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ABSTRACT

This paper presents the development of a workspace con-

troller for a newly designed platform. The platform is

designed to manipulate endoscopic tools and is actuated

by tendons to meet the small scale requirements in en-

doscopy. The tendon actuation provides challenges to the

controller design since the number of degrees of freedom

equals the number of tendons. In typical tendon-driven

systems, the number of tendons is greater than the number

of degrees of freedom. This paper presents the kinematic

and dynamic analysis of the manipulator and presents a

workspace controller for the tendon driven system. Sim-

ulation as well as experimental results are presented for

the controlled system. The results demonstrate the e�ec-

tiveness of the controller in tracking a step response and

a circular trajectory at 2.0Hz and greater. The device is

similar to the Stewart platform and the basic design can

be used in applications where the full range of motion of

the Stewart platform is not required. Applications of the

device range between targeting systems, snake-like robots,

and endoscopy.

1. Introduction
This paper presents the kinematics, dynamics and con-
trol of a tendon-driven manipulator originally designed
for minimally invasive surgery. Simulation as well as ex-
perimental results are presented. The design shares simi-
larities with the Stewart Platform but has three fewer de-
grees of freedom (DOF) and three fewer actuators. The
manipulator is a wrist-like manipulator and provides the
ability to point a tool at a desired location. The device is
useful for applications which do not need the full motion
of the Stewart platform.

The device is originally designed as a manipulator for
endoscopy [7]. Endoscopy is a minimally invasive surgical
procedure used to examine and operate in the gastroin-
testinal tract. The working prototype called the endo-
platform is shown in Figure 1. It consists of two platforms
separated by rigid tubes and a spring-like device attaching
the tubes. The spring serves as a spherical joint which re-
sists twisting about the axis of the tubes. Three tendons
are attached to the outer plate. A tool, such as a biopsy
forceps, runs through the centers of the plates. Pulling on
the tendons changes the orientation of the outer plate and
results in the motion of the tool. In this way, surgeons
are able to control the pointing direction of the tool. The
plates are designed to have the same diameter as endo-
scopes which are typically 10mm.

Actuation is accomplished by tendons to meet the size
restrictions inherent in the application. The use of ten-
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Figure 1: Endo-Platform with Forceps

dons adds challenges to the controller design because the
tendons can exert force in only one direction. In typi-
cal tendon-driven systems, there are more actuators than
degrees of freedom. In this system, there are three ten-
dons for three degrees of freedom and this fact adds addi-
tional challenges to the controller. One DOF is for twist-
ing about the central axis and two DOF are for pointing
the tool.

Originally developed for endoscopy, this design can
be used in other applications where the control of the
pointing direction of a tool or instrument is desired. The
elimination of the space restrictions allows more freedom
in the mechanical design. For example, one can replace
the spring-like device with a constant velocity joint, com-
monly used in front wheel drive automobiles . The con-
stant velocity joint resists twists if the inner shaft is held
�xed relative to the inner plate and allows the outer plate
to orient relative to the inner plate. Linear or hydraulic
actuators which produce force in both directions can re-
place the tendons.

The original design which led to the endo-platform
design is similar to a design in [3] which attaches an elastic
tube between two plates. The rigid tubes and the spring
used in the endo-platform approximate a spherical joint
about a �xed point. The pivot point resists side forces
better than the elastic tube design. Also, pivoting at a
point instead of bending the entire tube uses less space
transversal to the tool axis as the tool is pointed. As in
[3], the platforms can be combined to create a snake-like
robot.

The �rst section after the introduction presents the



l3

l1

top
plate

120 deg

(u,v)

Tendons

unit

U

V

Z

l2

dt

rb

d

γ

rt

X

(z1,z2,z3) sphere

Y

tool axis

tool axis

plate
bottom

Ab

Bt

At

Ct

Bb

Cb

Figure 2: Kinematic Model

kinematic model along with the kinematic analysis. Spe-
cial coordinates are selected which simplify the dynamic
analysis presented in Section 3. Section 4 presents a con-
trol algorithm which uses the kinematic model and the
dynamic model. This controller can be simpli�ed for use
with hydraulic or linear actuators since these actuators
can exert force in two directions. Section 5 presents simu-
lation and experimental results of the controlled tendon-
driven system for a step response in the desired tool co-
ordinates and for the tracking of a circular trajectory at
2:0Hz. The resulting forces in the tendons are shown as
well as the trajectories in the tool coordinates.

