 Free end time problems

In the instance that the final time ¢; is free, the transversality conditions are that

p"(ty) = Di¢+ Dyp"A

H((;) = (Dot + Datb™A) (27)

2.2.1 Minimum time problems

A special class of minimum time problems of especial interest is minimum time problems,
where ¢y is to be minimized subject to the constraints. This is accounted for by setting
the Lagrangian to be 1, and the terminal state cost ¢ = 0, so that the Hamiltonian is
H(x,u,p,t) = 1+p’ f(z,u,t). Note that by differentiating H (z, u, p,t) with respect to time,
we get

dH* .. .. .. OH*
el DiH*% + DyH* i+ D3H" p + Y (28)
Continuing the calculation using the Hamilton Jacobi equation,
dH* OH* oH* O0H*
— ; * = 2
o = (g TR )+ = (29)

In particular, if H* is not an explicit function of ¢, it follows that H*(x,u,p,t) = H. Thus,
for minimum time problems for which f(z,u,t) and ¥ (z,t) are not explicitly functions of ¢,
it follows that 0 = H(t;) = H(t).

3 Linear Quadratic Regulator (LQR)

In this section, we present the Linear Quadratic Regulator (LQR) as a practical example of
a continuous time optimal control problem with an explicit differential equation describing
the solution. We will then present the discrete-time version of the LQR problem as a means
of introducing discrete-time optimal control problems and their relation to the continuous
version. We will also present the discrete-time LQR in the framework of convex optimization
and mention some methods for computing solutions.

The material here will borrow from Stephen Boyd’s lectures in Stanford’s EE363 class, which
gives an excellent presentation of this topic [14].



3.1 Continuous-time Linear Quadratic Regulator

The Linear Quadratic Regulator is a classical problem first formulated by Rudolf Kalman in
the 1960’s [15]. The problem involves finding the optimal control policies for a system with
linear dynamics and a quadratic running-cost. In particular, we consider the time-invariant
dynamical system described by

& = Az + Bu (30)
with state z(t) € R™ and control input u(t) € R™.

We wish to minimize the performance index

J = % (m(T)TQTx(T) + /to z(7)TQx(T) + u(T)TRu(T)dT> (31)

Here Qr = QL =0, Q = Q7 = 0, and R = R > 0 define the quadratic cost terms of this
objective.

We can write the necessary conditions of optimally given by the calculus of variations in
Table 1 for this problem. We have:

H(z,u,p) = %xTQx + %UTRU + p"(Az + Bu) (32)
&= Az + Bu (33)

z(0) = xg (34)
p=-ATp—Qx (35)

0= Ru+ BTp (36)

p(T) = Qra(T) (37)

Note that Dy H (x,u,p) = R > 0, so the necessary conditions for optimality are also sufficient
for a global minimum. Furthermore, because from Eq. (36) we have that u(t) = —R™'BTp(t),
we can combine the above equations into the following differential equation:

x A —BR™'BT| [z
o= . 38
M [—Q —AT } [p] )
Subject to boundary point conditions x(0) = zo and p(T) = Qrz(T).

Claim: There exists a positive-semi-definite matrix V' given by the following matrix differ-
ential equation, known as the Riccati differential equation:

—V=AV+VA-VBRI'BV+Q, V(T)=Qnr, (39)
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such that p(t) = V(t)z(t).

Proof of claim: Show that p = Vx satisfies the relation p = —ATp — Qx

p=Var+Vi (40)
= (A" +VA-VBR'BV +Q)z + V(Az — BR™'BTp) (41)
=—-Qr—AV2+VBR 'B'Vx —VBR 'BVx (42)
= —Qu — ATp (43)

Hence, by first integrating the value function V' backwards in time starting from the initial
(final) condition V(T') = Qr, we can substitute p(t) = V(t)z(¢) and solve forward in time the
system & = Az + Bu*, where u*(t) = —R™ BTV (t)xz(t), starting from the initial condition
x(0) = zo. This provides a form for the optimal trajectory x(t), as well as the optimal
control sequence u*(t) as a linear function of the state.

3.2 Discrete-Time LQR

We have derived forms of the value function (and accompanying linear feedback policies)
for the continuous-time LQR problem in terms of matrix differential equations. In order to
compute these quantities as presented, however, we must numerically integrate the Riccati
differential equation. Alternatively, we can discretize our dynamics using Euler Integration,
leading to a discrete-time LQR problem. The solution to this discrete-time version will
approach the solution to the continuous-time version in the limit as we decrease the interval
of time-discretization to 0.

