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Abstract—
The widespread adoption of nonlinear Receding Horizon

Control (RHC) strategies by industry has led to more than 30
years of intense research efforts to provide stability guarantees
for these methods. However, current theoretical guarantees
require that each (generally nonconvex) planning problem can
be solved to (approximate) global optimality, which is an
unrealistic requirement for the derivative-based local optimiza-
tion methods generally used in practical implementations of
RHC. This paper takes the first step towards understanding
stability guarantees for nonlinear RHC when the inner planning
problem is solved to first-order stationary points, but not
necessarily global optima. Special attention is given to feedback
linearizable systems, and a mixture of positive and negative
results are provided. We establish that, under certain strong
conditions, first-order solutions to RHC exponentially stabilize
linearizable systems. Crucially, this guarantee requires that
state costs applied to the planning problems are in a certain
sense ‘compatible’ with the global geometry of the system, and
a simple counter-example demonstrates the necessity of this
condition. These results highlight the need to rethink the role
of global geometry in the context of optimization-based control.

I. INTRODUCTION

The global stabilization of nonlinear systems is one of
the most fundamental and challenging problems in control
theory. In principle, the search for a stabilizing controller can
be reduced to finding a control Lyapunov function [1], yet
the search for such a function may be just as challenging
as the search for a controller. Historically, the framing of
these equivalent synthesis problems has been guided by two
distinct perspectives: geometric control and optimal control.

Geometric control is a broad term that loosely refers
to design methodologies which systematically exploit global
system structure to achieve a control objective for a specific
class of systems [2], [3], [4]. In the context of stabilization,
this has led to constructive procedures for synthesizing sta-
bilizing controllers or control Lyapunov functions for many
important classes of systems (feedback linearizable, strict
feedback, etc). Despite the broad impact of this collection
of techniques, the traditional criticism of these approaches
is that they often require significant human ingenuity and
system-specific analysis to implement.

Conversely, optimal control offers a way to sidestep
these challenges by formulating certain infinite-horizon prob-
lems which can be solved to synthesize optimal stabilizing
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controllers automatically. Unfortunately, exact solutions to
the infinite-horizon problem require solving the Hamilton-
Jacobi-Bellman partial differential equation, whose exact so-
lution is generally impractical in state spaces of large or even
modest dimensionality [5]. The response to these limitations
has been the rise of receding horizon or model-predictive
control strategies [6], [7], [8], which attempt to stabilize the
system by solving a sequence of more tractable open-loop
optimal control problems along the system trajectory.

Due to the widespread adoption of these methods by
practitioners, providing stability guarantees for nonlinear
receding horizon methods has been an active area of research
for theoreticians for more than 30 years. However, there
is a distinct gap between the theoretical models of RHC
studied in the literature and the practical implementations
favored in industry. Specifically, while current theoretical
results require that each optimal control problem posed in the
RHC scheme can be solved to (near) global optimality, prac-
tical implementations of RHC, which usually employ local
derivative-based search algorithms, can only be guaranteed to
find approximate stationary points of each planning problem.
Thus, since nonlinear RHC planning problems are generally
nonconvex, providing stability guarantees for derivative-
based nonlinear RHC implementations remains a largely
open problem. Due to this gap, designing cost functions
for derivative-based RHC schemes which reliably guide the
local search algorithms towards stabilizing solutions remains
a heuristic-driven and often time-consuming process.

In this paper we aim to link the geometric and optimal
control perspectives, demonstrating how such a link provides
new insights into the stability of derivative-based nonlinear
RHC implementations. Specifically, by studying how the
RHC cost functions interact with both the local and global
geometry of the control system, we illustrate how the choice
of cost function can lead either to provably stable behavior, or
to failure modes where RHC control schemes get ‘stuck’ at
undesirable stationary points. Our negative results are related
through two counter-examples while our positive results are
given in Theorem 1, which provides sufficient conditions
which ensure that all (approximate) first-order stationary
points of the RHC optimal control problems correspond to
open-loop state trajectories which decay exponentially to the
origin. We use this result to provide stability guarantees for
nonlinear RHC when the implementation relies on derivative-
based descent methods (Theorem 2), provided that the RHC
planning horizon is of sufficient (though modest) length.
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Our sufficient conditions for exponential stability infor-
mally require (1) the state and input costs are strongly
convex, (2) the Jacobian linearization of the dynamics along
every trajectory is uniformly stabilizable, (3) the control cost
is sufficiently small when compared to the state cost, (4)
the (time-varying, affine) first-order expansion of the system
dynamics along each trajectory satisfies a local ‘matching
condition’, meaning that the affine term can be cancelled out
by an appropriate choice of input, and (5) the nonlinearity
in the input is sufficiently small. We note that assumption
(1) is natural in practical implementations of RHC, and
some (possibly weaker) stabilizability condition as in (2) is
clearly necessary to ensure exponential stability. It is unclear
whether (5) is necessary, and we leave its study to future
work. We note that conditions (1) − (2) and (4) may be
satisfied in some coordinate systems for the state but not
others. Thus applying our sufficient conditions (or using them
to design a ‘good’ RHC cost functional) may require finding
an appropriate coordinate system for the system.

To shed light on conditions (3) and (4), and to establish
their necessity, we examine a class of feedback linearizable
systems which satisfy conditions (2), (4) and (5) in an
appropriate choice of coordinates. For this class of systems
conditions (1) and (4) require that the state costs are strongly
convex in the linearizing coordinates. To demonstrate the
necessity of this strong geometric condition, we examine
a model for a flexible-joint manipulator which is full-state
linearizable. A natural state cost is designed which is convex
in the ‘original’ non-linearizing coordinates (where condition
(4) is violated), but analysis reveals that the cost is non-
convex in the linearizing coordinates (where condition (4) is
satisfied). Thus, the chosen cost function is in some sense
‘incompatible’ with the geometry of the system as we are
forced to pick a coordinate system in which either (1) or
(4) are violated. Due to this mismatch, we are able to
identify initial conditions from which derivative-based RHC
schemes will fail to stabilize the system and get stuck at
undesirable stationary points. To address condition (3) we
also investigate a model for the simple inverted pendulum,
which is in the class of linearizable systems discussed above.
We demonstrate that even when the other four conditions are
satisfied RHC may again fail to stabilize the system if the
penalty on the input is too large.

