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Abstract

This thesis explores pattern evocation and energy-momentum integration of the double spherical

pendulum. Pattern evocation is a phenomenon where patterns emerge when the 
ow of a dynamical

system is viewed in a frame that rotates relative to the inertial frame. Energy-momentum integration

integrates the equations of motion and exactly preserves energy and momentum at each time step. The

thesis begins with a summary of the theory on pattern evocation for Hamiltonian systems with symmetry.

The result of this theory is that if the motion in the reduced space is periodic, quasiperiodic, or almost

periodic, respectively, then in a suitably chosen rotating frame with constant velocity, the motion in

the unreduced space is also periodic, quasiperiodic, or almost periodic, respectively. The motion in this

rotating frame may have a particular pattern or symmetry. Examples of this theory are demonstrated

for the double spherical pendulum. A di�erential-algebraic model is created for the double spherical

pendulum and is integrated with a publically available simulation package called MEXX. This simulation

technique is described followed by a description of an energy-momentum integrator. The thesis concludes

with a comparison of the energy-momentum integrator and the MEXX simulation.
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1 Introduction

This thesis is an exploration of pattern evocation in the double spherical pendulum (DSP) and also examines
an integration method of the DSP that preserves both energy and momentum. Patterns have been discovered
in Hamiltonian systems when the 
ow of the system is viewed in a rotating frame. This was studied
for point vortices in [Kunin et al., 1992]. A goal in [Marsden and Scheurle, 1995] is to develop theory for
this phenomenon. This thesis provides a summary of the theory and demonstrates the pattern evocation
phenomenon in the double spherical pendulum. This thesis also develops an energy-momentum integrator
that exactly preserves both the angular momentum about the vertical axis and the energy. The energy-
momentum integrator is compared to a di�erential-algebraic equation solver for multibody systems called
MEXX. This work suggests that energy-momentum integrators may provide simulation results quickly at
reasonable accuracy.

A summary of the theory in [Marsden and Scheurle, 1995] is presented in the �rst section of the thesis.
The next section describes the simulation and visualization method used to search for the patterns in the
DSP simulation data. The following section presents the simulation results and describes three examples of
pattern evocation. An energy-momentum integrator is created for this thesis work and is described in the
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next section. This section concludes by comparing the results from the energy-momentum integrator and
the MEXX simulation. Part of the work presented in this thesis is published in [Marsden et al., 1995].

2 Summary of Theory on Pattern Evocation

A summary of some of the theory in [Marsden and Scheurle, 1995] is presented in this section. A result of
this paper is that if there is a �xed point, a periodic orbit, a quasiperiodic orbit, or an almost periodic orbit,
respectively, in the reduced space, then in a suitably chosen moving frame with constant velocity, the motion
is also �xed, periodic, quasiperiodic, or almost periodic, respectively, in the unreduced space. The paper
also describes how discrete symmetries play a role in the visualized orbits and the reduced orbits.

A summary of some aspects of reduction is presented here. A more detailed background is contained
in [Marsden and Ratiu, 1994], [Abraham and Marsden, 1978], and [Marsden, 1992]. Let G be a Lie group
acting on a manifold M . Let X be a vector �eld that is G�invariant. The 
ow of X produces a one
parameter group of transformations, Ft : M !M . There is a reduced 
ow, �t :M=G!M=G on the orbit
space, M=G. In this case, � � Ft = �t � �, where � : M ! M=G is the projection of the manifold to the
orbit space. A �xed point, s 2M=G, corresponds to periodic orbit in ��1(s) and a point in ��1(s) is called
a relative equilibrium. If there is a periodic orbit in the reduced space, the corresponding motion in the
unreduced space is called a relative periodic orbit. The trajectory through a relative equilibrium, z0 2M , is
given by

z(t) = exp(t�)z0

for some � 2 g; the Lie algebra of G. Viewing the motion of the relative equilibrium in a moving frame with
velocity � means that we replace z(t) by exp(��t)z(t). In this frame, the motion appears to be �xed. A
similar notion is true for periodic and quasiperiodic motions in the orbit space.

Theorem 1 Assume that the exponential map exp : g ! G is surjective. Assume that c(t) is a relative

periodic orbit and denote the period of the 
ow in the reduced orbit by T . Then there is a Lie algebra element

� 2 g such that exp(��t)c(t) is also periodic with period T .

