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Abstract

This paper presents a formal methodology for the de-
sign, implementation and validation of reactive sys-
tems. The methodology has been applied to the design
of a Flight Management Systems (FMS) for a model
helicopter in the BEAR project[9]. POLIS[2], a de-
sign tool developed at the University of California at
Berkeley, is extensively used. The automation of the
design problem and the validation techniques provided
by this tool allow to shorten prototyping time and to
prove the correctness of the properties of the system.
Automatic code generation guarantees error free imple-
mentation, which is fundamental in safety critical ap-
plications. Simulation of the entire design is performed
using Ptolemy, a hierarchical heterogeneous simulation
environment.

1 Introduction

Reactive systems [7] react continuously to their envi-
ronment at the speed of environment. Reactive systems
are prominent in industrial process control, airplane or
automobile control, embedded systems, man-machine
interfaces, etc. They can be contrasted with interac-
tive systems, which react with the environment at their
own speed. This class covers operating systems, data
bases, networking, distributed algorithms, etc. Inter-
active and reactive systems deeply differ on the key
issue of behavioral determinism. Interactive systems
are naturally viewed as being non-deterministic, while
behavioral determinism is a highly desirable and often
mandatory of reactive systems. A real-time system is
defined as a reactive system that is subject to externally
defined timing constraints.

Flight Management Systems (FMS) were first proposed
for smart air-crafts in future Air Traffic Management
Systems (ATMS)[6] for decentralized air traffic control.
FMS are responsible for

e planning of the flight path, generating a proper se-
quence of flight modes, calculating a feasible tra-
Jectory and regulating an Unmanned Aerial Vehi-
cle (UAV) along the nominal trajectory.

e switching among different modes of operation to
handle situations like conflict resolution among

UAVs, obstacle avoidance, and flight envelope
protection.

FMS for UAV[10] are inherently reactive, since they re-
act to the environment by changing mode of operation,
as described above.

An FMS operates in a mission critical environment,
where reliability and safety are more important crite-
ria than performance. Formal verification and auto-
matic synthesis of implementations are the surest ways
to guarantee safety. Managing the design complexity
and heterogeneity is the key problem. The design ap-
proach should be based on the use of one or more formal
models of computation (MOC)[5] to describe the be-
havior of the system at a high level of abstraction. The
implementation of the system should be made using
automatic synthesis as much as possible from this high
level of abstraction, to ensure implementation that are
“correct by construction”. Validation should be done
at the highest possible levels of abstraction.

The POLIS[2] system is intended for control-dominated
systems whose 1mplementation is based on micro-
controller for tasks to be implemented in software and
Application Specific Integrated Circuits (ASICs) for
tasks to be implemented in hardware. The input to
POLIS is a combination of graphics and text describ-
ing the behavior of each single finite state machine in
the formal language ESTEREL. The analysis at the be-
havioral level can be carried out with formal tools. Per-
formance evaluation can be carried out by simulating
the behavior of the architecture selected with an ab-
stract timing model of processor in the heterogeneous
simulation environment offered by PTOLEMY[4]. In
our design example we carried several simulations with
different types of HW-SW partition and choices of mi-
croprocessors in order to validate the design.

Section 2 presents formal synthesis of reactive system
design. In Section 3, the example design and its rep-
resentation in the POLIS/Ptolemy domain is discussed
in details. Concluding remarks are offered in Section 4.



ESTEREL

i Synthesis i
SW Code + / \ Logic Netlist

RTOS

Formal
Verification

Co-Simulation

Ptolemy

Figure 1: Polis design flow chart

2 Polis Co-design Methodology

In the formal approach to the design of a control sys-
tem, the choice of the Model of Computation to repre-
sent the behavior of the system is often crucial. In order
to do it we need to know what are the main character-
istics of the system that we are going to implement and
then find the MOC that can capture most of the prop-
erties [5]. In the case of a reactive system, we need a
specification language that includes constructs for hier-
archy, preemption (input events arrive at irregular and
unpredictable times), concurrency and sequencing. A
widely used model for description of such system is the
Finite State Machine(FSM).

Definition 1 A Finite State Machine (FSM) is a quin-
tuple F = (I,0,X, R, F) where I is a finite set of input
symbols, O is a finite set of output symbols, X 1is a fi-
nite set of states, R C X 1is the set of initial states,
FCIxX xX xO s the transition relation.