Unlike prior works [7] which require global optimal-
ity for each RHC planning problem, the stability issues
for derivative-based RHC implementations discussed above
cannot be overcome by simply increasing the prediction
horizon. Indeed, our counterexamples show that conditions
(3) and (4) are necessary even when arbitrarily long planning
horizons are used. The key difference here is that derivative-
based planners can converge to overly-myopic sequences of
control inputs, even with long planning horizons, due to
the myopic nature of the optimization landscape (i.e., the
presence of local minima).

In sum, the results of this paper indicate that the stability
of derivative-based nonlinear RHC schemes may be fragile

unless the interaction between the geometry of the control
system and cost functions are carefully considered. Fortu-
nately, our positive results indicate that concepts from the
geometric control literature may provide constructive tech-
niques for designing RHC cost functionals which provably
guide local search algorithms towards stabilizing solutions.
Further Background on RHC: For basic background on
RHC, we refer the reader to any of a number of comprehen-
sive reviews on RHC (see, e.g., [6], [9]). Simplifying con-
siderably, previous theoretical nonlinear RHC formulations
fall into either constrained approaches and unconstrained
approaches. Constrained RHC formulations directly enforce
stability by either constraining the terminal predictive state
to lie at the origin [10], or using inequality constraints to
force the system into a neighborhood containing the origin,
and then stabilizing the system using a local controller [11].
The usual critique of these methods [12] is that the satisfac-
tion of the relevant constraints may be overly demanding
computationally in an online implementation. In contrast,
unconstrained approaches implicitly enforce stability by ei-
ther using an appropriate CLF as the terminal cost [12] or a
sufficiently long prediction horizon [7]. As alluded to above,
most of these stability guarantees require that a globally
optimal solution can be found for each prediction problem.
Several approaches provide stability guarantees using sub-
optimal solutions, but generally require that an initial feasible
solution is available [13], which may be restrictive in high-
performance real-time scenarios, or require the availability
of a CLF [8], [12], which implies that the stabilization
problem has already been solved. Thus, in this paper we
study unconstrained RHC formulations which use general
terminal costs, and aim to provide stability guarantees which
only require that a stationary point of each optimization
problem can be found. We feel that this accurately reflects the
spirit of optimization-based control—to stabilize the system
with minimal system-specific knowledge—as well as the
practical computational constraints facing practitioners.
Remark On Proofs: The proofs of Lemmas 1 and 3,
Proposition 1, and Theorem 2 can be found in [14].

II. PRELIMINARIES

This paper studies control systems of the form

ẋ(t) = F (x(t), u(t)), (1)

where x ∈ Rn is the state and u ∈ Rm the input, and ẋ(t) =
d
dtx(t) denotes time derivatives. We make the following
assumptions about the vector field F : Rn × Rm → Rn:

Assumption 1: The origin is an equilibrium point of (1),
namely, F (0, 0) = 0.

Assumption 2: The vector field F is continuously differ-
entiable. Furthermore, there exist constants LF > 0 such
that for each x1, x2 ∈ Rn and u1, u2 ∈ Rm we have:

‖F (x1, u1)−F (x2, u2)‖2 ≤ LF (‖x1 − x2‖2 + ‖u1 − u2‖2) .
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Taken together, these standard assumptions support the
global existence and uniqueness of solutions to (1) on
compact intervals of time [15, Proposition 5.6.5].

The primary object of study in is paper will be finite
horizon cost functionals JT (·;x0) : UT → R of the form

JT (ũ;x0) =

∫ T

0

Q(x̃(τ)) +R(ũ(τ))dt+ V (x̃(T ))

s.t. ˙̃x(t) = F (x̃(t), ũ(t)), x̃(0) = x0, (2)

where T > 0 is a finite prediction horizon, x0 ∈ Rn is the
initial condition for (1), and the space of admissible inputs
is given by UT : = L2 ([0, T ] ,Rm) ∩ L∞ ([0, T ] ,Rm).
Here, Q : Rn → R is the running cost applied to the state,
R : Rm → R is the running cost applied to the input, and
V : Rn → R a penalty for the terminal state. For now we
assume that each of these maps is continuously differentiable.

A. Linearizations and (Approximate) Stationary Points

Next, we briefly review a few basic facts from the
calculus of variations which are essential for understand-
ing out results. We endow L2 ([0, T ] ,Rm) with the usual
inner product and norm, denoted 〈·, ·〉 : L2([0, T ] ,Rm) ×
L2([0, T ] ,Rm) → R and ‖ · ‖2 : L2([0, T ] ,Rm) → R.
Under Assumptions 2 and 3, directional (Fréchet) derivatives
of JT (·, x0) are guaranteed to exist [15, Theorem 5.6.8] as
there is a well-defined gradient at each point in the optimiza-
tion space. We denote the directional Fréchet derivative of
JT (·, x0) at the point ũ ∈ UT in the direction δu ∈ UT by
DJT (ũ;x0; δu). The gradient ∇JT (ũ;x0) ∈ L2([0, T ] ,Rm)
is the unique object satisfying, for each δu ∈ UT ,

DJT (ũ;x0; δu) =
∫ T

0
〈∇JT (ũ;x0)(t), δu(t)〉dt, (3)

or more compactly, DJT (ũ;x0; δu) = 〈∇JT (ũ;x0), δu〉.
The following notions from the optimization literature are
crucial for understanding our technical results:

Definition 1: We say that an input ũ is a first-order
stationary point (FOS) if ∇JT (ũ;x0) = 0. We say that ũ is
an ε-FOS if ‖∇JT (ũ;x0)‖2 ≤ ε.

