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Abstract—Optimal control is an essential tool for stabilizing
complex nonlinear system. However, despite the extensive impacts
of methods such as receding horizon control, dynamic program-
ming and reinforcement learning, the design of cost functions
for a particular system often remains a heuristic-driven process
of trial and error. In this paper we seek to gain insights into
how the choice of cost function interacts with the underlying
structure of the control system and impacts the amount of
computation required to obtain a stabilizing controller. We treat
the cost design problem as a two-step process where the designer
specifies outputs for the system that are to be penalized and then
modulates the relative weighting of the inputs and the outputs
in the cost. We then bound the length of the prediction horizon
T > 0 that is required for receding horizon control methods
to stabilize the system as a concrete way of characterizing
the computational difficulty of stabilizing the system using the
chosen cost function. Drawing on insights from the ‘cheap
control’ literature, we investigate cases where the chosen outputs
lead to minimumphase and non-minimumphase input-output
dynamics. When the system is minimumphase, the prediction
horizon needed to ensure stability can be made arbitrarily
small by making the penalty on the control small enough. This
indicates that choices of cost function which implicitly induce
minimumphase behavior lead to an optimal control problem from
which it is ‘easy’ to obtain a stabilizing controller. Using these
insights, we investigate empirically how the choice of cost function
affects the ability of modern reinforcement learning algorithms to
learn a stabilizing controller. Taken together, the results in this
paper indicate that cost functions which induce non-minimum
phase behavior lead to inherent computational difficulties.

I. INTRODUCTION

The stabilization of complex nonlinear systems is one
of the most fundamental and important problems in control
theory. Approaches based on optimal control [1]], [2], [3] form
an essential set of tools for solving the stabilization problem
and have seen extensive real-world deployment [4], [S]. The
primary appeal of optimal control is that it allows the user to
implicitly encode potentially complex stabilizing controllers
as the feedback solutions to certain infinite horizon optimal
control problems which are relatively simple to specify.

However, optimal control is not without limitations. Ob-
taining an optimal infinite horizon controller requires solving
the Hamilton Jacobi Bellman partial differential equation [6].
However, for general nonlinear problems it is rarely possible
to solve the equation in closed form. This has lead to the
development of dynamic programming methods [2], [6], [7],
which construct a sequence of approximations to the optimal
controller. However, due to the curse of dimensionality [7]], the
computational complexity of dynamic programming explodes
as the dimension of the system increases. This in turn has lead

to the development of methods which approximate the opti-
mal control law through various means, including Receding
Horizon Control [8]] and Approximate Dynamic Programming
[2] (which includes modern reinforcement learning methods
[9]). In one way or another, each of these methods trade off
the amount of computation used to solve the problem with the
quality of the resulting control law. However, despite a steady
increase in the availability of computational resources, reli-
ably controlling many high-dimensional systems with optimal
control remains infeasible.

Rather than developing new methods for obtaining ap-
proximately optimal control laws, in this paper we ask the
following: to what extent can we alleviate the computational
issues discussed above by designing ‘good’ cost functions
for a particular system? For concreteness, we will study
this question through the lens of receding horizon control
and investigate how the chosen cost influences the length of
prediction horizon needed to stabilize the system. In particular,
the critical value of the prediction horizon will serve as
our measurement of how computationally challenging it is
to obtain a stabilizing control scheme using the chosen cost
function. We note that previous work [2], [10] has demon-
strated an important correspondence between the prediction
horizon that RHC schemes need to stabilize the system and
the number of iterations that dynamic programming-based
methods need to obtain a stabilizing controller. Guided by
these insights, we also empirically investigate how the chosen
cost function impacts the ability of modern reinforcement
learning algorithms to learn a stabilizing controller.

We will consider two degrees of freedom when addressing
the cost-design problem. The first design choice is to choose
a set of outputs for the system. The class of costs we consider
will have a term which penalizes the L5 loss of the outputs
and a second term which penalizes a weighted Lo loss of
the system inputs. Thus, the second design choice is to pick
the parameter which weights the input costs, which will be
denoted by € > 0 throughout the paper. We note that cost
functions of this variety are used extensively in practice [11]],
[12], however the cost design process is typically driven
by trial and error. Here, we seek to understand how the
chosen cost function interacts with the inherent geometry of
the control system to affect the computational complexity of
obtaining a stabilizing controller.

Our theoretical analysis draws on two distinct bodies of
work. The first line of work comes from the receding horizon
control literature [13], [14] where bounds on the optimal



infinite horizon value function are used to upper bound the size
of prediction horizon that RHC schemes need to stabilize the
system. Roughly speaking, as the upper bound on the infinite
horizon cost becomes smaller the prediction horizon needed
to guarantee stability also decreases.

