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Abstract

This paper describes a balancing controller for a 3D
multibody model of a human biped. This model-based
controller forms a model using a recursive formula-
tion of workspace control. The recursive techniques
free the control designer from generating the compli-
cated equations of motion. The paper describes �rst
the biped model and then the recursive workspace con-
troller. Simulation results of the human model reacting
to a disturbance are presented.

1 Introduction

The balancing controller described in this paper is part
of a research e�ort to develop predictive models of hu-
man motion. These predictive models must appropri-
ately react to disturbances and produce behaviors that
mimic those of human beings. The approach used to
develop predictive models is �rst to create a multibody
model of a human biped and then to design control al-
gorithms to command the system to balance, walk, run,
jump, adapt to loads, and change directions. These
predictive models require the development of e�cient
simulation techniques to solve numerically the system
dynamics in contact with the environment, as well as
the development of sophisticated control systems. The
equations of motion of multibody systems are nonlin-
ear, lengthy, complex, and can possess a large number
of degrees of freedom for a robotic system. The control
system must coordinate the degrees of freedom while
handling the added complexities caused by the inter-
mittent contact with the environment.

In this paper, the planar results in [1] are extended to
create a workspace balancing controller for a 3D model
of a biped. The kinematics and dynamic equations are
more complex, and there are more degrees of freedom
to control.

The paper �rst describes the biped model and then
presents an overview of the recursive workspace con-
troller. The workspace controller is then described

�Funded through ARO under grant DAAH-04-96-1-0119
(AASERT) and DAAH-04-95-1-0588

ywents@eecs.berkeley.edu

z
x

y

z

x

y

2,8,

6,12

2,8

3,94,10

1

4,10

1

5,11

7,13

10 4

6

7

11 5

13

12

24

612

10 8
8,9 2,33
9

11

7,13

6,12 13

O
ut

bo
ar

d

In
bo

ar
d

5,11

FRONT VIEWSIDE VIEW

3,9

5

7

Figure 1: Biped Model

in more detail followed by simulation results in a 3D
multibody simulator called Impulse [2].

2 Description of Biped Model

The 3D multibody model of the biped consists of a cen-
tral body and two legs and is shown in Figure 1. Each
leg consists of an upper leg, a lower leg, and a foot. The
leg is attached to the central body through a 3 degree
of freedom (DOF) spherical joint consisting of two in-
termediate rigid bodies connected with revolute joints.
The knee joint has one degree of freedom and connects
the upper leg to the lower leg. The foot is attached
to the lower leg through a 2 DOF joint consisting of
one intermediate body connected with a revolute joint.
The total number of rigid bodies in the system is 13
and the total number of DOF is 18. When both feet
are in contact with the ground, the contact e�ectively
decreases the total number of DOF to 6. The bodies
are labeled in bold text. The revolute joints are shown
with arrows pointing in the positive direction and are
labeled with plain text. The left leg components are
labeled starting at number 2 while the right leg com-
ponents start at number 8.
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Figure 2: Controller Block Diagram

3 Recursive Workspace Controller

The block diagram for the recursive workspace con-
troller is shown in Figure 2. The terms recursive and
iterative refers to successive link to link calculations.
The calculations performed for the recursive workspace
controller are contained in the outer shaded box. The
inboard and outboard recursive steps are indicated in
the interior, darker box. The controller outputs joint
torques. The inputs to the controller are the multi-
body (MB) states (central body position and orienta-
tion, center of mass velocity, central body angular ve-
locity, joint angles, and joint velocities); desired central
body acceleration, velocity, and position; and position
and velocity gains. The desired values and gains are
provided by a higher level controller. At this time, the
designer chooses these values.

The MB states �rst pass through the velocity propaga-
tion stage. The velocity propagation stage consists of
an outboard recursion and calculates the body velocity
of each link based on the body velocity of the inboard
link, the joint position, and the joint velocity. Forces
and torques due to Coriolis and gravitational forces are
also calculated during this stage along with the forward
kinematics.