A similar theorem exists for symplectic reduction. Let P be a symplectic manifold and G a Lie group
acting on P . Let J : P ! g

� be an Ad�-equivariant momentum map. For a �xed value � of J, let
G� = fg 2 GjAd�g�1 � � = �g be the isotropy subgroup of G with Lie algebra g�. The symplectic reduced
space is P� = J�1(�)=G�.

Theorem 2 Assume that the exponential map exp : g� ! G� is surjective. Assume that c(t) is a relative

periodic orbit and denote the period of the 
ow in the reduced orbit by T . Then there is a Lie algebra element

� 2 g� such that exp(��t)c(t) is also periodic with period T .

This value of � in the previous theorems is called the critical velocity. An explicit formula for the critical
velocity is provided in the paper for systems with cyclic coordinates. For a Lagrangian, L(x; _x; _�), � is a
cyclic coordinate and we look at a Lagrangian of the form kinetic energy minus potential energy:

L(x; _x; _�) =
1

2
g�� _x

� _x� + ga� _�
a _x� +

1

2
gab _�

a _�b � V (x); (2.1)

where gab are the components of the mass matrix, and V (x) is the potential energy. The locked inertia
tensor, I : g! g

�; is given by

< I�; � >=� �Q; �Q �;

where �; � 2 g, �Q is the in�nitesimal generator of the Lie algebra on the con�guration manifold, Q, < �; � >
is the pairing of the Lie algebra and its dual, and � �; � � is the kinetic energy metric. In the cyclic case,
the components of the locked inertia tensor are Iab = gab, and the reduced trajectory is given by x(t).
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Theorem 3 Suppose that q(t) = (x(t); �(t)) is a solution of the Euler-Lagrange equations on Q and that the

reduced trajectory x(t) is periodic with period T . Then relative to the frame with angular velocity given by

�a =
1

T

Z T

0

I
ca(x(t))�cdt�

1

T

Z T

0

g�c(x(t)) _x
�(t)Ica(x(t))dt (2.2)

the solution q(t) is also periodic with period T .

A function, x(t), is quasiperiodic if x(t) = �(!1t; !2t; :::; !nt) for some function � that is 2� periodic in
all of its arguments and for some �nite number of frequencies, !1 to !n. The following Theorem relates
quasiperiodic motion in the reduced space to a suitably transformed motion in unreduced space.

Theorem 4 Suppose that q(t) is a solution of the Euler-Lagrange equations on Q and that the reduced

trajectory is quasiperiodic with the frequencies !1; :::; !n such that the following nonresonance condition is

satis�ed: �����
nX

k=1

jk!k

����� � 
 k j k��; (2.3)

where 
 and � are positive constants and the norm is any convenient norm on n-space. Assume that the

kinetic and potential energy functions are Ck for k � � + 2. Then, relative to a frame with the angular

velocity given by the formula

�a = lim
T!1

1

T

Z T

0

[Ica(x(t))�c � g�c(x(t)) _x
�(t)Ica(x(t))] dt (2.4)

the solution q(t) is also quasiperiodic with the frequencies !1; :::; !n.

A similar result holds for almost periodic functions. A function, f(t), is almost periodic if given any
� > 0, there is a positive real number T = T (�) such that any interval of length T on the real axis contains
a number � with jf(t+ �) � f(t)j � � for all t 2 R.

The role of discrete symmetries in pattern evocation is now discussed. Discrete symmetries may exist in
a particular problem and may pass down to discrete symmetries in the reduced space. We now discuss how
a discrete symmetry in a trajectory in the reduced space is visualized in the original space.

Let (P;
) be a symplectic manifold with a Lie group, G, acting on P . Let J : P ! g
� be an Ad�-

equivariant momentum map for the action of G. The discrete group is denoted by �. We assume that �
acts on G by group homomorphisms and denote the action by �G : G! G. We also assume that � acts on
P by symplectic or antisymplectic transformations and denote the action by �P : P ! P . Antisymplectic
transformations change the sign of the symplectic form. � is composed of elements that correspond to
symplectic transformations, �s � �, and antisymplectic transformations, �a � �. Let �g : g! g be the Lie
algebra homomorphism created from taking the derivative of �G at the identity. Let �g� : g

� ! g
� be the

dual of (��1)g.
We now make several assumptions that guarantee that the discrete symmetries have a well de�ned action

on the symplectic reduced space.