In practice, derivative-based descent algorithms take an
infinite number of iterations to converge to exact stationary
points, thus our analysis will primarily focus on the approx-
imate stationary points of JT (·, x0), as these can be reached
in a finite number of iterations.

Finally, we discuss how to calculate the gradient
∇JT (ũ;x0) using first-order expansions of the system dy-
namics and cost functions. Let (x̃(·), ũ(·)) denote the state-
input pair of (1) defined on the interval [0, T ] such that
x̃(0) = x0 and define for each t ∈ [0, T ]

Ã(t) =
∂

∂x
F (x̃(t), ũ(t)), B̃(t) =

∂

∂u
F (x̃(t), ũ(t)).

Definition 2: Let (x̃(·),ũ(·)), Ã(·) and B̃(·) be defined
as above. We refer to the time-varying linear system
(Ã(·), B̃(·)) as the Jacobian linearization of the vector field
F along the trajectory (x̃(·), ũ(·)).

The Jacobian linearization (Ã(·), B̃(·)) can be used to
construct a first-order approximations to trajectories near
(x̃(·), ũ(·)) as follows. Let δu ∈ UT be a small admissible
perturbation to the input and let (x̂(·), û(·)) satisfy (1) and
û = ũ + δu and x̂(0) = x̃(0) = x0. Then a first-order
approximation to x̂(·) is given by

x̂(·) ≈ x̄(·) := x̃(·) + δx(·) (4)

where δx : [0, T ] → Rn solves δ̇x(t) = Ã(t)δx(t) +
B̃(t)δu(t) with δx(0) = 0, and the approximation in
(4) suppresses higher-order terms involving δu. Regarding
gradients as row vectors, by [15, Theorem 5.6.3] we have

∇JT (ũ;x0)(t) = p(t)B̃(t) +∇R(ũ(t)) (5)

where the co-state p : [0, T ]→ R1×n satisfies

−ṗ(t) = p(t)Ã(t) +∇Q(x̃(t)) p(t) = ∇V (x̃(T )). (6)

Thus, equations (5) and (6) reveal that the gradient of the
objective can be efficiently computed using a ‘backwards
pass’ along the nominal trajectory (x̃(·), ũ(·)) and the lin-
earizations of the vector field and costs along this curve.

B. Convex Time-Varying Approximations to JT (·, x0)

Our primary goal throughout the paper is study the
properties of (approximate) stationary points of JT (·;x0),
and our primary analytical tool will be a family of convex
approximations constructed using the Jacobian linearization
around particular trajectories of the system. To begin con-
structing these approximations, observe that the evolution of
the estimate x̄(·) in (4) is given by

˙̄x(t) = ˙̃x(t) + δẋ(t)

= F (x̃(t), ũ(t)) + Ã(t)δx(t) + B̃(t)δu(t)

= Ã(t)x̄(t) + B̃(t)ū(t) + d̃(t), where (7)

d̃(t) := F (x̃(t), ũ(t))− Ã(t)x̃(t)− B̃(t)ũ(t). (8)

We use these time-varying dynamics to approximate
JT (·;x0) near the point ũ with the cost functional
J
jac
T (·;x0, ũ) : UT → R defined as follows:

Jjac
T (ū;x0, ũ) =

∫ T
0
Q(x̄(τ)) +R(ū(τ))dt+ V (x̄(T ))

s.t. ˙̄x(t) = Ã(t)x̄(t) + B̃(t)ū(t) + d̃(t), x̄(0) = x0. (9)

The following result, which follows from a direct com-
parison of the formulas for the gradients of JT (·;x0) and
Jjac
T (·;x0, ũ) at the point ũ, motives this construction:
Lemma 1: For any input ũ(·) ∈ UT we have JT (ũ;x0) =

J
jac
T (ũ;x0, ũ) and ∇JT (ũ;x0) = ∇Jjac

T (ũ;x0, ũ).

III. SUFFICIENT CONDITIONS FOR EXPONENTIALLY
DECAYING FIRST-ORDER STATIONARY POINTS

We begin our analysis by providing sufficient conditions
which ensure that all (approximate) stationary points of
JT (·;x0) decay exponentially to the origin at a rate that
is independent of T ≥ 0 and x0 ∈ Rn. This is a strong
condition which will enable us to provide global exponential
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stability guarantees for RHC schemes which use derivative-
based iterative optimization schemes in Section IV-A. After
stating the main result and its proof, we draw the connection
to feedback linearization and investigate examples which
highlight the necessity of some of our stronger assumptions.

A. Sufficient Conditions for Exponentially Decaying (Ap-
proximate) First-Order Stationary Points

We begin by introducing the Assumptions required for
the proof of Theorem 1. We emphasize some of these
assumptions are highly dependent on the particular set of
coordinates chosen for the state, and may be satisfied in
certain coordinate systems but not others. Thus, applying
our sufficient conditions requires finding a coordinate system
in which the following conditions hold. Later we relate
these conditions to the coordinate systems that arise when
performing feedback linearization, which succinctly capture
the underlying geometry of the control system.

Our first assumption is strong convexity and smoothness
of the running and terminal cost functions:

Assumption 3: We assume that Q(·), R(·), V (·) are
twice-continuously differentiable functions, with Q(0) =
R(0) = V (0) = 0, whose Hessians satisfy the pointwise
bounds αQI � ∇ 2Q � βQI , αRI � ∇ 2R � βRI ,
and αV I � ∇ 2V � βV I for constants 0 < αQ ≤ βQ,
0 < αR ≤ βR, and 0 ≤ αV ≤ βV .