2. Kinematic Model and Analysis
The kinematic model of the device is shown in Figure 2.
In this model, the top plate and the bottom plate are
connected through a spherical joint. The three lines in
the top plate which radiate from a central point connect
the tool axis to the points where the tendons are attached.
Similarly, the bottom plate has three radial lines attaching
the bottom tool axis to the locations where the tendons
pass through the bottom plate. The length of the radial
lines is rt for the top plate and rb for the bottom plate.
The distance from the bottom plate to the pivot point is
d, and the distance from the top plate to the pivot point
is dt. These four parameters characterize the particular
geometry of the manipulator.

The tendons are �xed to the top plate but slide through
the points in the bottom plate. The tendon lengths be-
tween the top and bottom plates are l1; l2, and l3. The
tool axis runs through the center of both plates. The ra-
dial lines are equally spaced 120 degrees apart and lie in
the plane formed by the three points where the tendons
are attached. The tendons are �xed to the top plate and
are strung through the bottom plate. The orientation of
the top plate is controlled by pulling on the tendons. The
pointing direction is controlled by controlling the orienta-
tion of the top plate since the tool points in a direction
normal to the surface of the top plate.

The tool position is given by three coordinates, (u; v; 
).
The three coordinates are grouped into the vector, �.
Three frames are considered for the following kinematic
analysis. There are two spatial frames and one body frame

attached to the top plate. The XYZ frame is attached to
the bottom plate and the UVZ frame is �xed relative to
the XYZ frame and is originally coincident with the body
frame in the home con�guration. The home con�guration
is when the tool is pointing along the spatial Z axis.

The �rst two coordinates, u and v, correspond to a
modi�ed stereographic projection and the third coordi-
nate, 
, corresponds to twist about the tool axis. One
forms the u and v coordinates by intersecting the tool
axis with a unit sphere centered about the pivot point.
The line from the south pole of the sphere to the intersec-
tion point intersects the UV plane. The coordinates of the
point of intersection with the plane is the (u; v) coordi-
nates. One can reach any pointing direction given by the
u; v coordinates by rotating the top plate about an axis
lying in the UV plane. This is called a nontwist rotation.
One can then perform a rotation about the body tool axis
to reach any tool frame obtained by performing an arbi-
trary rotation of the UVZ axis. The amount of rotation
needed about the tool axis is the coordinate 
. The home
con�guration of the tool is given by (u; v; 
) = 0.

The rotation matrix which represents the top plate
orientation with respect to the UVZ frame in terms of
u; v; and 
 is now described. The map from coordinates
in the unit sphere to coordinates in the UV plane is

(u; v) =
1

1 + z3
(z1; z2) : (1)

The coordinates in the unit sphere are (z1; z2; z3). This
result follows easily from similar triangles. Notice that
the map is not de�ned when z3 = �1. The inverse map
is given by

(z1; z2; z3) = (ut; vt; t� 1) (2)

where t = 2
1+u2+v2

. As stated in [2], the rotation matrix

formed by rotating about an axis k = (kx; ky; kz)
T by an

angle � is given by

Rot (k; �) ="
kxkxv� + c� kykxv� � kzs� kzkxv� + kys�
kxkyv� + kzs� kykyv� + c� kzkyv� � kxs�
kxkzv� � kys� kykzv� + kxs� kzkzv� + c�

#
(3)

where c� = cos(�), s� = sin(�), and v� = 1� c�. The no
twist rotation which rotates the tool axis from the vertical
direction corresponds to a rotation about a unit vector ly-
ing in the UV plane. This vector is the normalized vector
resulting from the cross product between the vertical axis
and the current body tool axis. The axis of rotation is
then

k =
1p

z21 + z22

"
�z2
z1
0

#
: (4)

The angle of rotation is the angle the current body axis
makes with the vertical axis (see Figure 3). Using the
relationships,

c� = z3

s� =
p

z21 + z22 (5)

v� = 1� z3;
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Figure 3: No Twist Rotation

and (4) and substituting into (3) yields the no-twist rota-
tion matrix in terms of the coordinates in the sphere,

Rnt (z1; z2; z3) =2
64

z2
2

1+z3
+ z3

�z1z2
1+z3

z1
�z1z2
1+z3

z2
1

1+z3
+ z3 z2

�z1 �z2 z3

3
75 : (6)

Using (2) and substituting into (6) gives

Rnt (u; v) =

t
2

"
1� u2 + v2 �2uv 2u
�2uv 1 + u2 � v2 2v
�2u �2v 1� u2 � v2

#
: (7)

The rotation matrix which maps points in the body frame
to points in the spatial UVZ frame is