Assumption 1 The actions of G and � are compatible in the sense that the following equation holds:

�P � gP = [�G(g)]P � �P (2.5)

This assumption implies that � has a well de�ned action on P=G. If G = SO(2) and � is the group of
re
ections in vertical planes, then �G(g) is conjugation, i.e., �g�

�1 2 G. Di�erentiating Equation (2.5) in
the direction of � 2 g and comparing the resulting Hamiltonian vector �elds reveals that

J � �P = ��g� � J+ (cocycle): (2.6)

The paper assumes that the cocycle is zero and this leads to the following assumption.
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Assumption 2 The following equation holds:

J � �P = ��g� � J (2.7)

where the plus sign is used for � 2 �s and the minus sign is used for � 2 �a.

Assumption 1, Assumption 2, and the additional assumption that �P preserves the momentum map implies
that � has a well de�ned action on the symplectic reduced space.

Let w(t) 2 P=G be a time dependent orbit and assume that it has the discrete symmetry (�0; l0) 2 ��R;
where R acts by time shifts, i.e.,

�0w(�(t � l0)) = w(t) (2.8)

for all time. The plus sign corresponds to symplectic transformations and the minus sign corresponds to
antisymplectic transformations. Let c(t) be an orbit that projects to w(t) and let

~c(t) = exp(��t)c(t) (2.9)

be the transformed data in a rotating frame with velocity �. It is shown in their paper that

�0~c(�(t� l0)) = g0~c(t) (2.10)

holds for some g0 2 G and for all t 2 R provided that the momentum map, J, is �0-invariant. We then seek
a g1 2 G such that

�0g1~c(�(t� l0)) = g1~c(t); (2.11)

or equivalently,

g�11 �0g1~c(�(t� l0)) = ~c(t): (2.12)

This last equation shows that ~c(t) has the discrete symmetry (g�11 �0g1; l0). If G = SO(2) and � is the group
of re
ections in vertical planes, then g�11 �0g1 is a re
ection in a plane rotated by g�11 . Using Equation (2.10
) and Equation (2.12), it can be shown that such a g1 exists if there is a g1 that solves the following equation:

�0g
�1
1 ��10 g1 = g0: (2.13)

In the case where G = SO(2) and � is the group of re
ections in vertical planes, g1 is the square root of g0.
The Double Spherical Pendulum (DSP) has two discrete symmetries: a re
ection symmetry about verti-

cal planes and a time reversal symmetry. Time reversal sends t 7! �t, qi 7! qi, and _qi 7! � _qi. The re
ection
symmetry is a symplectic transformation while the time reversal symmetry is an antisymplectic transforma-
tion. Both transformations change the sign of the momentum map so they do not provide a well de�ned
action on the symplectic reduced space. If the actions of reversals and re
ections are composed (order does
not matter since they commute), then the momentum map is preserved and this combination of the discrete
groups has a well de�ned action on the reduced space.

3 Simulation Technique

A di�erential algebraic equation (DAE) model of the Double Spherical Pendulum (DSP) is created. The
DAE model enforces the length constraints in the DSP through Lagrange multipliers. In this section, we
describe the publically available software, MEXX, for the simulation of multibody systems. The DAE model
of the DSP is then presented followed by a description of the reduced variables for the DSP. The method of
generating simulation results and graphing the data is then presented.
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Figure 1: Double Spherical Pendulum

3.1 Summary of MEXX

MEXX is a multibody simulation package developed by Lubich, Engstler, Nowak, and P�ohle and described
in [Lubrich et al., 1992]. MEXX is an acronym for MEXanical systems eXtrapolation integrator, and the
program and documentation is available through anonymous ftp at elib.zib-berlin.de in pub/elib/codelib.

MEXX integrates nonsti� equations of motion for mechanical systems in the following form:

_p = T (t; p)v (3.1)

M(t; p) _v = f(t; p; v; �; u)�G(t; p)T� (3.2)

0 = G(t; p) � v + gI(t; p) (3.3)

_u = d(t; p; v; �; u); (3.4)

where p(t) are the position variables, v(t) are the velocity variables, �(t) are the Lagrange multipliers, and
u(t) are optional external dynamics. The length constraints are

0 = g(t; p): (3.5)

The velocity constraints are contained in Equation (3.3).
The user needs to specify the initial conditions for the simulation, p(t0); v(t0); and u(t0). External

dynamics can include control inputs. The model presented in the next section for the DSP contains no
external dynamics.