Note that when Assumption 3 is satisfied the optimization
in (9) is strongly convex. Thus, by Lemma 1, ũ is a stationary
point of JT (·, x0) if and only if it is the global minimizer of
Jjac
T (·;x0, ũ). Due to the convexity of the approximation, it

is much easier to study the properties of stationary points
of JT (·, x0) using Jjac

T (·;x0, ũ) rather than the original
functional. This observation is a key insight in our poof
technique. The following result extends the above discussion
to approximate stationary points of JT (·, x0):

Lemma 2: (Approximate FOS) Suppose Assumption 3
holds, and that ũ is an ε-FOS of JT (·;x0). Then,

JT (ũ;x0) ≤ min
u
J
jac
T (u;x0, ũ) + ε2

2αR
.

Proof: Assumption 3 implies that Jjac
T (ū;x0, ũ) −

αR‖ū‖2 is convex, and thus the Polyak-Łojasiewicz in-
equality holds: J

jac
T (ū;x0, ũ) ≤ minu J

jac
T (u;x0, ũ) +

‖∇Jjac
T (ū;x0, ũ)‖22/2αR . Since ũ is an ε-FOS of JT (·;x0)

and ∇JT (ũ;x0) = ∇Jjac
T (ũ;x0, ũ), it follows that

Jjac
T (ũ;x0, ũ) ≤ minu J

jac
T (u;x0, ũ) + ε2/2αR. Using

JT (ũ;x0) = Jjac
T (ũ;x0, ũ) concludes.

Next we place restrictions on the local structure of the
control system along each of its trajectories:

Assumption 4: Along each system trajectory (x̃(·), ũ(·))
the drift term in (8) satisfies d̃(t) ∈ range(B̃(t)).

Assumption 5: There exists γ > 0 such that for each time
horizon T ≥ 0, x0 ∈ Rn and system trajectory (x̃(·), ũ(·))
of length T with x̃(0) = x0 we have

inf
û(·)

∫ T
0
‖x̂(t)‖22 + ‖û(t)‖22dt+ ‖x̂(T )‖22 ≤ γ‖x0‖22, (10)

where ˙̂x(t) = Ã(t)x̂(t) + B̃(t)û(t) and x̂(s) = x0 and
(Ã(·), B̃(·)) is the Jacobian linearization along (x̃(·), ũ(·)).

In the language of nonlinear control theory, Assumption
4 is known as a matching condition [4, Chapter 9.4]. The
assumption implies that the drift term d̃(t) can be ‘cancelled
out’ by choosing the input ū(t) = B̃†d̃(t). Meanwhile, the
parameter γ > 0 in Assumption 5 measures the difficulty
(in terms of a simple L2 cost) of stabilizing the Jacobian
Linearizations along system trajectories.

Roughly speaking, our first three conditions ensure that
the state costs are in a certain sense ‘compatible’ with the
local (first-order) geometry of the control system, meaning
that at each point in the optimization space they guide
local search algorithms to find an input ũ which drives
the corresponding predictive trajectory x̃ towards the origin.
Indeed, by Lemma 2, when Assumptions 3, 4 and 5 all
hold, at each point ũ ∈ UT the functional JT (·;x0) has the
same local structure (up to first-order approximations) as an
optimal control problem with convex costs and stabilizable
time-varying dynamics, namely, Jjac(·;x0, ũ). For this local
convex approximation it is much clearer to see how the state
costs yield state trajectories which decay to the origin. Our
second counter-example investigates a situation where there
does not exist a coordinate system in which both Assumption
3 and Assumption 4 can be satisfied simultaneous and local
search algorithms can produce predictive trajectories which
get ‘stuck’ at undesirable equilibria.

Our last technical condition, which is made Assuming 4
already holds, effectively bounds how costly it is to ‘cancel
out’ the affine drift term d̃(t) along each trajectory:

Assumption 6: There exists Lx, Lu > 0 such that for
each system trajectory (x̃(·), ũ(·)) defined on [0, T ] we have
‖B̃†(t)d̃(t)‖ ≤ Lx‖x̃(t)‖ + Lu‖ũ(t)‖ for each t ∈ [0, T ].
Moreover, these constants satisfy

L2
u ≤ αR

8βR
and L2

x ≤
αQ
8βR

(11)
In particular, Assumption 6 sates that the cost of rejecting

d̃(t) can only grow linearly with x̃(t) and ũ(t). The constant
Lx can be made arbitrarily large by re-scaling the relative
magnitudes of the state and input costs (so that αQ � βR).
However, since αR ≤ βR, the condition implies that Lu
can be at most 1√

8
, which effectively limits how nonlinear

the control system is with respect to the input.1 As our
first counter example demonstrates, when Assumption 6 is
violated local search algorithm may again get ‘stuck’ at
undesirable stationary points. The intuition for this failure
mode is that even when Assumptions 4 and 5 are satisfied
if d̃(t) grows too quickly it may appear ‘too costly’ (from
the perspective of optimization algorithms which only have
access to first-order information) to reject d̃(t) and drive the
system to the origin.

Under these assumptions we obtain our main result:

1We remark that the factors of 1
8

in (11) can be replaced by any
constant in the interval (0, 1) and the proof of Theorem 1 will go through
with minor modifications. However fixing a specific constant simplifies the
statement of the main result.
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Theorem 1: Suppose Assumptions 1 to 6 hold. Then for
each T ≥ 0, x0 ∈ Rn and every ũ ∈ UT which is an ε-FOS
of JT (·;x0) the following hold. If αV > 0 , then ∀s ∈ [0, T ],

‖x̃(s)‖2 ≤ C0 · (C1e−
s
C1 · ‖x0‖2 + C2ε2),

where C0 = 6LF+
2LFαQ
αR

+
2αQ
αV

, C1 = 4γmax{βV , βR, βQ}
and C2 = 1

2αR
(1 + 8βR max{ L

2
x

αQ
,
L2
u

αR
}). More generally, for

any αV ≥ 0, it holds that for all s ∈ [0, T ] and δ > 0,

‖x̃(s)‖2 ≤ Cδ0 · (Cδ1e
− s
C1 · ‖x0‖2 + C2ε2)

where Cδ0 := 6LF +
2LFαQ
αR

+ min{ 2
δ ,

2αQ
αR
}, Cδ1 := e

δ
C1 C1.