A FSM contains all the desired properties and also, un-
der mild conditions, it is deterministic and completely
specified. The drawback of such a representation is the
difficulty posed on the possibility of data computation.
The FSM models purely reactive systems, while in al-
most all control application data computation is also
needed.

A more suitable model is the Extended Finite State
Machine (EFSM), which is a FSM where the transi-
tion relation may depend on a set of internal variables.
It operates on a set of finite-valued variables by using
arithmetic, relational, boolean operators and user de-
fined functions. The EFSM model has a fundamental
limitation: communication between EFSMs is totally
synchronous, therefore it is not implementable on a dis-
tributed environment where a combination of hardware
and software modules is used. Hardware and software
implementations are characterized by different behav-
ior in execution and communication. The desired MOC
should then reflect this situation. The necessity to ex-
tend the FSM semantics to include an asynchronous
communication mechanism brings to the choice of the
so called Co-Design Finite State Machine (CFSM).
A CFSM can be defined as a FSM which has also a

data computation part. CFSM exploits a locally syn-
chronous behavior. It produces an output in reaction to
an input assignment in zero time. Globally the CFSM
has an asynchronous behavior; each CFSM reads in-
puts, and produces outputs in an unbounded but finite
amount of time. Several specification languages can
be used to model CFSMs. POLIS uses synchronous
language to model each individual CFSM. The syn-
chronous approach is very attractive for several reasons.
Computation and internal communication take no time.
The behavior is totally predictable. The problem of
synchronization doesn’t exist. Determinacy allows for-
mal verification and the synchronous approach allows
translation in EFSM in a fully abstract way, so that
behaviorally equivalent specifications are mapped into
syntactically equivalent EFSMs. Communication be-
tween CFSMs happens by means of events which are
control signals that may or may not contain also data
information.

The high level specification language used by POLIS is
Esterel[l]. This language is very simple and contains
the necessary constructs for the description of our sys-
tem. Hierarchy is handled via procedure calls, preemp-
tion consists of two basic constructs , one which allows
the module to terminate its computation for the current
instant and one which does not, concurrency is specified
by using a parallel composition construct. Data manip-
ulation cannot be done naturally in Esterel. The user
needs to define functions outside the environment and
then link them in the program. Also the synchronous
hypothesis makes difficult to model the communica-
tion among subsystems that operate at different rates.
The timing constraints need to be specified outside Es-
terel. This will be assessed during the HW-SW synthe-
sis phase. Starting from the behavioral specification,
CFSMs are generated using the Software Hardware In-
termediate FormaT (SHIFT) language. The next step
is to connect the various CFSMs so generated. This can
be done in the simulation environment Ptolemy, which
we will discuss later. At this stage formal verification
can take place. This technique is very powerful but at
the same time computationally expensive. Performing
formal verification at the behavioral level allows detec-
tion of errors at an early stage and keeps the complexity
of the formal verification scheme low.

The next step involves the selection of an implemen-
tation architecture. The advantage of using formal
methods consists in the use of automatic synthesis
techniques. There are three fundamental decisions
to be taken: Partitioning, Architecture Selection and
Scheduling. These three steps are based on experience
and therefore the designer is allowed to choose. POLIS
provides libraries for several types of micro-controllers
for software implementation and ASICS for hardware
synthesis. POLIS provides a choice of schedulers, which
regulate the communication among CFSMs. After the
selection of the architecture is complete the system is
simulated within Ptolemy.

2.1 Ptolemy

Co-simulation is used in POLIS both for functional de-
bugging and for performance analysis during the archi-
tecture selection process. Hardware-Software (HW-
SW) co-simulation is generally performed with sepa-



rate simulation models. POLIS allows for HW-SW co-
simulation within the same environment. The basic
concept is to use synthesized C code to model all the
components of a system, regardless of their future im-
plementation. For the software partition the simulation
code is the same that will run on the target processor.
Depending on the selected architecture, each task will
take a specified number of clock to be executed (one
clock cycle for hardware, a number of cycles for software
depending on the selected target processor for software)
and in different execution constraint (concurrency for
hardware, mutual exclusion for software). The Ptolemy
system provides the simulation engine and the graphi-
cal interface. Among the various computation models
offered by Ptolemy, the discrete event (DE) model has
been used, since it matches the CSFM execution se-
mantics. Co-simulation provides a truthful estimate of
the performance of the system, i.e. of the capacity of
the software architecture to meet the timing constraint
imposed by the discretized dynamic system. In case the
designer doesn’t find the result satisfactory, the afore-
mentioned design process needs to be iterated. If, on
the other hand, the simulation results meet the specifi-
cations, synthesis can take place. POLIS provides au-
tomatic code generation which is specific to the selected
MIiCro-processor.