3.2 DAE Model of DSP

The DAE model of the DSP is described in this section and is shown in �gure 1. The model �ts the form
presented in Equation (3.1)-(3.4) and there are no external dynamics. In the following equations for the
DSP, mi is the mass of the i'th point mass, qi is the position vector for the i'th point mass, and li is the
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Figure 2: Reduced Coordinates for the Double Spherical Pendulum

length of the i'th segment:

M =

�
m1I 0
0 m2I

�
(3.6)

p =

�
q1
q2

�
(3.7)

v =

�
_q1
_q2

�
(3.8)

T = I (3.9)

g =

�
1
2q

T
1 q1 �

1
2 l
2
1

1
2 (q2 � q1)

T (q2 � q1)�
1
2 l
2
2

�
(3.10)

G =

�
qT1 0

(q1 � q2)
T (q2 � q1)

T

�
(3.11)

f =
�
0 0 �m1g 0 0 �m2g

�T
(3.12)

3.3 Reduced Variables

A choice of generalized coordinates are shown in Figure 2. The four coordinates, (r1; r2; �; �), are valid as
long as one of the links do not line up with the z-axis. The action of the S1 symmetry group only acts on
the � variable. Therefore, the reduced phase space is 6 dimensional and position coordinates on the reduced
phase space are (r1; r2; �).

3.4 Generating Simulation Results

A C-Program interfaces with the Fortran program MEXX to simulate the DSP. The C-Program contains
the model de�nition and calls the MEXX integration routine. The simulation results are saved in a data
�le and loaded into Matlab or Mathematica to display the results. Matlab and Mathematica scripts display
the data and transform the data to rotating frames. The velocity of the rotating frame is varied until the
critical velocity is determined. Patterns at frame velocities not equal to the critical velocity have appeared
in the simulations. These frame velocities are called resonant velocities. The position coordinates in the
inertial frame are transformed to position coordinates in a frame with angular velocity, 
, by the following
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equations:

!
 =

2
4 0

0



3
5 (3.13)

!̂
 =

2
4 0 �
 0


 0 0
0 0 0

3
5 (3.14)

�
~q1(t)
~q2(t)

�
=

�
e�!̂
tq1(t)
e�!̂
tq2(t)

�
(3.15)

The new position data, (~q1(t); ~q2(t)), is then graphed and reveals patterns for particular angular velocities
and for particular initial conditions. The transformed data is the data as viewed in a camera looking down
the z-axis that is rotating with angular velocity 
. Revealing patterns proceeds by choosing initial conditions,
simulating, and viewing the data in moving frames. It is extremely helpful to make a movie of the position
trajectories parameterized by the angular velocity. A particular example of a movie is seen in Figure 3.
The �rst frame is in the upper left corner and the last frame is in the lower right corner. See also URL
http://robotics.eecs.berkeley.edu/~wents/home page.html for a MPEG movie �le.

4 Simulation Results and Patterns

Several cases of pattern evocation in the DSP are demonstrated in this section. Each case corresponds to a
di�erent set of initial conditions. The �rst case does not appear to have a periodic motion in the reduced
space but still reveals patterns for particular camera angular velocities. The second case has an orbit in
the reduced space that resembles a periodic motion. In the third case, patterns appear and then vanish as
the simulation time is increased. This last example has a discrete symmetry in the reduced space and this
symmetry is visualized in particular moving frames. For each simulation, the trace of the two masses in an
inertial frame is shown as well as the motion in the frame with critical angular velocity. Resonant patterns
are then presented. Finally, the trajectories of the reduced position coordinates are shown. In the following
simulations, m1 = 2:0kg, m2 = 3:5kg, l1 = 4:0m, l2 = 3:0m, and g = 9:81m/s2.

4.1 Pattern I

In the �rst example, the initial conditions are x1 = 2:820m, y1 = 0:025m, x2 = 5:085m, y2 = 0:105m,
_x1 = 3:381m/s, _y1 = 2:506m/s, _x2 = 2:497m/s, and _y2 = 10:495m/s. The position and velocity of the
z-coordinate is determined from the constraints and the z-coordinate for both masses is taken to be negative.
This motion results from a perturbation of a relative equilibrium. The initial conditions for the relative
equilibrium are x1 = 3:0788, y1 = 0:0m, x2 = 5:5418m, y2 = 0:0m, _x1 = 0:0m/s, _y1 = 4:8593m/s,
_x2 = 0:0m/s, and _y2 = 8:7468m/s.