Note that when ε = 0 taking the square root of both
sides of either bound in the statement of the theorem demon-
strates that the stationary point is exponentially decaying.
We emphasize that the rate of decay is uniform across all
stationary points corresponding to different initial conditions
x0 ∈ Rn and prediction horizons T > 0. This uniformity
is essential for our RHC stability results in Section IV-A.
There we stipulate how long the prediction horizon T > 0
and how small the optimality parameter ε > 0 must be each
time a planning problem is solved to ensure stability.

B. Proof of Theorem 1

Let (x̃(·), ũ(·)) be as in the statement of the theorem, and
let Ṽ(s) := JT−s(ũ[s,T ]; x̃(s)) for s ∈ [0, T ]. Then the fol-
lowing bounds hold (under the assumptions of Theorem 1):

Lemma 3: If αV > 0 then for each 0 ≤ s′ ≤ s ≤ T we
have ‖x̃(s)‖2 ≤ 1

αQ
C0 · Ṽ(s′). Alternatively, if αV ≥ 0 then

for each 0 ≤ δ ≤ T , s′ ≤ T − δ and s′ ≤ s ≤ T we have
‖x̃(s)‖2 ≤ 1

αQ
Cδ0 · Ṽ(s′).

Lemma 4: If ũ(t) is an ε-FOS of JT (·, x0), then for each
s ∈ [0, T ] we have Ṽ(s) ≤ αQ(C1‖x̃(s)‖2 + C2

2 ε
2).

The proof of Lemma 4 can be found in the Appendix,
while the proof of Lemma 3 can be found in [14]. However,
we note that this under bound can be produced by under
bounding the cost-to-go for JT (·, x0), and that similar under
bounds have appeared in the literature [12].

By the Fundamental Theorem of Calculus,

− d
ds Ṽ(s) = Q(x̃(s)) +R(ũ(s)) ≥ αQ‖x̃(s)‖2

≥ 1
C1 Ṽ(s)− αQC2ε2

2C1 ,

where the last line uses Lemma 4. Integrating the bound and
again invoking Lemma 4,

Ṽ(s) ≤ exp(− s
C1 )Ṽ(0) +

αQC2ε2
2C1

∫ s
t=0

exp(− t
C1 )dt (12)

≤ exp(− s
C1 )Ṽ(0) +

αQ
2 C2ε

2

≤ αQ · (C1e−
s
C1 · ‖x̃(0)‖2 + C2ε2).

Finally, in the case where αV > 0, Lemma 3 lets us convert
the above bound to one on ‖x̃(s)‖2, replacing αQ with C0,
as desired. In the case where αV = 0, for each δ ∈ [0, T ]

application of Lemma 3 yields the desired result for each
s ∈ [0, T − δ]. For each s ∈ [T − δ, T ] Lemma 3 yields

‖x̃(s)‖22 ≤ Cδ0 · (C1e
−T−δC1 · ‖x̃(0)‖2 + C2ε2)

≤ Cδ0 · (e
δ
C1 C1e−

s
C1 · ‖x̃(0)‖2 + C2ε2).

C. Connection to Feedback Linearization

We begin by applying our sufficient conditions to feed-
back linearizable systems, perhaps the most widely studied
and well-characterized class of systems in the nonlinear geo-
metric control literature [4, Chapter 9]. Roughly speaking, a
system is feedback linearizable if it can be transformed into
a linear system using state feedback and a coordinate trans-
formation. Formally, we say that (1) is feedback linearizable
if it is both control-affine, namely, of the form

F (x, u) = f(x) + g(x)u,

where f : Rn → Rn and g : Rn → Rn×m, and if there exists
a change of coordinates ξ = Φ(x), where Φ: Rn → Rn
is a diffeomorphism, such that in the new coordinates the
dynamics of the system are of the form

ξ̇ = Âξ + B̂[f̂(ξ) + ĝ(ξ)u] := F̂ (ξ, u), (13)

where Â ∈ Rn×n and B̂ ∈ Rn×m define a controllable pair
(Â, B̂), f̂ : Rn → Rm and ĝ : Rn → Rn×m is such that ĝ(ξ)
is invertible for each ξ ∈ Rn. We will let ĝi(ξ) denote the
i-th column of ĝ(ξ). We emphasize that this global trans-
formation is distinct from the local Jacobian linearizations
employed earlier. In this case the application of the feedback
rule u(ξ, v) = ĝ−1(ξ)[−f̂(ξ) + v], where v ∈ Rm is a new
‘virtual’ input, results in ξ̇ = Âξ+ B̂v. In essence, feedback
linearization reveals a linear structure underlying the global
geometry of the system. Clearly F̂ satisfies Assumption 4,
and the following proposition provides sufficient conditions
for Assumptions 5 and 6 to hold in the new coordinates:

Proposition 1: Suppose that (1) is feedback linearizable,
and let f̂ , ĝ, Â and B̂ be as defined above. Assume that i)
there exists L̂ > 0 such that ‖ ddξ f̂(ξ)‖ < L̂ for each ξ ∈ Rn
and ii) ĝ(·) is constant on Rn. Then there exists γ > 0
such that along each trajectory (ξ̃(·), ũ(·)) of F̂ the asso-
ciated Jacobian linearization (Ã(·), B̃(·)) is γ-stabilizable.
Furthermore the drift term d̃(t) = f̂(ξ(t))−Ã(t)ξ̃(t) satisfies
‖B̃†(t)d̃(t)‖2 ≤ 2L̂‖ξ̃(t)‖2.