To see this, first choose a step size h > 0 such that Nh = T for some N € N. The discrete
dynamics equations according to forward-Euler integration become:

1 = ((k+ 1)h) = x(kh) + hi(kh) = (I + hA)z, + hBuy (44)
(45)

We similarly approximate the continuous-time performance index by the following:

N-1
J ~ % (x(Nh)TQTx(Nh) + Y x(kh)TQu(kh) + u(kh)TRu(k;h)> (46)
1 N-1 ~ = B
=3 (x}VQTg;N + kz:; 21 Quy, + u;Ruk> : (47)



Here R = hR and Q = hQ.
The dynamic programming solution to the discrete-time LQR problem gives the relation
u, = Kjx, where
Ky =—(R+ BV, 1B) !BV, A (48)
Vi=Q+ AV A— AWV, B(R+ BV B) ' BV, A (49)

Here Vj is a discrete-time verison of the value function, and we have defined A = (I +hA)
and B = hB. Substituting and removing all terms with A2 or higher-order terms, we get

Vi = hQ + Vi1 + hATVk_H -+ thHA — h‘/}g_HBR*lBTVk_H (50)

Rearranging, we have
1
—E(Vkﬂ — Vi) =Q+ AVii1 + VinA — Vipt BRT' BTV, (51)
And in the limit h — 0, we recover the continuous-time Riccati differential equation
V=—-(Q+AV+VA-VBR'BV). (52)

Therefore, we have that Vi, — V(kh) as h — 0.

3.3 Discrete-Time LQR as a Convex Optimization Problem

We have now seen two methods for practically computing the optimal control policy and
state trajectory for linear systems subject to a quadratic cost. One solution is to numerically
integrate the discrete-time Riccati differential equation backward in time and then forward
integrate the state trajectory using the control policy defined in terms of the value function.
The other is to discretize the problem up-front and use the discrete-time solution as an
approximation to the continuous-time solution.

One of the advantages of discretizing the problem up-front is that in discrete-time, finding
optimal trajectories becomes a finite-dimensional optimization problem, and we can leverage
powerful tools from optimization theory to find these solutions. To see this, we will cast our
discrete-time LQR problem as a convex optimization problem, which will open the door to
us viewing optimal control problems as optimization problems and studying useful solution
techniques.

In presenting this method, we will use a slightly more general form of the Linear-Quadratic
problem. We will consider a system with time-varying affine dynamics of the form z,,, =
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Aixy + Byug + ¢;. We consider minimizing the performance objective given by time-varying
cost

N-1

1

J = 5 (:L’}VQTZ’N + 2quva + Z SEZQIk + QULSkl’k + ugRuk + QQZIk + 27’,111]@) (53)
k=0

If we stack the variables xy, uy into a single trajectory vector,
Z = [l’o,uo, --->$N—17UN—1a$N] ) (54)
we can express our performance index as simply
1
J = EZTHZ +hTz (55)

Here the terms H and h are given by

-Qo SS 4o
So Ry To
Q1 S f q1
H = S, R, Jh = - (56)
i QN_ | N |

Similarly, we can express the initial condition constraint as well as the dynamics constraints
in the compact form Gz + g = 0 where

I —Tingt
—Ao —Bo I —Cp
G = -A =B 1 g=1 —a (57)
—AQ —B2 1 —C2

Combining the performance objective and constraint terms, we have the following optimiza-
tion problem:

1
min ézTHz + hTz (58)

z

st. Gz+g=0 (59)
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The objective is a quadratic function of z and the constraints are linear. Hence, this is a
standard Equality-Constrained Quadratic Program. The Karush-Kuhn-Tucker conditions of
optimality [16] for this problem are given by

Hz+h+GA=0 (60)
Gz+g =0, (61)

Here ) is a vector of Lagrange multipliers of appropriate dimension associated with the
constraint Gz = ¢g. As it turns out, the vector A = [po, ...,pN] where p, = Vjxp are the
discrete-time co-state vectors. These conditions define the following system of equations:

H G| |z —h
e SIE-E ®
It turns out that system above has a unique sparsity structure, and can be permuted such

that the matrix on the left-hand side is banded. This allows for very efficient computation
of the solution vectors z and .

Not all types of convex problems have closed-form solutions like this one. In fact, most do
not. However, there exist many efficient solvers for convex problems which are guaranteed
to find globally optimal solutions.
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