The information calculated in the velocity propagation
stage is passed to the workspace dynamics calculation
stage. The workspace dynamics calculation consists
of an inboard recursion from the feet to the central
body. The workspace dynamics calculation produces
the approximate workspace dynamics for the central
body. This stage calculates the articulated body(AB)
inertia [3] and bias forces of the inboard link based on
the AB inertia and bias forces of the outboard link.
The AB inertia and bias forces relate an external force
applied to a link to the acceleration of that link and

take into account the links outboard to the link. The
AB inertia and bias force for the central body provide
the approximate workspace dynamics. AB inertias and
bias forces are discussed in many references including
[3], [4], [5], and [2]. The recursive workspace controller
assumes that the feet are �xed to the 
oor. We ap-
proximate this condition from a big base assumption
presented in [4]. The approximation assigns the feet a
large mass and inertia (approximating the Earth) and
sets the feet bias forces to zero.

3.1 Mathematical Background

In this section, a brief introduction to the notation used
in this paper is presented. See [6] and [7] for more detail
and development.

The con�guration space of a rigid body is SE(3), the
special Euclidean group, formed from the semi-direct
product of R3 and SO(3) where SO(3) is the space of
rotation matrices. Consider a frame J and a frame K.
The con�guration of frameK with respect to frame J is
represented by gj;k 2 SE(3) where gj;k maps points and
vectors in frame K to frame J . gj;k can be represented
as a 4x4 matrix in the following form:

gj;k =

�
Rj;k pj;k
0 1

�
; (3.1)

where pj;k 2 R
3 is the origin of frameK with respect to

frame J and Rj;k 2 SO(3) is the orientation of frame
K with respect to frame J . The inverse is given by

g�1j;k =

�
RT

j;k �RT
j;kpj;k

0 1

�
(3.2)

=

�
Rk;j �Rk;jpj;k
0 1

�
= gk;j : (3.3)

The ^ operator takes a vector in R3 and converts it into
a 3x3 skew symmetric matrix such that w � v = ŵv.
The _ operator converts a 3x3 skew symmetric matrix
to a vector in R

3 .

Consider frame K to be moving over time with respect
to frame J such that gj;k is a function of time. A 4x4
twist matrix represents the body velocity of frame K
with respect to frame J and is given by

V̂ b
j;k = g�1j;k _gj;k =

�
!̂b
j;k vbj;k
0 0

�
; (3.4)

and the twist vector for the body velocity is

V b
j;k =

�
vbj;k
wb
j;k

�
; (3.5)

where !b
j;k is the body angular velocity of frame K

with respect to frame J , and vbj;k is the velocity of the
origin of frame K with respect to frame J represented
in frame K.



Algorithm 1 Controller Initialization

given: V b
1 , g0;1;

ab1 = [0 0 0 0 0 0]T ;
bb1 = �F be

1 +
b
1M

b
1V

b
1 ;

Consider another frame L �xed with respect to frame
K and let K and L move with respect to frame J . The
body velocity of frame L and frame K with respect to
frame J is given by

V b
j;l = Adgl;kV

b
j;k ; (3.6)

where Adgl;k is the 6x6 adjoint matrix and is given by

Adgj;k =

�
Rj;k p̂j;kRj;k

0 Rj;k

�
: (3.7)

Let frame K and frame L be attached to a rigid body.
Let a wrench, a force / torque pair, act at the origin
of frame K and call this wrench Fk. The wrench is a
vector in R6 formed by stacking the force vector on top
of the torque vector. The equivalent wrench acting at
the origin of frame L and denoted Fl is given by the
following formula:

Fl = AdT
g
�1

l;k

Fk : (3.8)

3.2 Controller Initialization

The inputs to the controller are the desired positions,
velocities, and accelerations; body velocity and pose of
the central body; gains; and the joint positions and ve-
locities. These inputs are used to initialize the recursive
workspace controller. The initialization is provided in
Algorithm 1. ab1 is a kinematic acceleration term and
is zero for the free joint between link 1 and the inertial
frame. bb1 consists of gravitational and Coriolis terms
for link 1. The term, F be

i , is a 6-vector of external
forces acting at the origin of the body frame of link i;
V b
i is the 6-vector body velocity of link i with respect

to link 0, the inertial frame;

M b
i =

�
miI 0
0 Ii

�
; 
b

i =

�
!̂b
i 0
0 !̂b

i

�
; (3.9)

mi is the mass of link i; I is the 3x3 identity matrix; and
Ii is the diagonal inertia matrix of link i. The external
forces, F be

i , in this system are the gravitational forces
transformed to the body frame of link i.