The second line of work we draw on is the so-called ‘cheap
control’ literature [15], [16l], [17], [18], which also studies
the class of cost functions we consider in this paper. The
term ‘cheap control’ comes from the fact that this body of
work studies the asymptotic behavior of the infinite horizon
value function as the weighting parameter ¢ is taken to zero.
Even though these arguments are asymptotic in nature they
still provide qualitative insights into how difficult it is to drive
the chosen outputs to zero with a feedback controller which
also stabilizes the internal dynamics. The primary result from
this literature is a qualitative separation between choices of
outputs which lead to minimumphase behavior versus choices
of outputs which lead to non-mimimumphase behavior. In
particular, for minumumphase systems the performance can
be made arbitrarily better, however there exists fundamental
performance limitations for non-minumphase systems.

We combine these two lines of work to demonstrate that
when the chosen outputs induce minimumphase behavior,
receding horizon control schemes can be guaranteed to sta-
bilize the system with arbitrarily small prediction horizons by
choosing € to be sufficiently small. We take this qualitative
result as an indication that users can design ‘good’ cost
functions for a particular system by considering whether they
implicitly induce minimumphase behavior. Indeed, as our
empirical results indicate, this can have have major effect on
the difficulty of obtaining a stabilizing controller.

II. PROBLEM FORMULATION AND BACKGROUND

Throughout the paper we will consider control affine
systems of the form

&= f(x)+g(z)u,
y = h(z)

where © € R™ is the state, o € R™ is the initial condition,
u € R? is the input and y € RY is the output and n and ¢
are positive integers. In line with the majority of the cheap
control literature, we assume that the number of inputs and
outputs are equal to simplify exposition. We will assume that
the maps f: R” - R, g: R” — R"*% and h: R” — R? are
such that f(0) = 0 and h(0) = 0. As we discussed above, we
view the construction of the output map h as a design choice
which is made when constructing the cost function discussed
below. We will let y; and h;(x) denote the j-th entries of y
and h(x), respectively. For each T € RU {oo} we will let Ur
denote the set of controls of the form w: [0,7] — R? which
are measurable and essentially bounded.

z(0) = zg (1

A. Nonlinear Geometry: 10 Linearization and Normal Forms

Next, for a given choice of output function h we discuss
how to construct an associated feedback linearizing controller

and introduce the ‘normal form’ associated to the input-output
system (I). This representation is essential for developing a
qualitative understanding of how the choice of output interacts
with the underlying geometry of the control system and is used
extensively in our analysis. Our introduction to these concepts
will be brief, as they are covered in many standard references
(e.g. [19, Chapter 9]).

The main idea behind feedback linearization is to differen-
tiate each output until an input appears in one the derivatives,
which yields an expression of the form

[yYI)
where y](-k) denotes the k-th time derivative of y;, b(z) € R?

is called the drift term and A(x) € R?*? is the decoupling
matrix, and the r; are positive integers. If A(x) is bounded
away from singularity for each x € R™ then the control law

u= A" (2)[b(x) + v] 3)

T
g = b(x) + A(z)u, ®)

yields the decoupled linear relationship

T
] = o) )

where v is the j-th entry of v. In this case we say that the sys-
tem has a well-defined (vector) relative degree (r1,72,...,7q)
on D, and we denote 7 = r +- - - +14. Under this assumption
we can construct a partial change of coordinates using the
outputs and their derivatives, namely, for each j € {1,...,q}
we define the coordinates

& =hj(x), & =Lshj(x), ..., & = L;j_lhj(ﬂﬁ); %)
and the Lie derivatives, defined successively by Lsh;(z) =
aehy(z) - f(z) and Li*hy(e) = L (Lshy(2)f (@), are
such that yék) = L’Jihj(z). Letting £ € RI"l collect the {;
coordinates, we can construct and additional set of coordi-
nates n € R®™" so that z — (£,7) is a valid coordinate
transformation and in the new coordinates the dynamic are of
the form

§=FE+GbEn) + A, n)u (6)
n=q(&n) + P& nu
y = H¢

where (F,G) is controllable, (F, H) is observable, and we
have permitted a slight abuse of notation when defining b(&, )
and A(&,n). The preceding representation of the dynamics is
known as the normal form for the input output system (T)).

Note that if £ = 0 then the control u = A~1(0,7)b(0,7)
will keep the outputs zeroed. This leads to the zero dynamics

1= q(0,m) + P(0,7) A~ (0,7)b(0, ), (7)

which represents the remaining internal dynamics of the
system. We say that the system is minimumphase if the
zero dynamics are asymptotically stable and exponentially
minimumphase if the zero dynamics are exponentially stable.



We will say that a system is non-minimumphase if it is not
minimimpase. In the case where ¥ = n there are no zero
dynamics and we refer to the system as full state linearizable.
In this case the system is trivially both minumumphase.

B. Strict Feedback Systems

In this section we introduce the special case of dynamics
which we will study throughout the paper. A full justification
for these assumptions will be given when discussing the
cheap control problem below. We begin with the following
assumption:

Assumption 1. There exists r € N such that the vector relative
degree of the system (1) is (r,r,...,7).

