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Abstract

The Time-Triggered Architecture (TTA) is a
computer architecture for distributed real-time systems
in safety critical applications, such as computer
controlled brakes, or computer assisted steering in an
automobile. The TTA is a composable architecture for
the design of large real-time systems. Its main
characteristics are a common notion of time in all
subsystems of the architecture and the provision of
fully specified interfaces, called temporal firewalls,
between these subsystems. This paper gives an
overview of the TTA, discusses the architectural
principles, describes the sensor/actuator interfaces in
the TTA and informs about the implementation of
Jault-tolerance in the TTA.

1. Introduction

A real-time computer System is a computer
system in which the correctness of the system
behavior depends not only on the logical results of the
computations, but also on the physical instant at
which these results are produced. Large real-time
systems can only be built constructively if the effort
needed to reason about the logical and temporal
properties of a particular system function is
independent of the system size. This requires that a
system can be split into a set of nearly autonomous
subsystems that interact only via understandable, fully
specified and stable interfaces (Courtois 1985, Rechtin
1991). It is then possible to reason about a system
function in a limited context: it is sufficient to look
at the subsystem under consideration an its interfaces
to the subsystem environment (i.e., the rest of the
system). The subsystem environment is thus hidden
behind the well specified subsystem interfaces. If the
relevant properties of the interfaces between the
subsystems are fully specified in the value domain and
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in the temporal domain, and if these interface
properties are not changed by the system integration,
then the design is said to be composable with respect
to the stated properties. In a composable architecture,
important system properties, such as timeliness and
testability, follow from the established subsystem
properties.

The Time-Triggered Architecture is a composable
architecture for the design of large distributed real-
time systems is in safety critical applications, such as
computer controlled brakes, or computer assisted
steering in an automobile. Its main characteristics are
a common notion of time in all subsystems of the
architecture and the provision of fully specified
interfaces between these subsystems. The TTA
evolved out of many years of university research
centered on the topic of distributed fault-tolerant real-
time systems, carried out in the context of the MARS
project (Kopetz, Damm et al. 1989) and the PDCS
Project (Randell, Laprie et al. 1995).

In this paper, the time-triggered architecture is
presented. After a general overview of the architecture
the design principles are discussed in some detail.
The concept of a temporal firewall, a well-specified
stable interface between the components, is
elaborated. Section 4 is devoted to the controlled
object interface and introduces the time-triggered
sensor bus as a new type of field bus. Finally,
Section 5 deals with the implementation of fault-
tolerance in the TTA.

2. Overview of the Architecture

A real-time computer system is always part of a
larger system—this larger system is called a real-time
system. A real-time system changes its state as a
function of physical time, e.g., a chemical reaction
continues to change its state even after its controlling
computer system has stopped. It is reasonable to
decompose a real-time system into a set of
subsystems called clusters (Figure 1) e.g., the



controlled object (the controlled cluster), the real-time
computer system (the computational cluster) and the
human operator (the operator cluster). We refer to the
controlled object apd the operator collectively as the
environment of the|real-time computer system.
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A real-time computer system must react to
stimuli from the controlled object (or the operator)
within time intervals dictated by its environment. The
instant at which a result must be produced is called a
deadline. If a result has utility even after the deadline
has passed, the deadline is classified as soft, otherwise
it is firm. If a catastrophe could result if a firm
deadline is missed, the deadline is called hard.
Consider a railway crossing a road with a traffic
signal. If the traffic signal does not change to "red"
before the train arrives, a catastrophe could result.

2.2 Computational Cluster

In the TTA the computational cluster is
distributed. It consists of a set of (computer) nodes
interconnected by a real-time communication network
which is based on the Time-Triggered Protocol TTP
(Kopetz and Griinsteid]l 1994). Figure 2 depicts such a
distributed computational cluster. The interface
between the communication network and the node is
called the communication network interface (CNI).
The CNI between the TTP controller and the host
computer is free of any temporal control signals, i.e.,
the CNI is data sharing interface implemented by a
dual ported RAM memory.

Controlled Object

Another Cluster |
Gateway Interface
Node A Nude B Node C

Real-Time Communication System:

How does one link these subsysteras such that the
properties that have been established at the subsystem level
will hold at the system level?
———

Node D

Node E Node F

Figure 2: Structure of a computational cluster.

TTP is TDMA (time-division multiple access)
type of protocol, where a sending slot is assigned a
priori to every node. The protocol control
information, i.e., the message descriptor list (MEDL)
containing the points in time when a node is allowed
to send a message, is contained in the TTP controller.
TTP provides the following services:

(i) Message transport with low latency and minimal

Jitter,

(i) Fault-tolerant clock synchronization,

(iii) Provision of a fault-tolerant membership
service,

(iv) Provision of an immediate and deferred mode
change service,

(v) Distributed redundancy management,



TTP provides flexibility as long as the
determinism, i.e., the analytical predictability of the
timeliness, can be maintained.