R (u; v; 
) = Rnt (u; v)Rz (
) ;

where

Rz (
) =

"
c
 �s
 0
s
 c
 0
0 0 1

#
: (8)

The tendon lengths between the top and bottom plates are
calculated as follows: The distance is calculated between
the points Ab and At, Bb and Bt, and Cb and Ct de�ned
in Figure 2. The position of the points in the top frame
with respect to the UVZ frame is obtained by mapping
the points through the rotation matrix. The coordinates
of the points are easily determined in the XYZ spatial
frame. The distances are then calculated by determining
the magnitude of the vector joining the two points in the
XYZ frame. This procedure de�nes a map from (u; v; 
)
to (l1; l2; l3) space. This function and its di�erential are
contained in [7]. Assuming that 
 = 0 for all time results
in a jacobian which is a 3� 2 matrix.

The body angular velocity is needed for the determi-
nation of the kinetic energy used in calculating the dy-
namic equations. The body angular velocity, !b, written
as a skew-symmetric matrix is !̂b = RT _R. See [5] for
more details on this description of the body angular ve-
locity. Carrying out the calculations in Mathematica [8]
results in the following expression:

!b =

"
t ( _u sin (
)� _v cos (
))
t ( _u cos (
) + _v sin (
))

_
 + t ( _uv � u _v)

#
: (9)

This completes the development of the kinematics.

3. Dynamic Model
The robot dynamic equations are developed in this sec-
tion. The robot dynamics are of the form

M (�) �� + C( _�; �) _� +N (�) = � = JT (�)F (10)

where � = (u; v; 
)T , M (�) is the mass matrix, C( _�; �) is
the Coriolis matrix, and N (�) is the vector of potential
forces. The torque in the tool coordinates is denoted by
� . The vector of tendon forces is F . The jacobian of
the function discussed in the kinematic section relates F
to � . Frequently, N is a function of _� when there are
dissipative and frictional forces. The model developed in
this section does not include dissipative, frictional forces,
nor gravitational forces.

The mass matrix is calculated from the relationship
that Kinetic Energy = 1

2
!T
b I!b =

1
2
_�TM (�) _�, where I is

the inertia matrix. The inertias are calculated along the
principal axes resulting in a diagonal inertia matrix. The
fact that the inertia about the U axis is equal to the inertia
about the V axis simpli�es the mass matrix by removing
dependence of the mass matrix on 
. The moment of
inertia about the U axis and the V axis is j1 and the
moment of inertia about the Z axis is j3. Performing this
calculation reveals that

M (�) =

2
64

4(j1+j3v
2)

(1+u2+v2)2
�4j3uv

(1+u2+v2)2
2j3v

1+u2+v2

�4j3uv
(1+u2+v2)2

4(j1+j3u
2)

(1+u2+v2)2
�2j3u

1+u2+v2

2j3v
1+u2+v2

�2j3u
1+u2+v2

j3

3
75 : (11)

The symbolic inverse of the mass matrix is then

M�1 (�) =2
64

(1+u2+v2)2

4j1
0 �v(1+u2+v2)

2j1

0 (1+u2+v2)2

4j1

u(1+u2+v2)
2j1

�v(1+u2+v2)
2j1

u(1+u2+v2)
2j1

1
j3

+ u2+v2

j1

3
75 : (12)

The Coriolis matrix is derived from the mass matrix by
the following formula for the ijth element. See [5] for a
derivation.

Cij

�
_�; �
�
=

1

2

nX
k=1

�
@Mij

@�k
+

@Mik

@�j
�

@Mjk

@�i

�
_�k: (13)

Performing these calculations and multiplying on the right
by the vector _� produces the Coriolis vector.

The vector of potential forces is the force from the
spring at the spherical joint. The spring resists torsional
motion as well as bending motion. The spring model in
this analysis assumes that the spring torsional torque is
proportional to the angle of the twist, 
. The model also
assumes that the torque about the pure bending axis, the
axis lying in the UV plane, is proportional to the angle
the tool makes with the vertical axis. See Figure 3 for
a description of the pure bending axis. This relationship
must be transformed into a force in the (u; v) coordinates.
Using the equations in (1) and (5), one can show that

r :=
p

u2 + v2 =
sin (�)

1 + cos (�)
: (14)

The spring model assumes that a torque about the pivot
axis is proportional to the angle from the vertical axis. In
other words,

�� = K��: (15)
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The inverse of (14) is

� = cos�1
�
1� r2

1 + r2

�
: (16)

The inverse is obtained by substituting (5) into sin (�)
in (14) and then using (2) in the result. The resulting
expression is then solved for �. The work done in either
system is the same in both coordinate systems. Therefore,

K� � d� = Fr dr:

This implies that

K� �
d�

dr
= Fr: (17)

Using (17) and (16) results in the following expression for
the radial force

Fr = K� cos�1
�
1� r2

1 + r2

�
2

1 + r2
: (18)

The potential force term in the u and v directions is the
radial force projected into these two directions. The com-
plete term is then

N (�) =

"
Fr (r) u=r
Fr (r) v=r

K
 


#
; (19)

where r is given in (14).