The trajectory of the two masses in an inertial frame is shown in Figure 4(a). This motion projected
onto the xy plane is shown in Figure 4(c). The motion in the frame with critical angular velocity is shown
in Figure 4(b) and 4(d). In the critical velocity, the motion of the outer mass appears to move in a circular
orbit while the inner mass moves in a star-like orbit. Notice the striking di�erence between Figure 4(a) and
4(b).

Four patterns are shown in Figure 5 which are denoted resonant patterns. The angular velocity of the
frame is below the critical angular velocity in Figure 5(a)-(c) and above the critical angular velocity for
Figure 5(d). The pattern in Figure 5(a) is an ellipse in the outer mass and an irregular ellipse for the
inner mass. A trajectory resembling a triangle appears in the next pattern. This pattern has the discrete
symmetries of D3, the symmetries of a 3-sided polygon. A trajectory resembling a square is then revealed
in the next pattern. This pattern has the D4 discrete symmetry. The last resonant pattern resembles two
re
ected arcs with a D2 symmetry.
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Figure 4: Trace of the two masses for pattern I: (a) inertial frame (b) critical angular velocity. Projection of
the traces: (c) inertial frame (d) critical angular velocity

There appears to exist a relationship between the angular velocities that evoke a pattern, the critical
angular velocity, and the discrete symmetry observed. Let 
c be the critical angular velocity and 
n be the
angular velocity for the n-fold symmetry, Dn. Let F be the period in the reduced orbit. Then

j
c � 
nj =
m

n
F; (4.1)

where m and n are integers.
We now apply Equation (4.1) to the resonant patterns. A D4 symmetry is shown in Figure 5(c) and

the corresponding angular velocity is 
4 = 1:0403rad/s. The critical angular velocity is 
c = 1:6142rad/s.
F is found to be 2:2848s using Equation (4.1). For the pattern in Figure 5(b), 
3 = 0:8550rad/s and
Equation (4.1) predicts that F is 2:2776s. The patterns in Figure 5(a) and 5(d) both have a D2 symmetry
group. For the pattern shown in Figure 5(a), the predicted value for F is 2:2874s, and for Figure 5(d), F is
predicted to be 2:2876s. The largest di�erence between the calculated F 's is 0.01s.

The motion in the reduced position coordinates is shown in Figure 6. Figure 6(a) is the trajectory of
the three reduced position coordinates parameterized by time. Figure 6(b)-(d) are the projections onto the
coordinate planes. There appears to be no periodic motion in Figure 6(a)-(d). Figure 6(b) appears to reveal
trajectories that are evenly spaced and follow a similar trajectory.

Figure 7 shows the reduced coordinates versus time. The motion is not periodic but does have an
oscillatory motion.

4.2 Pattern II

The initial conditions for this simulation resulted from varying the initial conditions of the two masses
hanging straight down and at rest. The initial conditions are x1 = 0:012m, y1 = 0:009m, x2 = 0:505,
y2 = 0:510m, _x1 = 0:210m/s, _y1 = �0:040m/s, _x2 = �0:477m/s, and _y2 = 0:023m/s.
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Figure 7: Reduced variables parameterized by time for pattern I

In Figure 8, the motion in the inertial frame and the frame with the critical angular velocity is shown.
The motion in the critical frame shows the outer mass moving in a circular motion and the inner mass
moving in a trajectory resembling a \�gure eight". The critical angular velocity is 
c = 1:253rad/s.

Figure 9 reveals four resonant patterns. Figure 9(a) and 9(b) result from angular velocities below 
c
and 9(c) and 9(d) result from angular velocities above 
c. The pattern in Figure 9(a) and 9(c) have a D3

symmetry. Figure 9(b) has a D4 symmetry and Figure 9(d) has a D2 symmetry.
The numerology discussed in the previous section seems to apply to this example as well. For the

resonant pattern shown in Figure 9(a), the value of F calculated from Equation (4.1) is 2.493s. F is 2.512s
for Figure 9(b), F is 2:493s for Figure 9(c), and F is 2:494s for Figure 9(d). The largest di�erence in the
calculated F 's is 0.019s.

The trajectories of the reduced position coordinates parameterized by time are shown in Figure 10. The
trajectories resemble a periodic motion as seen in Figure 10(a)-(d).