2.3 TTA Nodes

A TTA node can be viewed as an RT object that
provides specified timely data (current RT images of
the corresponding RT entities) across its CNIs (Kim
and Kopetz 1994).The internal structure of a TTA
node is depicted in Figure 3.
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Figure 3: Structure of a node.

In general, the node hardware consists of a host
computer, and one or two communication controllers
(to the real-time bus and to the process I/O subsystem
as shown in Figure 3). The host computer comprises
the CPU, the memory and a real-time clock. The
execution of the concurrently executing tasks within
the host computer is controlled by the host operating
system. The host computer shares the node internal
CNI with the communication controller and the
controlled object interface (COI) with the process I/O
subsystem. The host accepts the temporally valid
input data and produces the intended and timely output
data via the CNI and the COL

3. Design Principles
3.1 Global Time

In the TTA it is assumed that all elements of the
architecture have access to a global time of known
precision in the microsecond range (Kopetz and
Ochsenreiter 1987). This global time is based on the
metric of the physical second. Since a failure of this
global time base can have catastrophic consequences,
the global time is fault tolerant. The control signals
for the activation of tasks or the sending of messages
are derived from the progression of this global time
base. The global time is also used to monitor the
temporal accuracy of real-time data.
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3.2 Temporal Firewalls

At a higher level of abstraction, the interfaces
between a node and its environment are formed by so-
called temporal firewalls (Kopetz and Nosssal 1997).

A temporal firewall is a unidirectional data-
sharing interface with state-data semantics
where at least one of the interfacing subsystems
accesses the temporal firewall according to an a
priori known schedule and where at all points in
time the information contained in the temporal
firewall is temporally accurate for at least d..
time units into the future.

The subsystem that accesses the temporal
firewall according to the a priori known schedule is
called the time-triggered (TT) subsystem. No control
signal is crossing a temporal firewall. The
information provider has to update the RT image in
the temporal firewall according to the dynamics of the
corresponding RT entity. If the information-providing
subsystem ceases to operate, the information in the
temporal firewall will be invalidated by the passage of
time.

The following stable properties characterize a
temporal firewall. Knowledge about these properties
is available a priori to all interfacing subsystems:

(1)  The addresses (names) and the syntactic structure
of the data items in the temporal firewall. The
meaning of the data items is associated with
these names.

(if) The points on the global time base when the
data items in the temporal firewall are accessed
by the TT subsystem. This information enables
the avoidance of race conditions between the
producer and the consumer. A race condition
could lead to a loss of replica determinism in
replicated temporal firewalls (Poledna 1995).

(iit) The temporal accuracy d,.. of the data items in
the temporal firewall (Kopetz 1997). This
knowledge is important to guide the information
consumer about the minimum rate of sampling
the temporal firewall. The absolute timepoints
when the TT subsystem accesses the temporal
firewall are reference points for the temporal
accuracy of the information in the temporal
firewall.

The common knowledge about the static

properties of a temporal firewall is used for error

detection. Temporal firewalls act as error containment
interfaces within the TTA. Since a temporal firewall

is free of control signals, the possibility of a control



error propagation
out by design.
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In the TTA

across a temporal firewall is ruled

Unification of Interfaces

the temporal firewall is a generic

interface. It unifies the interface properties of

(1) a host computer and the communication

network,

(ii) ahost compujter and the controlled object,

(iii) a host computer and the man-machine interface,

(iv) agateway in

terface between two clusters.

This unification of the node interfaces simplifies

the host software,

since the same mechanisms can be

used to access the controlled object data and the
network data. Figure 4 depicts a multicluster system
with temporal firewalls in each node. As mentioned
before, the temporal firewalls act also as error
containment interfaces.
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host software and can thus be validated independently
of the host software. The composability of the TTA
is based on this clear separation of concerns. An
example for the contents of a temporal firewall
specifications in an automotive control system is
given in (Kopetz and Thurner 1998).

In the second design phase, the host computer
software is developed taking the fully specified
temporal firewalls developed in the first design phase
as a constraint. The host computer software can be
tested in isolation with respect to these specified
temporal firewalls, both in the value domain and in
the time domain. Since the TTA architecture is
composable, no unintended side effects will occur
during system integration.

This two phase design methodology corresponds
to the way large systems are built in many
organizations. At first, the system architect specifies
the functionality, the interaction patterns, and the
interfaces to the subsystems developed by
subsuppliers. The TTA supports the precise
specification (value and time) of these subsupplier
interfaces at an early stage of a project and thus
eliminates many unpleasant surprises during the
system integration.