Remark 1: Suppose that the representations of the state
running and terminal costs, Q̂ := Q ◦ Φ−1 and V̂ :=
V ◦ Φ−1, are convex in the linearizing coordinates and
satisfy pointwise bounds as in Assumption 3. Further assume
that the assumptions made of F̂ in Proposition 1 hold.
Then the conclusions of Theorem 1 can be applied to the
representation of JT (·, ξ0) in the linearizing coordinates by
rescaling Q̂ and R appropriately.

Thus, the global linearizing coordinates provide a useful
tool for verifying the sufficient conditions in Theorem 1.
Moreover, as we illustrate with our counter-examples, they
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also provide insight into what goes wrong in cases where the
state costs do not lead to stabilizing behavior.

While we illustrate this point further with our examples,
let us briefly remark on the necessity of the conditions in
Proposition 1 (for our analysis). First, note that along a given
solution (ξ̃(·), ũ(·)) we have Ã(t) = Â + B̂[ ddξ f̂(ξ̃(t)) +∑m
i=1

d
dξ gi(ξ̃(t))ũi(t)] and B̃(t) = B̂ĝ(ξ̃(t)) and d̃(t) =

Ã(t)ξ̃(t)− d
dξ f̂(ξ̃(t))ξ̃. When condition ii) is violated, even

when d
dξ ĝ(ξ) can be bounded globally, the linear growth of

Ã(t) with respect to ũ(t) may make the pair (Ã(·), B̃(·))
more difficult to stabilize (in the sense of Assumption 5)
for large values of the input. Moreover, in this case d̃(t)
will have quadratic cross-terms in ξ̃(t) and ũ(t), which may
violate the growth conditions in Assumption 6. Similar issues
arise when d

dξ f̂(ξ) is not bounded globally. This occurs,
for example, in Lagrangian mechanical systems wherein the
Coriolis terms display quadratic growth in the generalized
velocities of the system. The core challenge in each of these
cases, from the perspective of our analysis, is that without
making additional structural Assumptions beyond those in
Proposition 1 it is difficult to rule out cases where the time-
varying approximation to the dynamics along some trajectory
of the system is arbitrarily difficult to stabilize.

D. Counterexamples

Relative Weighting of State and Input Costs: We first
consider the simple inverted pendulum in Figure 1. The states
are (x1, x2) = (θ, θ̇), where θ is the angle of the arm from
vertical. The dynamics are governed by[

ẋ1

ẋ2

]
=

[
x2

k sin(x2) + u

]
,

where k = g` with g > 0 the gravitational constant and
` > 0 the length of the arm. The cost to be minimized is

JT (·, x0) =
∫ T

0
‖x̃(t)‖2Q + r‖ũ(t)‖22dt+ ‖x̃(T )‖2QV ,

where the scalar parameter r > 0 is used to control the
relative weighting of the input and state costs and

QV =
[

1/4 1/(5
√

2)

1/(5
√

2) 1

]
Q =

[
1 −1/4
−1/4 1

]
.

Note that the dynamics are linearizable, as they are already
in the form (13). Moreover, applying Proposition 1, one can
show that that Assumptions 3 through 6 are satisfied with
parameters αQ = βQ = 3

4 , αR = βR = r, Lx = k and Lu =
0. Considering k = 10, we find that if if r < 3

4k2 = 3
400 the

sufficient conditions for exponential stability of Theorem 1
are satisfied. However, if r is not small enough then there
may exists undesirable first order stationary points of the
cost functional. Specifically, consider the initial condition
x0 = ( 3π

4 , 0)T and the control signal ũ(·) ≡ −k sin( 3π
4 ) =

− 10√
2

, which generates the trajectory x̃(·) ≡ x0. The costate
along this arc is p(·) ≡ ( 3π

16 ,
3π

20
√

2
) and the gradients of

the objective is given by ∇JT (ũ;x0)(t) = p(t) + ru(t).
Thus, we see that if we choose r = 3π

200 then we will have

Fig. 1. (a) Schematic for the simple inverted pendulum (b) schematic for
the inverted pendulum with a flexible joint.

∇JT (ũ;x0)(·) ≡ 0, which demonstrates that ũ is a stationary
point of the cost function. Thus, while RHC stability results
which rely on global optimality of each planning problem
predict stabilizing behavior for sufficiently large T > 0 [7],
this example demonstrates that algorithms which only find
first order-stationary points may be ‘too myopic’ to guarantee
stability unless the input cost is small enough.
Structure of Local Drift Term: Next, consider the flex-
ible link manipulator depicted in Figure 1. The state is
(x1, x2, x3, x4)T = (θ1, θ̇1, θ2, θ̇2)T , where θ1 is the angle
of the arm from vertical and θ2 is the difference between the
angle of the arm and the internal angle of the motor. The
dynamics areẋ1

ẋ2

ẋ3

ẋ4

 =

 x2

−K1 sin(x1) +K2x3

x4

−K1 sin(x1)− (K2 +K3)x3 − u

 ,
where K1 = g`, K2 = k

M and K3 = k
I , where g is the

gravitational constant, ` is the length of the arm, k = 10
is the spring coefficient, M the mass of the arm and I
the internal inertia of the motor. For concreteness, we will
assume that these physical parameters are such that K1 = 20
and K2 = K3 = 1. We apply cost functionals of the form

JT (·;x0) =
∫ T

0
‖x̃(t)‖Q + r‖ũ(t)‖22dt+ ‖x̃(T )‖QV ,

Qf :=

[
1 1

4 0 0
1
4 1 0 0
0 0 1 0
0 0 0 1

]
QV :=

[
5 −1 − 1

4 0
−1 5 0 0
− 1

4 0 5 0
0 0 0 5

]
.