The trajectories in the reduced position coordinates versus time are shown in Figure 11. Notice again
that the motion resembles a periodic motion and the periodic pattern changes for each coordinate as time
increases. Increasing a tolerance variable from 10�5 to 10�9 in the simulation reveals no apparent change in
Figure 11.

4.3 Pattern III

The initial conditions for this simulation are x1 = 4:000m, y1 = 0:000m, x2 = 4:000, y2 = 0:060m, _x1 =
�0:001m/s, _y1 = 0:001m/s, _x2 = 0:000m/s, and _y2 = 6:000m/s.

The motion in the inertial frame is shown in Figure 12(a) and 12(c). The motion as seen from the frame
with the critical angular velocity, 
c = 1:4803rad/s, is shown in Figure 12(b) and 12(d). The motion in
Figure 12(d) resembles a set with a re
ection symmetry about the x-axis.

Four resonant patterns are shown in Figure 13. A D2 pattern is revealed in each of the patterns. The
same discrete symmetry that is shown in the frame with critical angular velocity.

Equation (4.1) predicts values of F for this example as well. The period F is calculated to be 1.2283s
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for 
2 = 0:2520rad/s with m = 2, 1.2316s for 
2 = 0:8645rad/s with m = 1, 1.2154s for 
2 = 2:0880rad/s
with m = 1, and 1.2205s for 
2 = 3:3110rad/s with m = 3. The calculated values of F vary from 1.2154s to
1.2316s with the average being 1.2240s.

In each of the four patterns shown in Figure 13, the pattern vanishes after simulating for longer times.
The pattern still disappears if a MEXX tolerance variable is changed from 10�5 to 10�9. The loss of the
pattern is seen more readily in Figure 14 for 
2 = 0:8645rad/s. The initial position is at (x2; y2) = (4; 0) and
the position of the second mass at t = 20s is labeled in the �gure. In this frame velocity, the trajectories of
the masses cease to overlap after approximately 14s.

The trajectories of the reduced position coordinates parameterized by time are shown in Figure 15. The
trajectories overlap in the beginning of the simulation, but the motion becomes irregular after simulating
for longer times, t > 14s.

Trajectories for the reduced position coordinates versus time shown in Figure 16 appear to have the
discrete symmetry of re
ections and time reversals for a �nite time interval. The following equations

r1(t) = r1(�(t� 10:27))

r2(t) = r2(�(t� 10:27)) (4.2)

�(t) = ��(�(t� 10:27))

nearly hold for 0 � t � 5:135. These equations correspond to a symmetry about the t = 5:135s line shown in
Figure 16. There also appears to be a symmetry of the same form about the t = 10:27s line. This symmetry
breaks down for t approximately greater than 14s. The discrete symmetry in the reduced space is seen in the
unreduced space in Figure 12(d). The pattern has a re
ection symmetry about the x-axis and it disappears
for t approximately greater than 14s.
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5 Energy-Momentum Integrator

An energy-momentum integrator is presented in this section. These integrators preserve energy and momen-
tum at each time step if the original continuous time dynamical system preserves energy and momentum.
The algorithm was created after discussing the construction of energy-momentum integrators with Fran-
cisco Armero and Oscar Gonzalez. Oscar Gonzalez is currently �nishing his Ph.D. thesis at Stanford and
has proposed a method for constructing energy momentum integrators for mechanical systems that involve
holonomic constraints. The following algorithm was constructed based on Oscar's general construction.
Several useful references for energy-momentum integrators are [Gonzales and Simo, 1994], [Tarnow, 1993],
[Simo and Gonzalez, 1993], and [Simo and Tarnow, 1992].

Oscar Gonzalez's general construction for energy-momentum integrators is brie
y summarized in this
section. The construction introduces a discrete di�erential which is analogous to the continuous di�erential.
The de�ning properties of the discrete di�erential, D , are

1. D (X;Y )H � (Y �X) = H(Y )�H(X) and

2. limX!Y D (X;Y )H = DYH ,

where X;Y 2 P , P is the linear phase space, H : P ! R is the original Hamiltonian, and DYH is the
normal di�erential of H evaluated at Y 2 P written as a column vector. The D's and D 's presented here are
column vectors. The discrete di�erential is a function of the current point in phase space and the point in
phase space at the next time step. The discrete di�erential acts on functions and produces a column vector.
The di�erence equation is determined from the following equation:

Zn+1 � Zn = hX(Zn;Zn+1)H = h
#
D Zn ;Zn+1H; (5.1)

where 
# is the standard matrix such that the continuous Hamiltonian vector �eld is given by _z = XH(z) =

#DH(z) and h 2 R

+ is the time step. A discrete di�erential in the standard position-momentum coordi-
nates, (q; p), is used to generate the DSP algorithm equations and is given by

D ((q1 ;p1);(q2;p2))H =

2
4 D

(q)jp1H + D
(q)jp2H

2
D
(p)jq1H + D

(p)jq2H
2

3
5 ; (5.2)

where

D
(q) jp1H =

�
I(q) � n(q)n(q)

T
� @H

@q
(
q1 + q2

2
;
p1 + p2

2
) +

H (q2; p1)�H (q1; p1)

k q2 � q1 k2
n(q); (5.3)

n(q) = q2�q1
kq2�q1k2

, and I(q) is the identity matrix. The remaining three terms in Equation (5.2) are calculated

analogously to Equation (5.3). The norms used in this section are two norms.
The discrete di�erential in (q; p) coordinates is applied to the following Hamiltonian with Lagrange

multipliers for the DSP:

H(q; p; �) =
1

2m1
k p1 k

2
2 +

1

2m2
k p2 k

2
2 +m1gq1;z +m2gq2;z +

�1
�
k q1 k

2
2 �l

2
1

�
+ �2

�
k q2 � q1 k

2
2 �l

2
2

�
;

(5.4)

where qi;z is the z coordinate of the ith point mass. Writing the constraints in the length squared form
results in simpler algorithm equations.

Performing the calculations summarized above results in the following energy-momentum algorithm for
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the DSP:

qn+11 � qn1 � h
1

m1
p
n+ 1

2
1 = 0 (5.5)

qn+12 � qn2 � h
1

m2
p
n+ 1

2
2 = 0 (5.6)

pn+1 � pn + h

2
6666664

2
6666664

0
0

m1g
0
0

m2g

3
7777775
+ �1

�
qn+11 + qn1

0

�
+ �2

�
qn+11 + qn1 � qn+12 � qn2
qn+12 + qn2 � qn+11 � qn1

�
3
7777775
= 0 (5.7)

gn+11
�
=

�
qn+11

�T �
qn+11

�
� l21 = 0 (5.8)

gn+12
�
=

�
qn+12 � qn+11

�T �
qn+12 � qn+11

�
� l22 = 0; (5.9)

where qi is the position vector for the ith mass, pi = mi _qi is the momentum for the ith mass, p = [pT1 p
T
2 ]
T ,

qni is the value of qi at the nth time step, gni is the ith length constraint at the nth time step, and p
n+ 1

2
i =

1
2 (p

n+1
i + pni ).
The algorithm is an implicit integrator and requires the solution of nonlinear equations to determine

pn+1; qn+11 ; qn+12 ; �1; and �2 from qn1 ; q
n
2 , p

n, and h. The function for pn+1 is calculated from Equation (5.7)
and substituted into Equation (5.5) and (5.6). The resulting nonlinear equations do not involve pn+1 and
are solved for qn+11 ; qn+12 ; �1; and �2. The solution is then used to calculate pn+1. The initial conditions for
the next step are updated and the algorithm proceeds to the next step.

By calculating

1

m1
p
n+ 1

2
1 � p�1 +

1

m2
p
n+ 1

2
2 � p�2 ; (5.10)

where p�i = pn+1i � pni , using the algorithm equations and grinding through the algebra, you get that

Kn+1 + Vn+1 + �1g
n+1
1 + �2g

n+1
2 = Kn + Vn + �1g

n
1 + �2g

n
2 ; (5.11)

where

Kn =
1

2
(pn)

T

� 1
m1

I 0

0 1
m2

I

�
pn

is the kinetic energy,

Vn = m1gq
n
1;z +m2gq

n
2;z

is the potential energy, and qni;z is the z-coordinate of the ith mass. Since the length constraints are satis�ed
at each time step, the algorithm preserves energy.

The following expression

q�1 � p
n+ 1

2
1 + qn+11 � p�1 + q�2 � p

n+ 1
2

2 + qn+12 � p�2 (5.12)

equals Jn+1� Jn where Jn is the angular momentum. This calculation reveals that the angular momentum
about the z-axis remains constant while the momentum about the x-axis and the y-axis varies with time due
to the force of gravity.