Under assumption through the rest of the paper we
will arrange the ¢ coordinates in the normal form (6) as

&= (&,...,& ) where
& =h(z), &= Lyh(z), L &=L h(z) (8

as the coordinates for outputs and their derivatives. Note that
in these coordinates the F' and G matrices in (6) are of the
following form:

01 0 0 0
00 I 0 0
F= G=|.|.H=[I 0 0]
00 0 I I
)

Next we restrict the form of the interconnection between the
& and 7 subsystems. We say that the input output system
can be put into strict feedback form if the n coordinates can
be chosen so that the normal form of the dynamics takes the
following form:

£ =F&+Gh(En) + A(E,n)u]
= fo(n) + go(n)é:
where fo: R~ — R(™=7) and go: RM=7) — R(=7)xq,

(10)

Assumption 2. The input-output system can be put into
the strict feedback form (10).

In particular this assumption forbids the input and the
derivatives of the outputs to appear directly in the dynamics of
the zeros. We note that in the special case of linear dynamics
the system can always be put into strict feedback form when
Assumption E] is satisfied (see e.g. [18]]).

C. Cost Function Design and the Cheap Control Problem

Given that that the choice of output in (T) satisfies Assump-
tions [T} for each parameter e > 0 we will study the infinite
horizon optimal control problem

(nf  Jo(u();z0) :=/ IR (zEDNE + € llul®)]3,
ul - o) 0
Y

and also for each prediction horizon I" > 0 the following
finite-horizon approximation:

T
inf — Jp(u(-); xo) :=/0 b ()13 + e u@®)]3. (12)

u()ero

The parameter ¢ controls the relative importance of the inputs
and outputs in the cost, and the reason for raising it to the
power of 2r will be made clear momentarily. To ease expo-
sition we will assume for that each € > 0 and x € R™ there
is are unique controls uu,(+; ) € Us and Ur(-;x9) € Ur
which achieve the minimum values on the right hand side of
and (12).

To these problems we associate the following value func-
tions:

Vi) = inf Ji(u();a).
Vi) = inf Ji(ul o)

We will assume that for each ¢ > 0 the value function
is positive definite and continuously differentiable. Under this
condition it is well-known (see e.g. [6, Chapter 3.2]) that the
value function satisfies the Hamilton-Jacobi-Bellman (HJB)
partial differential equation, nameley,

1
YV (@) f (@) + [h(@)5 - 5 YV (2)g(2)g(2) " VV*(2) = 0
(13)
and that an optimal control law which asymptotically stabilizes
the system is given by
1
9(2)"VV ().

ut(x) = o (14)
The focus of the cheap control literature has been to
characterize the optimal value function V(fo and structure of
the corresponding optimal controller u¢ for small values of
€. In particular, the limiting value lim._,o VS (z) provides
qualitative insight into how difficult it is to drive the chosen
outputs to zero from the state x € R™ while also stabilizing
the internal dynamics. These results are primarily obtained
via asymptotic analysis techniques. In particular, singular
perturbation techniques and and asymptotic series expansions
are used to characterize the behavior of V¢ and u® around
€ = 0. While these method necessarily lead to coarse bounds,
as with all asymptotic methods, it is understood that the
qualitative insights these techniques enable also apply to the
cases where € > 0 takes on moderate values (i.e. € =~ 1).

The essential result from the literature is a qualitative sepa-
ration between the performance limitations of minimumphase
and non-minimumphase systems. While the majority of the
literature has focused on the case where the dynamics are
linear [[17], [18l], [20], the seminal line of work in in [15] and
[21]] extends these results to nonlinear strict-feedback systems
of the form (I0). An integral part of the analysis for strict
feedback systems is the ‘minimum energy problem’ which is
formulated using the normal form (I0):

tm) = inf J&sCrm) = [ la@Iz  as)



where 7 = qo(n) +po(n)&1 where the output &;(+) is viewed as
an input to the zero subsystem and the infimum in (I3)) is un-
derstood to be over &; (-) which drive n(¢) — 0 asymptotically.
Thus, Vo (1) can be interpreted as the minimum ‘energy’ of the
outputs (in an Lo sense) that must be accrued by a feedback
controller which stabilizes the internal dynamics.

Crucially, one may observe that if the system is mini-
mumphase then VO() = ( since no ‘energy’ must be expended
to stabilize the zeros. As is shown in [21]], in this case as
e — 0 the optimal control law for the overall problem (14)
is a high-gain feedback controller which directly drives the
outputs and their derivatives to zero. On the other hand, when
the system is non-minimumphase then we must have V0(~) Z0
and the outputs must be ‘steered’ to stabilize the zero. In both
cases the performance limitation for the system is given by
lime_o V(&,n) = Vo(n), where V< (&, 7) is the representa-
tion of the value function in the normal coordinates. Thus, for
systems which can be put into strict feedback form, there is a
qualitative separation between the performance limitations of
minimumphase and non-minimumphase systems.