While the running and terminal costs satisfy Assumption
3 in the x coordinates, Assumption 4 is violated for this
parameterization of the control system. Consider the initial
condition x0 = (π, 0, 0, 0)T . Note that the input ũ(·) ≡ 0
generates the trajectory x̃(·) ≡ x0. The reader may verify
that the costate along this trajectory is p(t) ≡ (π, 1

4π, 0, 0)
and the gradient at this point in the optimization space is
defined by JT (ũ;x0)(·) ≡ 0. Note that this is true for every
choice of prediction horizon T > 0 and choice of the scaling
parameter r > 0. Thus, regardless of the prediction horizon,
algorithms which find first-order stationary points may get
stuck at this undesirable equilibrium.

We can also see how the proposed cost function fails
to guide local search algorithms to stabilizing solutions by
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studying its structure in a set of linearizing coordinates.
Indeed, consider coordinates defined by ξ = Φ(x) where

Φ(x) = (x1, x2,−k1 sin(x1)+k2x3,−k1 cos(x1)x2+k2x4).

These coordinates are obtained by input-output linearizing
the dynamics with the output y = x1 (see [4, Chapter 9]),
and in the new coordinates the system can be shown to be of
the form (13). Thus, in the new coordinates Assumption 4 is
satisfied, however, Assumption 3 is not satisfied. Indeed, due
to the nonlinearities in Φ, the reader may verify that the maps
z → ‖Φ−1(z)‖2Q and z → ‖Φ−1(z)‖QV are not convex.
Thus, in these coordinates, the local structure of the state
costs attracts trajectories towards the undesirable equilibrium
point we identified above.

IV. FIRST-ORDER STABILITY GUARANTEES FOR
RECEDING HORIZON CONTROL

In receding horizon control (RHC) or model predictive
control, a planner solves inf ũ(·) JT (ũ, x(t)), where x(t) is
the current state of the real world system. The planner then
applies the resulting open loop predictive control until a
new state measurement is received and the process can be
repeated. As discussed above, most formal stability guaran-
tees require that an (approximate) globally optimal solution
is found for each (generally nonconvex) planning problem.
Applying Theorem 1, we provide the first stability guarantees
for a formal model of nonlinear RHC which only requires
planning to approximate stationary points.

A. First-Order Receding Horizon Control

Many practical implementations of RHC use a technique
known as warm starting, where the predictive control re-
turned during each optimization phase is used to construct
the ‘initial guess’ for the subsequent planning problem. This
approach has proven highly effective for systems which
require rapid re-planning to maintain stability [16].

To model this approach, we define the first-order reced-
ing horizon control strategy, denoted FO-RHC, as follows.
First a prediction horizon T > 0 and a replanning interval
δ ∈ (0, T ] are chosen and a sequence of replanning times
tk = kδ for k ∈ N are defined. Next, the process takes
in an initial condition of the physical system x0 ∈ Rn and
a warm-start control ū0 ∈ UT specified by the user. We
let (x(·, x0, ū0),u(·, x0, ū0)) denote the resulting trajectory
produced by the control scheme described below.

At each tk for k ∈ N a warm-start routine generates an
initial guess ūk(·) = ūk(·;x0, ū0) ∈ UT for the problem
JT (·;x(·, x0, ū0)); a simple choice for such a routine is pre-
sented momentarily. The local search method then optimizes
the problem using the chosen initial guess, and produces
the predictive control ũk(·) = ũ(·;x0, ū0). Note that both
of these quantities depend on both the initial condition of
the system and the initial warm-start control specified by
the user. The predictive control is constructed via ũk(·) =
uplanT (·,x(tk, x0, ū0), ūk) ∈ UT , where the map uplanT is used
to model how the chosen search algorithm selects a predictive

control given for a given initial condition and warm-start
input. Finally, the actual control u(t, x0, ū0) = ũk(t− tk) is
applied on the interval [tk, tk+1), and the process repeats.

Assumption 7: We assume that, for any x̂0 ∈ Rn, ū ∈ UT ,
the planned solution ũ = u

plan
T (·, x̂0, ū) ∈ UT satisfies the

following two conditions with parameter ε0 > 0:

1) JT (ũ; x̂0) ≤ JT (ū; x̂0); and,
2) ũ is an ε0JT (ũ; x̂0)1/2-FOS of JT (· ; x̂0).
The rationale for the first condition is that many popular

trajectory optimization methods are descent methods, and
therefore only decrease the value of the functional JT .
The second condition is reasonable because such meth-
ods converge to approximate first-order stationary points,
even for nonconvex landscapes [17]. The normalization by
JT (x̂0, û)1/2 affords geometric stability in Theorem 2 by
ensuring the optimization terminates close enough to a
stationary point for each planning problem as the system
trajectory approaches the origin.

It remains to specify how the warm-starts ūk are pro-
duced for k ≥ 1. We propose selecting ũk with δ-delay,
continuing until time T , and then applying zero input:

ūk+1(t, x0, ū0) =

{
ũk(t+ δ, x0, ū0) t ∈ [0, T − δ]
0 t ∈ (T − δ, T ].

While more sophisticated warm-starts may be adopted in
practice, the above is preferable for the present analysis
because (a) it does not require further system knowledge,
and (b) is ammenable to transparent stability guarantees.