3 Design Example

This section presents an application of this design
methodology to the modeling and simulation of a FMS
for a UAV performing a particular task. The FMS
can be modeled by a hierarchical finite state machine.
The mission regards searching for objects of interest in
a well-defined area and performing investigation when
the object is found. The system can be decomposed
into three parts: the Flight Management System which
is responsible for planning and controlling the operation
of the UAV, a Detector for the detection and investi-
gation of objects of interest and the UAV (the plant to
be controlled). Figure 2 shows the planned mission. In
order to illustrate the functionality of the system we
put an object that the UAV will be able to sense along
path.
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Figure 2: Mission scenario.

The FMS consists of four layers, the strategic, tactical,
and trajectory planners, and the regulation layer, as de-

Strategic |_detect
Discrete Event [P T
System control points l ! conflict notification
Tactical
Planner DR
Yo l T replan
Trajectory
Planner
fhgyhdt rigd;g \ I tracking errors
Continous
System Regulation
Control Lawl
sensory information
Dynamics

Figure 3: System Architecture

scribed in Figure 3. Hierarchy is handled very naturally
in Esterel, as described in the previous section. Each
block is modeled as a FSM by specifying the desired
behavior. The individual modules are then composed
in Ptolemy to yield to complete system.

The system architecture in the Ptolemy domain is
shown in Figure 4. The stars represent the functional
blocks of different modules. In this section we give a
description of the role of each of the functional blocks.
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Figure 4: System block diagram in Ptolemy

The Strategic Planner is concerned with the planning
and execution of the central UAV mission. It designs a
coarse, self-optimal trajectory, which is stored in form
of a sequence way-points. gives a list of way points that
are planned for the mission. This layer also takes care of
the transition between the points, by acknowledging the
completion of a subtask and scheduling the next one.
When an object of interest is detected, the UAV transi-
tions to the investigation operation mode. The strate-
gic planner stores the current way point and resumes
when the investigation task terminates. In our exam-
ple the strategic planner contains a set of way points
P = {po,p1,p2, p3, pa}, where p; € R® for i = 0..4.

The Tactical Planner is responsible for the coor-
dination and execution of behaviors, and is able to
overrule the behavior proposed by the strategic plan-
ner, in case of safety critical situations such as colli-
sion avoidance, as shown in Figure 7. Given the la-



bels of the set points from the planner it first trans-
lates them into actual coordinates using a look-up ta-
ble, then gives the correct sequence of flight modes
needed to achieve the goal. When the detection oc-
curs the tactical planner switches to the investigation
mode (Fig. 7) and, given the coordinates of the de-
tected object, introduces a sequence of way points PI;
that will be tracked in order to complete the new task.
In our example the UAV will encounter the object while
flying from p; to ps, then the new sequence will be
po,p1, Pl Pls, Pl3, Pls, P11, p2, ps, pa} , where P
1s a stop-point, PIs is a point above the obJect and Pl3
i1s has the same coordinates as the previous point but
with lower altitude. Once the investigation has taken
place the search continues on the preplanned path.

The Trajectory Planner uses a detailed dynamic
model, sensory input, and the output trajectory, to de-
sign a full state and nominal input trajectory for the
UAV, and the sequence of flight modes necessary to ex-
ecute the dynamic plan. The trajectory planner, given
the information about the type of flight mode chosen
by the tactical planner, executes it choosing the corre-
sponding outputs and the appropriate controllers. Sev-
eral types of traJectorles can mterpolate the way pomts
In our design only a piece-wise continuous trajectory is
implemented, where the UAV stops at each point, as
shown in Figure 5.
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Figure 5: Piecewise linear trajectory

This strategy is the simplest and safest one because
it completely decouples the manceuvres and performs
them independently. Future work will include a higher
variety of different trajectories. The choice between
them can then be done on-line according to objectives
such as avoiding extremely aggressive manceuvres ( to
maintain the uncontrollable modes inside the range of
stability), collision avoidance, minimum fuel consump-
tion, minimum travel time and so on. At the comple-
tion of the submission the Tactical Planner sends the
acknowledgment signal to the Strategic Planner which
sends the next way point. The transition is restricted
in proper sequence which is shown in Figure 6.
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Figure 6: Transitions diagram

Each basic flight mode has then associated with it a

particular combination of control actions. Each time
an elementary flight mode becomes active the corre-
sponding type of controls are requested to be used at
the regulation layer.