However, for more general nonlinear systems of the form
(6) it is not clear that even if the system is asymptoti-
cally or even exponentially minimumphase that we will have
lime,o V¢(x) = 0 in the case where r > 1 due to the
well documented peaking phenomena (see. [22] for a com-
prehensive discussion). Essentially, this property dictates that
as we increase the gain of a feedback controller which drives
y(t) — 0 both the derivatives of the outputs and the input will
‘peak’ to larger and larger transient magnitudes, potentially
perturbing the zeros to a greater and greater extent. Thus,
as examples demonstrate [22], without additional structural
assumptions it may be impossible to rule out that a high-gain
controller which rapidly drives y — 0 (which is a necessity for
lim._,o V¢(x)) does not cause the zeros to escape to infinity.

D. Fast-Slow Representations

As mentioned above, singular perturbation techniques play
a crucial role in obtaining the aforementioned results and will
play an essential role in our analysis. In particular, for each
€ > 0 consider the rescaled variables £ — & and v — w
defined for each € > 0 by

E=8(e)¢ and = €u, (16)

where

S(e) = diag(1, €, ...,e"1). (17)

In the new coordinates strict feedback systems take the form
€ = FE+ G[b(En) + A(€,n)a]
1= fo(n) + go(n)é1,

where b(&,n) = b(S(e)"'€,n) and A(,n) = A(S(e) )

and we have suppressed the dependence of these terms on
€. In the rescaled coordinates the infinite and finite horizon

(18)

problems take the forms:

Joe(0():E0r10) = / 1)+ la(n)|2de (19)

inf
() EUso

T
_inf  Jp(a(-); §o.mo) =/ & @)3 + lla)l3dt (20)
a(-)eUr 0

The corresponding value functions are given by:
V;(go,ﬂo) = ﬂg}]f Jgo(ﬂ(');go,ﬁo)
Vi(€o,mo) = inf Ji(u(-);2),
ueUr

and oo (60,7) € Uso and &r(-5€0,7) € Uso denote the
controls which achieve the preceding minimizations.

The form of the rescaled cost function and and dynamics
clearly evokes the intuition that we should expect a fast
transient respons from the outputs for small values of epsilon.
Together, Assumption [1| and the €?” scaling of the control
in (L1) enable this convenient fast-slow representation of the
dynamics. In the case where there are outputs with different
relative degrees the cheap control problem induces a fast-slow
problem with multiple fast time scales (see e.g. [17]). This sig-
nificantly complicates the statement and analysis of theoretical
results without ultimately affecting the key conceptual insights
that can be gleaned from the cheap control problem. Thus, we
work with Assumption [I] throughout the paper primarily to
ease exposition.

E. Stability of Receding Horizon Control

Before proceeding to our main results we briefly review
receding horizon control and introduce the specific stability
result we will employ in our analysis. For this section we turn
way from the costs (TT)-(12) and study more general problems:

n Tlutyia) = [t uear@n
. T
inf Jr(u()ia0) = [ tal.um)a, @)

where /: R" x R? — R is a non-negative function with
£(0,0) = 0. We associate to this problem the values

Vaole) = inf Jc(ul)io)

Vr(x) = inf  Jr(u(-);zo),

u(-)eUr

and again let ueo(;20) € Uso and ueo(-;29) € Ur denote
the optimal controls for the above problems, and we will
also let z7(-; o) denote the solution to (I) under ur(-;xo)
with 27(0;29) = xo. We assume that V, positive definite
and continuously differentiable to that it admits and optimal
feedback controller u., which asymptotically stabilizes the
system.

For each prediction horizon 7' > 0 and replanning interval
At > 0 RHC schemes comprise sampled-data feedback
law of the form wu(t) = wur(t — kAt,z(kAt)) for each



t € [kAt, (k4 1)At] and k € N, where (z(), u(-)) are the tra-
jectory and input for the physical system (). The interpretation
of this control scheme is that at each time kAt the open loop
control ur(-, z(kAt)) is obtained by solving Jr (-, z(kAx))
and the parameter At is understood to be the time between re-
planning instances. Note that the state at successive planning
instances is given by z((k + 1)At) = xp(At; x(kAL)).

At their core, stability results from the literature [23], [1]
are founded on the notion that as 7" increase the RHC scheme
more closely approximates the infinite horizon continuous-
time feedback controller u,. However, increasing 7' comes at
the cost of additional computational complexity when solving
(22). Throughout the paper we will employ the stability result
described below which bounds the length of the time horizon
needed to stabilize the system using, in part, an bound on
the growth of the infinite horizon value function V... This
result is essentially a sampled-data adaptation of the main
result from [1]] (with several specializations for our setting).
In the following, the map o(-): R™ — R is a positive definite
function which is used to measure the distance of the state
to the origin. The stability result employs the following two
assumptions:

Assumption 3. There exists ay > 0 such that:

Voo(z) < ac(x) VaeR™ (23)

Assumption 4. There exists a continuously differentiable
Sfunction W: R® — R" and aw,ay, > 0 and Kyw > 0
such that for each x € R"™ and u € R™:

ayo(z) <W(zx) < awo(z) (24)

LW @) () + o)) < ~Kwole) + ()

Note that because the running cost ¢ is non-negative we
must have Joo(x) > Jr(x) > 0 for each T > 0. Thus, the
condition in Assumption [3| also bounds the growth of Vr(x).
The existence of the map W in Assumption [4] ensures that
the state measure o(-) is detectable with respect to the loss
function ¢. In the statement of the following result we will let
zr(")
Theorem 1. Let Assumptions B and [ hold. Then for each
T > At > 0 we have

(25)

_a+aw
Y; At; <[ M(A —0= |V 2
r(or(ata)) < (M0 +aS 0 e 2o
where Yp =W + Vp and M(At) = exp(fg_‘(_"dﬁ )] <1 and
xr(-; ) is defined as above.