4. Control Algorithm
The control algorithm is presented in this section. The
relationship between the controller, the platform, and the
disturbances is shown in Figure 4. The fact that the sys-
tem is driven through tendons provides a challenge to de-
sign an e�ective controller. Typically in tendon-driven
systems, there are more actuators than degrees of free-
dom. In the endo-platform, there are the same number of
degrees of freedom as the number of tendons.

In the home con�guration, the tendons cannot exert
a torque about the twist axis since the bottom row of
the jacobian transpose is zero. This leads one to ignore
this degree of freedom and control the two coordinates
involved in the bending, (u; v). We are then interested in
two degrees of freedom and have three actuators that can
exert force in only one direction. The control algorithm
controls in the workspace coordinates, (u; v), and com-
putes a desired force in these coordinates. The workspace
force is then mapped into tendon forces. Forces which lie
in the null space of the jacobian transpose are added to
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provide tension in the three tendons. The forces may af-
fect the torque about the twist axis but the spring in the
spherical joint is designed to resist twist.

The control algorithm is shown in Figure 5. Since we
are ignoring the twist angle in the controller and assume
that it is zero for the calculations, the three tendon lengths
are dependent. The available information is the length
of the tendons and their velocities. This is provided by
optical encoders that are attached to the motors which
drive the tendons. This information is used to calculate
the tool coordinates as well as the velocity of the tool in
these coordinates.

The inverse kinematics of the platform are solved eas-
ily while the forward kinematics are di�cult to solve. This
also occurs in the Stewart platform. See [6] for more de-
tails on the Stewart platform. The equations relating the
tool coordinates are nonlinear and di�cult to invert. The
equations are in the appendix of [7]. The controller nu-
merically solves for the roots of polynomials and produces
a vector, �p := (u; v; 0)T . The �rst two columns of the ja-
cobian are calculated with �p. The third column is ignored
since we assume that 
 = 0. The new 3 � 2 jacobian is
de�ned to be Jp(�p). The velocity of the length of the
tendons and Jp

�1(�p) are used to calculate the velocity
in the tool coordinates assuming no twist. This velocity
is _�p. This is similar to the method of calculating the
velocity in [6].

The velocity and the position information are sub-
tracted from the desired trajectory and an error, e =
�pdes � �p, and error velocity, _e, are formed. The error
and error velocity pass through gain matrices to produce
a desired torque in the tool coordinates. The spring force
in the current con�guration is computed and is added to
the desired torque from the PD controller. This is a modi-
�ed PD controller described in [5] however the inertial and
Coriolis forces are ignored in this particular controller.

The equation for the torque in tool coordinates is

� = Kpe+Kv _e+N(�p): (20)

The pseudo inverse of Jp
T (�p) is used to calculate the op-

timal force, a force with no component in the null space of
Jp

T (�p) which maps to � . The pseudo inverse is denoted�
Jp

T (�p)
�+

. The null space of Jp
T (�p) is calculated. The

null space is one dimensional, and the null vector is de-



noted nv. The coe�cient, �, is calculated so that the sum
in (21) produces tension forces in the three tendons above
a tension o�set.

Ftendons =
�
Jp

T (�p)
�+

� + � nv (21)

This is the same method described in [1] for producing
tendon forces in tension. Tension is a negative force since
it decreases the length of the tendon. The desired tendon
force is then converted to a pulse width modulated signal
to produce a torque in the motors.

This controller subtracts force in the tendons without
changing the torque in the tool coordinates. This can
always be accomplished if the null space is spanned by a
vector with entries with the same sign. Depending on the
geometry, this will not occur for certain con�gurations of
the tool. See [7] for more details.