B. Sufficient Conditions for Exponential Stability of FO-RHC

Finally, we apply Theorem 1 and its assumptions to
provide sufficient conditions for the stability of FO-RHC. In
order to obtain exponential convergence, we will require that,
given a desired replanning interval δ > 0, the prediction
horizon T > 0 is sufficiently large and the optimality
parameter ε0 > 0 in Assumption 7 is sufficiently small:

Theorem 2: Let the assumptions in Theorem 1 hold. Fur-
ther assume that the search algorithm chosen for FO-RHC
satisfies the conditions in Assumption 7. Then for any pre-
diction horizon T > 0, replanning interval δ ∈ (0, T ]
and optimality parameter ε0 <

√
2αQC2, and each initial

condition for the physical system x0 ∈ Rn and initial
warm-start decision variable ū0 ∈ UT the system trajectory
(x(·, x0, ū0),u(·, x0, ū0)) generated by the corresponding
FO-RHC scheme satisfies

‖x(tk, x0, ū0)‖2 ≤
√
M(δ, T, ε0)eη(δ,T,ε0)tk‖x0‖2,

for each k ∈ N where we define

M(δ, ε0) := Cδ0C1
(
1− αQ

2 C2ε
2
0

)−1

η(δ, T, ε0) := 1
2δ ln

(
e−δ/C1 + T (δ, T ) + E(δ, ε0)

)
E(δ, ε0) := 1

2C
δ
0 C2e2LF δ((δ + 1)αQ + αV )ε20

T (δ, T ) := Cδ0C1(δαQ + αV )e−
T
C1

+δ( 1
C1

+2LF ).
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To interpret the above constants, first note that for a
fixed replanning interval δ > 0 we have limε0→0M(δ, ε0) =
C̄δ0C1 and limT→∞

ε0→0
η(δ, T, ε0) = 1

2C1 . Thus, in the limiting
case FO-RHC recovers the exponential rate of convergence
predicted by Theorem 1. Next, note that η(δ, T, ε0) will
only be negative if e−

δ
C1 + T (δ, T, ε0) + E(δ, ε0) < 1.

Thus, for our estimate on the rate of convergence to be
exponentially decaying we require that T is (at least) as big
as T ≥ ln(C̄δ0C1(δαQ + αV )) + δ(1 + C12LF ).

V. FUTURE DIRECTIONS

There are many important directions for future work.
First, it should be determined whether the strong assumptions
required for Theorem 1 can be relaxed. Concretely, in the
context of control affine systems of the form F (x, u) =
f(x) + g(x)u, it remains to be determined under what
conditions practical RHC methods can stabilize the system
when the drift term d̃(t) does not grow linearly in x̃(t) and
ũ(t) (which can happen when the growth of f is super-linear
or when g is not constant). The primary shortcoming of our
proof technique is that we completely ‘cancel out’ d̃(t) when
constructing sub-optimal controls in the proof of Theorem
1, and in some cases this cancellation may be too ‘costly’
to obtain a useful upper bound. However, the disturbance
term may actually be useful at certain points if it helps drive
the system towards the origin, making complete cancellation
unnecessary. It is interesting to note that feedback linearizing
controllers, which can also cancel out ’useful’ nonlinearities,
often receive a similar criticism. Thus, we suspect that in
general further structural assumptions on the system dynam-
ics could lead to positive results.

APPENDIX

In view of Lemma 2, to obtain a bound on Ṽ(s) it
suffices to bound Vjac,?(s) := inf ū[s,T ]

Jjac
T−s(·, x̃(s), ũ[s,T ]).

Moreover, we can bound Vjac,?(s) by bounding
J
jac
T−s(ū[s,T ]; x̃(t), ũ[s,T ]) for any (possibly suboptimal)

control ū[s,T ]; for simplicity, let us drop the [s, T ]-subscript
going forward. We select ū(t) = ū1(t) + ū2(t), where
ū1(t) satisfies B̃(t)ū1(t) = −d̃(t), and where ū2 witnesses
γ-stabilizability at time s as in Assumption 5.

With this choice of ū(t) the dynamics of x̄(t) in Jjac
T−s are

d
dt x̄(t) = Ã(t)x̄(t) + B̃(t)ū(t) + d̃(t) = Ã(t)x̄(t) + B̃ū2(t),
and, writing out Jjac

T−s explicitly, we obtain

Vjac,?(s) ≤
∫ T
t=s

(Q(x̄(t)) +R(ū(t))dt+ V (x̄(T )). (14)

By the elementary bound ‖ū(t)‖2 ≤ 2‖ū1(t)‖2 + 2‖ū2(t)‖2,
the following holds for constant c = max{βV , 2βR, βQ},

Vjac,?(s) ≤ 2βR
∫ T
t=s
‖ū1(t)‖2dt (15)

+ c
(∫ T

t=s
(‖x̄(t)‖2 + ‖ū(t)‖2)dt+ ‖x̄(T )‖2

)
. (16)

To bound (16), we observe that d
dt x̄(t) = Ã(t)x̄(t) +

B̃(t)ū(t)+ d̃(t) = Ã(t)x̄(t)+ B̃(t)ū2(t), which corresponds

to the x̂(t) dynamics in the definion of γ-stabilizability; thus,
(16) is at most c · γ‖x̃(s)‖2.

To bound (15), we use (6) to bound ‖ū1(t)‖2 ≤
2L2

x‖x̃(t)‖2 + 2L2
u‖ũ(t)‖2 ≤ 2c′(Q(x̃(t)) + R(ũ(t))/βR,

where c′ = βR max{ L
2
x

αQ
,
L2
u

αR
). Hence, in view of Lemma 2,

and the principle of optimality:

2βR
∫ T
t=s
‖ū1(t)‖2dt ≤ 4c′βR

∫ T
t=s

(Q(x̃(t)) +R(ũ(t))dt

≤ 4c′βRṼ(s) ≤ 4c′βR(Vjac,?(s) + ε2

2αR
)

Putting the bounds together and rearranging:

(1− 4βRc
′)Vjac,?(s) ≤ c · γ‖x̃(s)‖2 + 2c′βR

αR
ε2

Under Assumption 6, we have 4βRc
′ ≤ 1/2, so that

Vjac,?(s) ≤ 2c · γ‖x̃(s)‖2 + 4c′βRε
2/αR. (17)

We recognize 2cγ ≤ C1, and 4c′βR
αR

= C2 − 1
2αR

, and invoke
Lemma 2 to obtain the desired bound. �
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