Theorem [I] suggests that for a fixed At > 0 we use Yp
for T' > 0 sufficiently large to certify the asymptotic stability
of the corresponding RHC scheme. In particular, the bound
in indicates that Y decays between replanning instances
if we pick T > %. Note in particular how this
bound depends on the performance of the infinite horizon cost
as prescribed by Assumption 3] As & decreases we can ensure

stability of the closed-loop system by using RHC schemes with
smaller and smaller prediction horizons.

III. OVERCOMING COMPUTATIONAL LIMITATIONS IN
NONLINEAR OPTIMAL CONTROL

We are now ready to present our main results which
demonstrate that choices of outputs which lead to minimum-
phase dynamics allow us to ensure the stability of RHC
schemes with arbitrarily small prediction horizons by choosing
e to be sufficiently small. Theorem [2] covers the special case
where the input output system is full-state linearizable, while
Theorem (3| covers the more general case where the zero dy-
namics are exponentially minimumphase. For each € > 0 and
T > At > 0 we will let u A, (s 7) = uZ (5 2)[o,a+ denote the
corresponding sampled-data receding horizon controller, and
for each initial condition zy € R™ we will let z7 a.(+; 20)
denote the corresponding trajectory of the closed loop system
starting from zp A (5 20) = 0.

Our theoretical results will require the following growth
conditions on the dynamics. In the following assumption we
Use 0pnin () to denote the minimum singular value of a matrix.

Assumption 5. There exists constants L,C,~v > 0 such that
the following conditions hold for each (§,1n) € R™:

16(& M2 < L([ll2 + [1nll2)
[AE: M2 lgo(m)l2 < €

A. Full State Linearizable Systems

We state our result for systems which are full-state lin-
earizable:

Theorem 2. Let Assumptions [I] and [5] hold. Then for every
T > At > 0 there exists eg > 0 such that for each € € (0, €]
the receding horizon controller ur a¢(-,x) renders the closed-
loop system globally exponentially stable.

The proof of the Theorem can be found in the appendix,
and consists of two main parts. First, using the (£,7) coor-
dinates, for each ¢ > 0 we apply a sub-optimal feedback
linearizing controller to drive the system to zero and bound
the resulting cost. By doing so we are able to obtain an upper
bound on V¢(z) of the form V,,(€) < Ce(||¢]|2+|n||3). Then,
inspired by the proof of Corollary 4 from [13]], we construct
a W which satisfies Assumption [2| Then the desired result
follows from an application of Theorem [I] by taking € to be
sufficiently small so that the bound on V¢ is small enough
to ensure stability. These two steps are encapsulated as a
special case of Lemmas |1| and [2| which actually demonstrate
these steps for the more general case where the system is
exponentially minumumphase. The needed result for the full-
state linearizable case is obtained by ignoring the presence of
the zeros in these constructions.



B. Exponentially Minimumphase Systems

Next we state our result for systems which are exponen-
tially minimumphase but not necessarily fullstate linearizable.

Theorem 3. Let Assumptions|[I} 2] and 5| hold. Further assume
that the zero dynamics 1 = fo(n) are globally exponentially
stable. Then for each R > 6 > 0 and T > At > 0 there exists
€0 > 0 such that for each € € (0,¢q] and each xg € R™ such
that ||zo||2 < r we have that

ez, ac(t; zo)ll2 < B([lzoll, ) + 0. 27

where [ is of class ICL.

The proof can again be found in the appendix. The
proof again uses the performance bound in Lemma [I] and
candidate W function in Lemma 2} However, due to additional
coupling terms which arise between the dynamics of the output
subsystem and the zeros, in this case we are only able to
guarantee that we can drive the system to a ball around the
origin of prescribed radius (as specified by § > 0) starting in
any desired operating region (as specified by R > 0).

C. Non-minimumphase Systems

Due to the performance limitations inherent to non-
minumphase systems there is a lower bound to how small we
can make the prediction horizon 7' > 0 while ensuring stability
of the system using the preceding analysis. In particular, since
the value function will be lower bounded by the solution
to the minimum-energy problem for the zero stabilization
problem (T3], we can only decrease & so much when trying
to improve the bound in (Z6) (in terms of the required 7" > 0
needed for stability). This provides an indication that choices
of outputs which lead to non-minimumphase dynamics will
lead to optimal control problems from which it is more
computationally challenging to obtain a stabilizing controller.
This is corroborated by the experiments below, and it is an
important matter for future work to characterize if there are
lower bounds on how small we can make 7" > 0 and stabilize
the system. This would provide a sharper characterization of
the fundamental hardness in controlling non-minumumphase
system using optimal control.