3.5 eal-Time Database

Conceptually, the distributed real-time data in the
temporal firewalls, formed by the temporally accurate
images of all relevant RT entities, is at the core of the
time-triggered architecture. The real-time database is
autonomously and periodically updated by the nodes
of the cluster that observe the environment and
produce RT images. The real-time data base contains a
temporally valid "snapshot" of the current state of the
cluster and the cluster environment. The data
structures that control the updating of the real-time
database are in the TTP communication controller,
physically and logically separated by the CNI from
the host software. These data structures are designed
during the architecture design phase of a cluster. Even
a malicious error in the host software cannot affect
the communication pattern that updates the real-time
database. This property of the architecture is
important from the point of view of certification
(Rushby 1993).

3.6 Scalability

Growth of a TTA architecture is unconstrained
since there is no central element in the architecture.
Nodes can be expanded into gateway nodes by



implementing a second CNI interface in the node. The
CNI interface to the original cluster is not affected by
this node-local change. Understanding a large TTA
system can be decomposed into understanding the
interaction patterns within each cluster, resulting in
the temporal firewall specification, and the
functionality of each node of a cluster, taking the
properties of the temporal firewalls for given. Every
node views all other elements as its "natural
environment", not being able to distinguish a
controlled-object cluster from a computational cluster.
This architectural characteristic is important during
software development and testing, because a test
simulator will have exactly the same interface, both
in the value and time domain, as the controlled object.

4. Interfacing the Controlled
Object

From the view of a host computer, the controlled
object is hidden behind the controlled object interface
COI that is a temporal firewall. This firewall contains
temporally accurate state data of the sensors and
actuators.

4.1 Intelligent Sensors-

In the TTA it is assumed that sensors are
intelligent, i.e., that a microcontroller with local
processing capability is associated with every sensor
and actuator. The local microprocessor performs the
observation of the associated RT entity, signal
conditioning, signal conversion to a standard format,
and executes the time-triggered sensor bus protocol
TTP/A to transmit the data to a TTA node. Since a
serial bus can only transport one message at a time,
some observation messages will have to wait longer
than other observation messages until they can be
delivered at the TTA node. If these different waiting
times cannot be controlled, a significant jitter can
accumulate during the communication of the sensor
observations. This jitter deteriorates the quality of
control significantly.

From the point of view of control, all RT
entities should be observed at the same point in time
immediately before the start of the control algorithm
task at the TTA node. In the TTA the time-difference
between the observation of a RT entity in the
environment and the delivery of the corresponding RT
image at the receiver is known a priori. This time-
difference can be used by the intelligent sensor nodes
to estimate the state of the observed continuous RT
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entity at the point in time when the control algorithm
is started at the control node (Kopetz 1997). This state
estimation can be performed on the basis of a simple
Taylor expansion of the value change of the RT entity
in the recent past or of some more sophisticated state
estimation algorithm that is based on a priori
knowledge about the RT entity and the long term
observation of the RT entity.

Node A
Start of
control
Node B .
algoritm
Node C by the
L I control
node
® Observation of the RT entity Real Time
[ PN Channel access interval

- Interval used for state estimation

Figure 5: State-estimation intervals.

The state estimation procedure at each intelligent
sensor node will use a different time delay (Figure 5)
because of the sequential use of the single serial
communication channel. However, since the
individual access times to the channel are known a
priori to each TTA node, every sensor node can use its
"personal” delay for the state estimation procedure. To
achieve optimal temporal accuracy, the node with the
most dynamic behavior should be configured to send
its message at the latest possible instant before the
start of the control algorithm at the control node. At
the receiving TTA node, the behavior of the system
will be as if all sensor values have been observed at
almost the same point in time immediately before the
start of the control algorithm. The whole sensor
subsystem, including its temporal properties, is
hidden behind the controlled object's temporal
firewall.
4.2 The Time-Triggered Sensor Bus
The time-triggered sensor bus (TTSB) is based on
the low-cost version of the TTP protocol family, the
TTP/A protocol (Kopetz 1995, Ebner 1997). TTP/A
is a multimaster protocol that can be implemented on
any microprocessor with a UART (Universal
Asynchronous Receive Transmit) interface. TTP/A is
based on one byte messages. Most of these messages
are data messages, only one special message, the
Fireworks message, is a control message.

In TTP/A all communication activities are
organized into rounds (Fig. 6). A round is the
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identical rounds controlled by the same MEDL a
mode. With the start of every new round a mode
change can be initiated by the active master by
packing the name of a new MEDL into the Fireworks
byte.

To increase the flexibility without compromising
the predictability, the protocol supports an operational
mode that allows the on-line downloading of a new
MEDL after power up. Thus sensor nodes can be
mass produced and receive the personality of a given
application during the power-up phase. The master
can enter the download mode by sending the proper
Fireworks byte. It then broadcasts the new MEDL in
a specified format. Every slave node will construct its
local MEDL from the information received by the
master. After the downloading activity is completed,
the master can activate the downloaded MEDL by a
mode change.