This algorithm is programmed in the C programming language, and the results are presented here.
The graph of energy and momentum versus time for the energy-momentum integrator and the MEXX
simulation is shown in Figure 17. The initial conditions for this simulation are the same as for pattern I
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in Section 4.1. The momentum and energy remain constant over time for the energy-momentum integrator
while the energy and momentum for the MEXX simulation decrease at an approximately linear rate. The
accuracy of energy and momentum preservation depends on the solution accuracy of the nonlinear algorithm
equations, Equations (5.5)-(5.9). The accuracy to which the nonlinear equations are solved is set by tolerance
variables in the program.

We now attempt to compare the two simulation methods used to simulate the DSP. It is di�cult to
fairly compare these methods because there are many parameters in each integrator and it is not clear what
parameters to use. The initial conditions used to compare the integration methods are the initial conditions
used in Section 4.1 for pattern I. The reduced position coordinate, r1, is then used to compare the simulation
methods. A di�erence from a chosen standard is calculated and a measure of the di�erence is calculated.
The measure of this di�erence is small between the MEXX simulation and an energy-momentum integration
if we set h to be 0:001 in Equations (5.5)-(5.9). We therefore use the energy-momentum simulation at
h = 0:001 as the standard. To measure the di�erence between simulations, we form a vector of r1 over time
and subtract the r1 vector from the standard. We then take the 2-norm of the di�erence and divide by the
number of elements in the vector. We denote the di�erence by e. For the energy-momentum simulations,
e = 1:42e� 2 for h = 0:1, e = 2:7e� 3 for h = 0:05, e = 4:924e� 5 for h = 0:01, and e = 0:0 by de�nition for
h = 0:001. For the MEXX simulation, e = 5:0522e� 7. A plot of r1 versus time for the MEXX simulation
and the energy-momentum simulation with h = 0:001 overlap and are indistinguishable. The trajectory of
the r1 variable produced from an energy-momentum simulation for h = 0:001 and for h = 0:05 is shown
in Figure 18. The h = 0:05 simulation is a close approximation to the trajectory for h = 0:001. The
MEXX simulation takes 9.6s on a Sparc 20 to simulate the DSP for 30s with these initial conditions. The
energy-momentum integrator takes 12.84s with h = 0:001 and only 1.0s for h = 0:05. The energy-momentum
integrator produces a reasonably accurate and fast simulation with h = 0:05.

This example leads one to speculate that the energy-momentum integrator may produce reasonably
accurate results for relatively large step sizes. The large step sizes allow fast simulation times and this has
applications in real-time simulation. It is desirable to simulate a complex multibody system with a real-time
control system driving the inputs to the simulation. It is necessary that the simulations run fast enough to
test the real-time control system. Also, �xed step size algorithms are often used so that one can guarantee
that the simulation does not slow down for particular times [de Jal�on and Bayo, 1994]. This can happen if
an adaptive step size algorithm is used. Energy-momentum integrators may have applications in real-time
simulation of multibody systems if they provide accurate results for large, �xed step sizes.

6 Conclusion

A background of the theory of pattern evocation in [Marsden and Scheurle, 1995] is presented in this thesis.
The theory demonstrates an interaction between continuous groups, reduced phase spaces and discrete
symmetries in the evocation of patterns. Several examples of pattern evocation in the double spherical
pendulum are shown to demonstrate the theory. The examples do not satisfy the conditions of the theorems
but still reveal interesting patterns. Future work in this example can be accomplished by calculating the
values of � given by the formula and comparing these values to those determined through the simulation.
The numerology equation can be explored more to determine the conditions under which it can be applied.
It holds fairly well for the examples in this thesis.

This thesis also gives an example of energy-momentum integration of a holonomically constrained mechan-
ical system. The results from this example lead one to speculate that fast, reasonably accurate simulations
may be possible with these type of integrators. Future work involves energy-momentum integration in the
presence of nonholonomic constraints as well as general constructions of energy-momentum integrators for
multibody systems. Future work also involves �nding energy-momentum integrators that have an order
greater than two. The hope is that higher-order energy-momentum integrators provide greater e�ciency
than lower order methods.

I would like to thank several people who have helped me on this research. Jerry Marsden has given
me valuable help and advice in this work. Oscar Gonzales and Francisco Armero have given me valuable
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help with energy-momentum integrators. Richard Murray and Abhi Jain have provided useful discussions
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