D. Input Constraints

It has also been noted [24] that, even if the system is
minimumphase, constraints on the inputs of the form [Ju| <
k will also lead to performance limitations for the system.
In particular, these constraints will limit how quickly we can
drive the outputs to zero and will again lead to lower-bounds
on the infinite-horizon cost. Thus, in light of the preceding
discussion, we should expect that it is computationally more
difficult to obtain stabilizing controllers for systems with tight
constraints on the inputs. This matches practical experiences
and is demonstrated empirically in our experiments.

IV. NUMERICAL EXPERIMENTS WITH REINFORCEMENT
LEARNING

Guided by our theoretical analysis and the connections
between RHC and dynamic programming-based methods that
have been documented in the literature [25], we now investi-
gate how the choice of cost function affects the ability of mod-
ern reinforcement learning algorithms to learn a stabilizing
controller. In particular, we conjecture that choices of outputs
which lead to non-minimumphase dynamics will make it more
difficult for these algorithms to learn stabilizing controllers.
We also investigate how constraints on the inputs lead to
similar difficulties. In particular, for each of the following
experiments we use the Soft Actor-Critic algorithm [3]]. In
each of the plots, different colors correspond to training with
different values of e (except in Figure [6] where they denote
different magnitudes of input bounds). Each of the reward
plots indicate the average reward per epoch at a given number
of training samples. The plots with various states on the y-
axis depict trajectories from the trained controllers for different
values of e. Finally, the ‘action’ plots depict the evolution of
the input over time.

Inverted Pendulum: We first consider the dynamics of an
inverted pendulum. The states are (x1,x2) = (6,0), where 0 is
the angle of the arm from vertical. Units have been normalized
so that the model is of the form:

[2] - Lin(;;) + u} ’

Note that the system is fully-state linearizable with the output
Yy =2x1.

Flexible Link Manipulator: Next we consider a model
of a flexible link manipulator. The state is (x1,x2,x3,z4) =
(64, 91, 0o, 92), where 6; is the angle of the arm from vertical
and 6, is the internal angle of the motor. The dynamics are

i’l T2

Za| _ |sin(z1) + K(x3 —x1) — 122
T3 Ty

Z4 K(xy — x3) — Boxg + u,

where K > 1 is a spring coefficient used to model the
flexibility of the joint and 31, 32 > 0 are friction coefficients.
One may observe that if the output y = x; is chosen then
the system is full state lineraizable. However when the output
y = x3 is chosen the system has a relative degree of two and
the zeros are also two dimensional. In this case a Jacobian
linearization at the origin reveals that when the model is
friction-less (81 = 2 = 0) the system is non-minimumphase
but when damping is present (81,832 > 0) the system is
minimumphase.

A. Flexible Manipulator Without Friction

For our first experiment we consider the flexible link
manipulator without friction. We run experiments for y = x;
in Figure [I] and y = x3 in Figure [2] Recall that the system
is full state linearizable for y = x; and non-minimumphase
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Fig. 1. Flexible link manipulator without friction when y = 1.
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Fig. 2. Flexible link manipulator without friction when y = x3.

for y = x3. As the figures clearly show, the reinforcement
learning algorithm struggles to learn a stabilizing controller
when y = x3. However when y = x; the algorithm is able
to rapidly learn a stabilizing controller for small values of
€ but again struggles when the parameter is large. Thus, we
conclude that the flat output y = z; is a ‘better’ choice of
output.

B. Flexible Link Manipulator With Friction

Next we consider the flexible link manipulator with friction
with y = 1 in Figure [3]and y = z3 in Figure ] In both cases
the algorithm is able reliably learn a stabilizing controller as
the dynamics are minimumphase. We again observe that the
convergence of the learning algorithm is generally faster for
small values of e. When compared to the previous experiments,
we observe that the added passivity from the friction terms
generally makes it easier to learn stabilizing controllers for
the system, reguardless of the output that is chosen since both
choices now yield minimumphase behavior.

C. Inverted Pendulum With and Without Input Constraints

Next we consider the inverted pendulum without input
constraints in Figure [5] and with input constraints in Figure
[6] (where the different colors correspond to different input
bounds of the form |u| < k). In both cases we choose y; = 1.
For the unconstrained case we see that as e decreases the
algorithm is able to rapidly learn a stabilizing controller. For
the constrained case, where € = 0.1, we see that as the input
constraints are decreased the algorithm takes longer to learn
a stabilizing controller. Interestingly, we observed that as we
increased e and decreased the bounds on the inputs, the learned
controllers display ‘swing-up’ behavior where the arm pumps
multiple times before swinging up.
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Flexible link manipulator with friction with y = 1.

Fig. 4. Flexible link manipulator with friction with y = x3.