5. Simulation and Experimental
Results

The system was simulated in Mathematica [8] with pa-
rameters measured from the prototype shown in Figure 1.
The spring model in (19) was used in the controller and
in the dynamic model. The current parameters are d =
0:8cm, dt = 0:5cm, rt = 0:6cm, and rb = 0:6cm. The gain
matrices are diagonal and have the same coe�cient along
the diagonal. The kp gain is 26,356g cm=(cm s2) and kv
is 663g cm s=(cm s2). The inertia's were calculated to be
j1 = j2 = 2:08g cm2 and j3 = 1:78g cm2. The spring
constants were experimentally determined and are k� =
100; 000g cm2=(s2 cm) and k
 = 112; 000g cm=(s2 rad).
With an endoscopic biopsy forcep inserted into the tool
channel, k� is measured to be 286; 000g cm2=(s2 cm) in
the +u direction and 517; 000g cm2=(s2 cm) in the �u di-
rection. In the simulation and in the experiment, k� is
taken to be 400; 000g cm2=(s2 cm), the rounded average.
Lynx, a real-time unix operating system donated from
Lynx Real-Time Systems, Inc., runs the control loop at
500Hz on a 486DX-33MHz IBM clone.

The PD gains were designed in Matlab [4] using the
linear quadratic regulator based on the linear error dy-
namics at the origin. The controller used in the experi-
ment and in the simulation di�er in that the feedforward
term in the simulation is a function of the current con�g-
uration and is a function of the desired position in the ex-
perimental controller. This resulted in quicker responses.
Also, the current con�guration feedforward controller of-
ten could not overcome the stiction forces at the origin.
The simulated response and the experimental response in
position is shown in Figure 6 when the tool is commanded
to step to u = 0:3cm and v = 0:2cm. The upper graphs
are the u coordinate and the lower graphs are the v coor-
dinate. The lowest graph is the twist angle as predicted
by the simulation. Notice that the twist angle is nonzero
and is approximately 0:01rad.

The response in the UV plane parameterized by time
is shown in Figure 7. The curl in the simulation and
in the experiment may be due to the nonzero twist angle
which modi�es how the tendon forces e�ect the outer plate
of the endo-platform. The experimental controller with
the modi�ed feedforward term has a quicker response and
settles faster than the simulation at the expense of greater
tendon forces shown in Figure 8.

The experimental system is forced to track a circle of
radius 0:3cm in the UV plane at a frequency of 2:0Hz.
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The endo-platform is initially at the origin and the start
point of the desired trajectory is (u; v) = (0:3cm; 0:0cm).
The resulting trajectory in tool coordinates in the UV
plane for the experimental system and the simulation is
shown in Figure 9. The simulation does not completely
follow the circle trajectory but deviates from the circle
at three equally spaced angles. These angles correspond
to the locations between the tendon attachments. This
deviation is believed to be caused by the nonzero twist
angle.

The experimental response for the circle signi�cantly
deviates from the desired trajectory in the lower left quad-
rant. This is believed to be caused by the spring con-
stant being stronger in the �u direction. Future design
improvements are planned to eliminate the unsymmetric
spring force. One could also modify the feedforward term
to take into account the complicated spring force.

The forces for tendon A are shown in Figure 10 for the
simulation as well as the experiment. The tendon force
in the experiment is initially greater than the simulation
which is attributed to the modi�ed feedforward term in
the experimental controller. After the initial deviation,
the experimental and simulation forces di�er slightly.

We are able to track circles at greater frequencies with
the current controller. We have tracked circles at 20:0Hz

where the radius of the experimental trajectory deviates
between 0.11cm and 0.27cm. The deviation in the radius
at 2:0Hz is between 0:21cm and 0:31cm. Currently, the
forward kinematics algorithm fails after tracking a circle
for more than 5 to 10 seconds. We are currently investi-
gating this failure.

In the future, we plan on improving the mechanical
design of our �rst prototype to improve the ability to
track trajectories and to position endoscopic tools e�-
ciently and reliably. We also plan on improving the con-
trol algorithm to improve its accuracy and reliability. Our
�rst prototype has been instructive in the control and de-
sign of future endo-platforms.

6. Conclusion
This paper presents the kinematics, dynamics, and con-
trol of a recently designed endo-platform for endoscopy.
Simulation as well as experimental results demonstrate
the e�ectiveness of the controlled system to track step
responses as well as circle trajectories. The workspace
controller presented overcomes the di�culty imposed by
the simple design since the device has the same number of
degrees of freedom as tendons. The basic design has appli-
cations in addition to endoscopy. The design can be useful
in targeting systems as well as snake-like robots. Future
work involves improving the mechanical design and in-
creasing the reliability and accuracy of the controlled sys-
tem. We also plan on interfacing an improved prototype
to an input device for use in medical experiments.

Thanks to Ed Nicolson, Brian Mirtich and Lara Craw-
ford for their help in various aspects of this research.
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