3.3 Forward Kinematics

The body velocity of each link is now calculated in
an outboard recursion. The velocity propagation stage
calculates body velocities, gravitational forces, and
Coriolis forces and is given in Algorithm 2. The map
gj;k 2 SE(3) takes coordinates of a point or vector in
link k and gives the corresponding coordinates in link
j. The symbol, k:o, gives the link index of the link

Algorithm 2 Forward Kinematics

for k = 2 to 13 do
gk:o;0 = gk:o;k:i(�k)gk:i;0
Ak:o

k:i = Adgk:o;k:i(�k)
V b
k:o = Ak:o

k:i V
b
k:i +Hk

_�k
abk =

_Ak:o
k:i V

b
k:i +

_Hk
_�k

bbk:o = �F be
k:o +
b

k:oM
b
k:oV

b
k:o

end for

Algorithm 3 Workspace Dynamics Calculation

for k = 1 to 13 do
zk = bbk;
Pk =M b

k ;
end for

Apply �xed base approximation

P7 = P13 = 106M b
1 ;

z7 = z13 = [0 0 0 0 0 0]T ;
for k = 13 to 2 do
Dk = HT

k Pk:oHk;
Kk = Hk(Dk)

�1HT
k ;

Lk = [I �KkPk:o]A
k:o
k:i ;

Pk:i = Pk:i + LT
k Pk:oLk;

zk:i = zk:i + LT
k (Pk:oa

b
k + zk:o);

end for

outboard to joint k. The symbol, k:i, gives the link
index of the link inboard to joint k. The adjoint ap-
propriately transforms velocities and forces in di�erent
frames. The joint map is given by Hk and is a vector
that represents the twist of joint k written in the link
frame outboard to joint k, the frame of link k:o. The
term Hk

_�k is the relative body velocity between link k:i
and link k:o. The term Ak:o

k:iV
b
k:i transforms the body

velocity of link k:i to link k:o coordinates. The Coriolis
terms are contained in abi and in the last term of bbk:o.
The �rst term in bbk:o is the gravitational force written
in the coordinates of link k:o.

3.4 Workspace Dynamics Calculation

The approximate workspace dynamics are calculated
through a recursion from the feet to the body. The
algorithm calculates the articulated body (AB) iner-
tia [3] and bias forces of the inboard link based on the
AB inertia and bias force of the outboard link. The AB
inertia and bias forces for the central body are calcu-
lated in the last step in the iteration. The calculations
are given in Algorithm 3.

The bias forces, zk, and AB inertias, Pk , are �rst ini-
tialized as shown in Algorithm 3. The �xed base ap-
proximation is then applied to the two feet. The in-
board recursion calculates the AB inertia for each link
based on the AB inertia of the outboard link. The
approximate workspace inertia is P1, and the approxi-
mate Coriolis and gravitational forces are given in z1.
Given an external wrench, F1, acting at the center of
mass of the central body, the approximate workspace



Algorithm 4 Desired Wrench Calculation

given: trajectory data, MB states, workspace dy-
namics, and gains.
epc = ps0;1 � psd0;1; _e

p
c = _ps0;1 � _psd0;1; fposition errorg

Xs
c = �psd0;1 �Kv

c _e
p
c �Kp

c e
p
c ;

Xb
c = RT

0;1(X
s
c � !s

0;1 � ps0;1);
qet = q0;1 ? �q0;d = (qset; q

v
et); fquaternion errorg

if qset � 0 then
qe = (qse ; q

v
e ) = (qset; q

v
et);

else

qe = (qse ; q
v
e ) = (�qset;�q

v
et);

fRe 2 SO(3) is represented by �qetg
end if

!s
e = !s

0;1 �Re!
s
0;d;

Xs
R = Re _!

s
0;d + !s

0;1 � (Re!
s
0;d)�Kv

R!
s
e �K

p
Rq

v
e ;

Xb
R = RT

0;1X
s
c ;

Xb =

�
Xb

c

Xb
R

�
;

F bd
1 = P1X

b + z1;

dynamics are F1 = P1V
b
1 + z1.

The approximate calculation of the workspace inertia
is given in [4] based on the big base assumption. An
exact calculation of the workspace dynamics for serial
chains is given in [8] in terms of the spatial operator
algebra.