V. CONCLUSION

In this paper, we studied how the geometry of a control
system introduces computational limitations when practically
solving for optimal controllers. Through the lenses of receding
horizon control and cheap control, we identify a separation
in qualitative behaviour between minimumphase and non-
minimumphase systems. In particular, we show the existence
of performance limitations between these systems by high-
lighting how for the former class of systems, we can use
shorter horizons for RHC to compute a stabilizing controller.
As similar results generally don’t hold for the latter class,
this suggests how the choice of cost functions that determine
the geometric properties of the control system can greatly
affect the practical performance of controllers synthesized with
limited computational resources. Further we experimentally
verified this intuitions by testing a RL algorithm to solve
various stabilization problems. For future work, we hope to
develop lower bounds for non-minimumphase systems to show
that a RHC prediciton horizon can’t be made arbitrarily small
while ensuring stability of the internal dynamics. Additionally,
we plan to study these results in the context of more general
reinforcement learning algorithms to explore how their theo-
retical limits and practical performance varies with different
classes of nonlinear systems.
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APPENDIX

A. Auxilary Lemmas

Lemma 1. Ler Assumptions [[|2} and [3] hold. Also assume
that 1 = fo(n) is globally exponentially stable. Then there
exist K1 > 0 such that for each 0 < € < 1 the infinite horizon
performance satisfies VS (r) < K (6”5%” + 2D In|13).

Proof: Let @ = A~(€,n)[-b(€,n) + K€|. where K is
chosen such that for some M > 0, [|£(t)]|2 < Me™<[|£(0)]2
for all ¢ > 0. Applying this generally suboptimal controller
gives us an upper bound on VE (z):

Vola) < /()oo(llfl(t)llﬁ + | ATHE MI-b(E ) + KE|13) - dt

S/O (€L O3 + 1A E mIZNBE, m) 13
+ I ATHE MIZIKIZIEIZ) - at

< As well,

€1(8)]l2 < ||€(t)]|2 for all ¢ > 0. Now consider the following
bound on ||b(£,n)||3 based on the growth assumption, we
can see that [|b(¢,n)[13 < 3L2(||¢[13 + [[n]l3) using the AM-
GM inequality on [|]|2]|n||2. Hence we can find a bound on
IBE M3 = e [b(S (), m3 < L2 (IS~ (€3 +
Inl3) < 3L (max{1, e HIElI3 + [Inl3). We now try
to find a bound on ||n(t)||3. As 7 fo(n) is exponen-
tial minimum phase, by the converse Lyapunov theorem
ey, e0,c3,¢4 > 0 and V(n) a Lyapunov function s.t V),

dv
alnl3 < Vi) < elnld 22 fo(n) < —esllnll3, and

dn
||%5}’7)||2 < c¢4]|n]l2. Now consider the time derivative of

Note that, by assumption, ||[A~1(,n)|| < ’%2
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where k st ¢ =1 — <40k > 0. As this is a linear ODE in

V(n), then we can find the following bound:
—é 1 ‘ —c(t—7) || &
Vo) < e Vo) + ¢ [ e - ar

~ M2 ~0 2 ,—ct t
< ey + QS b gr
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Putting these bounds together gives the following:
. oo 3L2 2r
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where ki(e) = M?(1 + ”KH? + 3Lj - max {1, o= == 1)
Fa(e) = 3267 and ks(e) = izt
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In(®)113 < ot “In(0)113 + —1]
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Lemma 2. Let the assumptions in Lemma [I) hold. Then there
exists constants C1,Co,Cs > 0 and such that for each € >
0 sufficiently small there exists a continuously differentiable
Sfunction W€: R™ — R"™ which satisfies for each (f ,m) €R™
and u € RY:

Cr(elléll3 + IInll3) < W& n) < Ca(elléll + IInll3)
W (€, @) < =C (€15 + Imll3) + 1115 + a3

Proof: First, choose the matrix L such that the matrix F'+
LH is Hurwitz with F, H as in (O) (note that this is possible
because (F, H) is observable). Then select P such that (F +
LH)TP + P(F + LH) = —2I. Next, let the function V()

(28)
(29)

be obtained from the converse exponential stability theorem
as in the proof of Lemma [T} Without loss we assume that
c3 > 2 (if this is not the case we can re-scale V to aV
below for o > 1 sufficiently large). We then define for each
€>0, We(&,n) = €T PE+V (n). The time derivative of this
function satisfies:

W n,a) = (FTP + PF)E+ 26" PGeb(€,m)  (30)

28T PGA(E nyu + %V(n)[fo(n) 4 go(n)a]

Using the definition of P above and d%V(n) fo(n) <

—cs|nl3 < —2|nl|3 and Hd V(n)|l2 < ¢4 as in the proof
of Lemma ?2?, and the growth conditions in Assumption [3
in particular, ¢ [|b(&,n)]l2 < L(el|€]lz + €"||n|2), from the
preceding equation we obtain:

We(E @) < =2(1€13 + Inll3) + 2L PG 2 l€ll2(I€]12 + Ill2)
+C|IPG2l€llzllullz + esClinl2€]l2 + EHTLTP + PLH)E
< =2([I€113 + Inl13) + 2L PGl2 (€113 + lInll21€]l2)
+C|IPG2l€ll2llullz + eaClinll2ll€xllz + 2| PLY2lIE]|2 €1 2
=2(IE113 + [1n113) + (I3 + [19113) + 3¢L]| PGll2(I€13