5. Fault Tolerance

The only way for a large system to survive is to
provide mechanisms that detect and mask faults
without disturbing the system service (Avizienis
1997). One design goal of the TTA is the transparent
support of fault-tolerant operations without any
modification of the application software. This
approach avoids any increase in the complexity of the
application software which is caused by introducing
fault-tolerance.

5.1 Fault-Tolerant Units

A set of replica-determinate nodes can be grouped
into a fault-tolerant unit (FTU) that will mask a
failure of a node of the FTU without any effect on the
external service provided by this FTU. The TTA
supports the formation of different types of FTUs
(selfchecking, TMR see Figure 7) and performs the
redundancy management within the TTP controller
such that the FTU CNI to the host computer is not
affected by the replication of nodes and
communication channels.

Figure 7: FTU consisting of two selfchecking nodes
(left) or of three nodes in a triple modular redundant
(TMR) configuration (right)



A necessary precondition for the implementation
of active redundancy is the replica-determinate
behavior of the host software. The TTA provides
replica determinism at the CNI of a node, but it is up
to the host software to guarantee replica determinism
within the complete node.

5.2 Redundant Sensors

If the sensors need to be replicated to achieve
fault-tolerance, then two separate field buses must be
installed (Figure 8). Each one of those field buses is
controlled by one of the TTA-nodes in the FTU. The
other node is passive and listens to the field bus traffic
to capture the sensor data.

rrc—AA
Host
TTP/A Fieldbus-I{
r—d TTP/A
T'wo master
coutrollers, TIP/C
I Controlled Object I under normal
conditions one
for each bus
[—TTP/A]
TTP/A Fieldbus--T Host
S: Sensor or Actuator Node (Slave Nodes) [TTP/C. farmmmed
Figure 8: FTU configuration with replicated field

buses.

An agreement protocol is executed in the
controllers of the TTA-nodes to reconcile the values
received from the replicated sensors. Then, a single
agreed value from each redundant sensor set is
presented to the host software at the CNIs.

5.3 The High Error Detection Coverage

Mode (HEDC).

If the active redundancy is based on the
assumption of selfchecking nodes, then every critical
computation is calculated twice on the host computers
and the results of these computations are compared
before a message is written into the CNI. Fault
injection experiments have shown that this time
redundancy is very effective in detecting transient
faults (Karlsson, Folkesson et al. 1995).

The duplicate execution of application tasks is
supported by the operating system by providing a
special execution mode, the High-Error-Detection-
Coverage (HEDC) mode, that is transparent to the
application software. Additionally, an end-to-end CRC
is calculated by the host operating system. In a safety-
critical application, the messages are thus protected by
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two CRC fields, one at the communication level, and
one at the end-to-end (application) level (Saltzer, Reed
et al. 1984).

5.4 FTU Layer

In the TTA, the fault-tolerance functions are
encapsulated in an FTU layer (fault-tolerant unit layer)
between two temporal firewalls (Figure 9) within a
node, the basic CNI and the FTU CNI (fault-tolerant
unit CNI) (Kopetz and Millinger 1998). The basic
CNI and the FTU CNI are syntactically alike and
semantically closely related. From the point of view
of the host software, only minimal changes are needed
to port an application from a non-fault-tolerant
implementation to a fault-tolerant implementation.

Host Computer

FTU CNIin DPRAM

FTU Control

DatainROM 1 FTU Processor

asic mn

TTP Controller Chip

l |
- t >

- >
Figure 9: FTU Layer between the basic CNI and
the FTU CNI.

At present we have implemented the FT'U Layer
in software but plan to develop a hardware based FTU
layer implementation in the future.

6. Conclusions

In this paper the design principles and the
structure of the time-triggered architecture has been
presented. The TTA is a composable architecture that
supports a structured system design effort. At the
architecture design level, the properties of the
interfaces between the architectural units are specified
and frozen. At the component design level, the
components can be developed with respect to the
specified interfaces. The composability properties of
the architecture ensure that the system integration will
proceed without unintended side effect.

The TTA has been implemented on COTS
microcomputers with a special hardware board for the
TTP controller. More than 100 TTA nodes have been
installed and tested in a variety of application,
predominantly in the field of automotive electronics.



In the Brite Euram

brake, steer, etc.)
base architecture

project X-by-wire (X standing for
the TTA has been chosen as the
for the implementation of a safety

critical steer-by-wire application. Another ongoing

ESPRIT project,

the project TTA, has the goal to

develop a VLSI chip of the TTP controller. We expect
to have first silicon before the end of 1998.
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