3.5 Desired Wrench Calculation

In this section, the algorithm to calculate the desired
wrench acting at the center of mass and written with
respect to the body frame is given. The desired wrench
is denoted by F bd

1 and is realized through the joint
torques that are calculated in Section 3.7. The desired
force is designed to be in the form

F bd
1 = P1X

b + z1; (3.10)

where Xb is calculated in Algorithm 4. The desired
wrench calculation is divided into an orientation com-
ponent (represented with unit quaternions) and a po-
sition component. Refer to [7] for more details.

3.6 Desired Wrench Distribution

In this section, the desired body wrench, F bd
1 , is divided

into two contributions: one from the left leg and one
from the right leg. Distributing the wrench needs to
be done carefully to avoid creating unnecessary and
detrimental internal forces and torques.

Let Fr be the wrench acting on the right foot from the
ground and represented in the body frame of the right
foot (link 13). Let Fl denote the corresponding wrench
for the left foot (link 7). The desired body wrench is

Algorithm 5 Desired Wrench Distribution

given: F bd
1 ; g1;7; g1;13

G = [AdT
g
�1

1;7

AdT
g
�1

1;7

]; fG has full row rankg�
Fl

Fr

�
= GT (GGT )�1F bd

1 ;

~F bd
2 = AdT

g
�1

1;7

Fl;

~F bd
8 = AdT

g
�1

1;13

Fr; fF
bd
1 = ~F bd

2 + ~F bd
8 g

given by

F bd
1 = AdT

g
�1

1;7

Fl +AdT
g
�1

1;13

Fr

=
h
AdT

g�1
1;7

AdT
g�1
1;13

i �
Fl

Fr

�
4
= G

�
Fl

Fr

�
(3.11)

and is a result of transforming Fl and Fr to the frame
of link 1 and adding. First note that the matrix G

has full row rank and then solve Equation (3.11) for Fl

and Fr by computing a minimum norm solution in the
following way:

�
Fl

Fr

�
= GT (GGT )�1F bd

1 : (3.12)

Let ~F bd
k be the desired wrench acting on body k:i from

body k:o and written with respect to frame k:i. Let F bd
k

be the desired wrench acting on link k:o from link k:i

and written with respect to frame k:o. The wrenches
acting on the central body, link 1, from the left and
right legs are then

~F bd
2 = AdT

g
�1

1;7

Fl and ~F bd
8 = AdT

g
�1

1;13

Fr:

(3.13)

In this way,

F bd
1 = ~F bd

2 + ~F bd
8 ; (3.14)

and the desired wrench is divided into a contribution
from the left and right legs. The calculation is given
and summarized in Algorithm 5.

3.7 Torque Calculation

The joint torques are now calculated in an outboard
recursion given the wrench contributions from the left
and right legs.

Let �l be the joint torques for the left leg and �r be the
joint torques for the right leg. Let Jl be the body Ja-
cobian for the left leg and Jr be the body Jacobian for
the right leg. If the feet are �xed, Jl maps joint veloc-
ities for the left leg to the body velocity of link 1, and
Jr maps right leg joint velocities to the body velocity
of link 1. The joint torques are then �l = JT

l
~F bd
2 and

�r = JT
r
~F bd
8 . The Jacobian transpose relationship is a

static equilibrium calculation and can be calculated by
�nding the equilibrium forces on each link as though



Algorithm 6 Torque Calculation

given: ~F bd
2 and ~F bd

8 ; gk:o;k:i and Hk for all k 2
f2; � � � ; 13g;
for k = 2 to 13 do
F bd
k = �AdT

g
�1

k:o;k:i

~F bd
k ; fequal and opposite forces

across joint kg
�k = HT

k F
bd
k ; fJoint Projectiong

if link k:o is not a leaf then
~F bd
k+1 = �F bd

k ; fbody k:o is in equilibriumg
end if

end for

each link were at rest. The recursive algorithm to cal-
culate the joint torques is given in Algorithm 6. The
joint torques are calculated in an outboard iteration
over the joints. First create F bd

k by using equal and
opposite forces across joint k:

F bd
k = �AdT

g
�1

k:o;k:i

~F bd
k :

Then project F bd
k across the joint axis to get the joint

torque:

�k = HT
k F

bd
k :

Then update ~F bd
k+1 by noting that link k:o is in equilib-

rium for the Jacobian calculation:

~F bd
k+1 = �F bd

k :

4 Simulation Results

The controlled multibody system is created and
simulated in Impulse [2], and simulation results are
presented in this section. Impulse is a multibody
simulator that handles contact through impulses.
The controller is written in C and interfaced to
the simulator. The coe�cient of friction is 0.3,
the coe�cient of restitution is 0.2, and the gravita-
tional acceleration is 9:81ms2 . The multibody system
initially has zero velocity. The center of mass of
the central body is initially placed at (0; 0; 103:5)
cm, and the central body is initially rotated about
the �y axis by 5 degrees. The system is initially
slightly above the ground and collides with the
ground right after the start of the simulation. The
initial joint angles are f�2; � � � ; �13g = f0:0; 40:0; 0:0;
�77:4595; 0:0; 42:4595; 0:0; 40:0; 0:0;�77:4595; 0:0;
42:4595g degrees. The controller gains are

Kp
c =

2
450 0 0
0 50 0
0 0 200

3
5 ;Kv

c =

2
47:07 0 0

0 7:07 0
0 0 14:142

3
5 ;

K
p
R =

2
450 0 0
0 50 0
0 0 50

3
5 ; and Kv

R =

2
47:07 0 0

0 7:07 0
0 0 7:07

3
5 :
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Figure 3: Joint Angles

The vertical gain in the Z position is chosen based on
the experiments on astronauts in [9]. The remaining
gains are chosen arbitrarily with a damping ratio of 0.5.
The controller is called at 500 Hz. On an SGI Indigo
(R4000, 100 MHz) workstation, each control loop takes
7 milliseconds to compute. A three second simulation
took 2066 seconds (34 minutes 26 seconds) to compute.

The set point for the center of mass of link 1 is
(�1; 0; 114) cm, and the desired orientation is q0;d =
(0:99144486;�0:13052619; 0; 0) corresponding to a 15
degree rotation about the �Y axis. The system begins
rising to the desired pose while a 1.8 Kg block is thrown
at the body from the position of (50; 10; 120) cm with
a velocity of (�450; 0; 20) cm/s (approximately 4 lbs.
thrown at 10 mph). The block collides with the body at
approximately 0.08 seconds. The two feet begin to rise
at approximately 0.13 seconds, and the system rests on
the front of the two feet as the heels rise. The right foot
makes contact with the ground at approximately 0.36
seconds, and the left foot makes contact at approxi-
mately 0.38 seconds. During this simulation, the feet
drift slowly relative to the ground. The drifting is be-
lieved to be an artifact of the contact model. The con-
troller compensates for the collisions, the feet leaving
contact with the ground, the impulsive contact forces,
and the sliding feet to drive the error to a neighborhood
of zero.

The joint angles over time are shown in Figure 3. The
sharp change in joint angles due to the collision can
be seen at 0.08 seconds. The feet making contact with
the ground at 0.36 and 0.38 seconds is also seen in the
data. After these disturbances, the joint angles settle
with a small drifting due to the sliding feet.

The joint torques over time are shown in Figure 4.
The torques 
uctuate after the collision and have sharp
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Figure 4: Joint Torques
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Figure 5: Body Position

changes after the changes in the contact of the feet with
the ground.

The position of the center of mass relative to the iner-
tial frame is shown in Figure 5. The errors converge to
a neighborhood of zero. The convergence is faster in
the Z coordinate. The Y position is seen to drift about
zero, and this is believed to be due to the sliding feet.
The collision disturbance is seen to push the body in
the �X direction and then the controller compensates
for the disturbance.

The orientation of the central body is shown in Fig-
ure 6. The collision causes the body to rotate about
the �Y axis and to rotate about the Z axis as can
be seen in the plot of qy and qz. The controller com-
pensates for the disturbances and drives the error to a
neighborhood of zero.
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Figure 6: Body Orientation

5 Conclusion

The balancing controller extends the planar results in
[1] to create a workspace balancing controller for a 3D
multibody model of a biped. A model-based controller
is formed in the workspace of the 3D biped, and the
model is e�ciently calculated through link to link iter-
ations in the multibody structure. The recursive cal-
culations free the control designer from having to sym-
bolically create the complicated, nonlinear model. The
research presented here brings us closer to the goals
of our research e�ort to create predictive models for
human motion.
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