1 1 ~
+[Inl3) + 5CIPGlalulls + (GeaC + IPLI D& 3,
where in the final step we have repeatedly used the AM-GM
inequality. The final expression demonstrates that oW/ € has the
desired properties for v < min{1C||PG||2, £¢4C +||PL||2|}
and sufficiently small e. [ ]

B. Proof of Theorem ]|

Let u be such that Jr(xg,u) = Vr(zo). Denote ¢(7) =
(1,20, u) as the evolution of x(¢) for 7 time units under
control input u starting from x,. Consider j € [0,T — At].
Then

Vi (2(AL) — Ve(2(0)) = V($(AE) / i(r) - dr

<—/0T1(7).dt+/:jz(7).d7

T+At
+ min / U(r, §(T — ), ), a(r)) - dr

At
—/0 (7 - dr + Vi(&(T — )

IN

T T
W(H(T)) — W(B(0)) < —k / ()2t + / o
T
—Vr(6(0)) — & / () 2t



Noting that 0 < W(z) < aw(o(z)) and Vp(z) <
a(o(z)), we can thus rearrange and bound terms to show the
following:

T
K / lz(8)||2dt < (Gw + @) o o(6(0)

Now consider t* € [0,7] such that

t* = arg mi )2
rg iy (1)

)

which exists by continuity of z(¢). Then we can note that

Taking 7 = T — t* we have that
(aw +a) o a(¢(0))
T
Ja -

We can combine this with the previous result on Vi (z(At)) —
Vr(x(0)) to get the following:

=3 <

At
Vi (2(A)) — Vir(2(0)) < — /O I(r) - dr
+ d( (dW + dk);j 0(@5(0)))

where we leverage the fact that & is non-decreasing.
Now note that

At
Vi (2(0)) = / 1)t + Vi st (w(A)

Hence 3T > 0stVT > T

Vr(z(At)) — Vr_ar(z(At)) = z(At)) —

( Vr (o)
At

+ I(r)dr

((dW + d) ° 0(¢(0)))
kT
Also note that by assumption there exists ki, ko s.t
W (z) + Vr_at(x) < W(z) + Voo (2)
< (k1 + ko) |l

N$

IN
Qi

Hence we can show the following

d 2
d LW (@) + Ve_ow)) < |z
= (W (@) + Ve (@) £ RV (@) + Vioo(2)
k

= W(z)+ Vr_¢(z) < e (W (2(0)) + Vr(x(0)))

where k = . Thus we have the following:

Tt
W(z(At)) + Vr(z(At)) =

Defining Y = W + Vp and o = (a +
proof. Then, use the bound ay,o(x) < W(z
have

Yr(®(At)) < (e—’m +a

C. Proof of Theorem 3]

To show global exponential stability, we note that it is
sufficient to show that infinite horizon cost is bounded in the
initial state and there is a Lyapunov function for the discrete
time system that geometrically converges. On the first point,
observe that we can use the conclusion of Lemma [} which
applies to a more general class of systems. In particular, we
can just ignore references to the zero dynamics 1. We can
apply similar reasoning to leverage the results of Theorem
which gives us Y7. Thus we have that Y7 (®(At)) —
Yr(6(0)) < (eF2 4 a(‘S)) — 1)Y7(¢(0)). Note that
a = O(e) and e #At < 1, so this can be made negative using
sufficiently small € for a given At and 7. This gives global
exponential stability. [

@) completes the
) < YT( ) we

»(0)) (31

aw—i—a
ay CawkT

D. Proof of Theorem [2]

Consider V;(€) = e£' P¢ with the same P,L,H as in
Lemma [2[ and V5(n) from the converse Lyapunov theorem
with constants as defined in Lemma [I] Using an intermediate
result from the aforementioned lemma, our bound on VZ,, and
noting that f(f |E(7)|| - dr < V£, we can say k1 > 0:

Va(n(t) < € Vau(0) + ¢ [ e I - ar
& 2 2
(a0 + (0 QU IO
2
Va(n(8)) — Va(n(0)) < (e~ — DVa(n(0)) + “-kye

k

By a similar approach in Lemma 2] we have that there exists
a scaling « and ko > 0 s.t

Vi(€) = aVa(§) < ~CIIEI13 + [l
V- o
< —ZVi(€) + lul}

— Vi) < e FTAE0) + / e F D ()2 - dr
0

~ v’ ¢ b’
VEO) +e [ utr)f - dr

0
2 v, 0(6) vy

IN
o

_1]

< e TAE0) + O(RP e T e
< e FL(E(0)) + ko€ R?
where by,by > 0 s.t ebl||g||g2 < Vl(f) < eby||€||3, and

b" = Cby. Choosing ¢ < min{ ‘;1’3;; , ‘;;’ég} allows us to have

exponential convergence of (§ n) to the ball of radius 4.
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