The Regulation Layer, together with the plant, rep-
resents the continuous part of the system. The regula-
tion layer has access to sensory information about the
actual state of the UAV to generate control signal to
regulate it on the given trajectory. It consists of the
so-called auto-pilot, which receives the flight mode and
computes the input signals to the vehicle according to
the system state. There are four inputs to the plant, so
only four of the six degrees of freedom can be controlled.
Since we are assuming that input-output linearization
is applied in the inner loop, the control signals are used
to control the four selected outputs directly. After ap-
plying input-output linearization, the resulting system
is linear and a linear control law 1s applied.

The Detector has limited range of detection capability.
The image processing computing time together with the
view angle will give an upper bound on the maximum
cruise velocity. The detector communicates with the
tactical planner and the strategic planner. When de-
tection takes place, a preemptive signal is sent to the
tactical planner which switches to the investigation op-
erational mode, as shown in Figure 6. Once the investi-
gation 1s accomplished, the detector will assert a signal
to the tactical planner to indicate the end of investiga-
tion phase.
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Figure 7: FSM representation of Tactical Planner
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An aerial vehicle 1s represented by a rigid body moving
in a 3-dimensional space in response to gravity, aero-
dynamics, and propulsion. Due to the characteristics of
the aerial vehicle designed, the force and moment are
generated by different actuators which corresponding
to different control inputs. For aircraft, the control in-
puts are generated through engine, aileron, elevator and
rudder which produce thrust and 3-axis moments. For
an helicopter, the control inputs are generated through
engine, main rotor collective pitch, tail rotor collec-
tive pitch, longitudinal cyclic pitch, lateral cyclic pitch,
which produce thrust and 3-axis moments.

Following the work done by [8], the input—output sys-
tem is decoupled and linear. For our modeling purpose,
we could then use a second order linear system for each
output variable to model the Dynamics as:

Ug

Uy



I = u,

1/) = Uy.
This block then receives the control signals as inputs
and computes the evolution of the states using the
Newton Forward method of integration. Differential
flatness has been applied on approximate models of
aircraft[3, 11] and helicopter[8] in generating trajec-
tory. The flat outputs, positions and heading, have
been used to feedback-linearize the approximated he-
licopter model. Thus, the feedback-linearized system
can be treated as chains of integrators with redefined
inputs. By making use of the differential flatness prop-
erty, full states and nominal inputs can be recovered
from the outputs and their derivatives. Hence, any vio-
lation in the state and input constraint can be detected
and a new trajectory can be generated. In our case
pitch and roll trajectories can be reconstructed from
outputs and inputs.

4 Simulation and Implementation

To validate the design, we carried out several simula-
tions under different assumptions. The behavior simu-
lated was a search-and-investigate mission. The UAV
should deviate from the nominal path if the detector
finds an object of interest. The initial states are set to
zero, 1.e. idle position. The mission terminates when

the UAV lands at the point py4 (10,8,0).

First, as depicted in Figure 8, we simulated the be-
havior of the system under the synchronous hypothe-
sig, 1.e. in the absence of delay due to communication
and computation time. This corresponds to represent-
ing the system entirely in Esterel. This assumption
is often used to simulate the behavior of the system
but yields poor implementations since 1t requires im-
plementing the system either in synchronous hardware
or as a single task in software. This results in overheads
in space for hardware and in memory and sometimes in
running time for software.

Figure 8: Simulation result: Synchronous model: x,y, z, %

After the behavior has been simulated and verified, a
specific implementation has to be selected. Our first
architectural choice was to implement the algorithm
entirely in software on a RISC MIPS R3000 micro-
controller with a simple round-robin scheme to schedule

the tasks. The synchronous assumption was maintained
for the plant and the detector, thus implying that their
operation was considered as a single task for the oper-
ating system. The simulation results in Figure 9 show
that the timing constraint is met by the chosen archi-
tecture. Simulation of 8 minutes of actual running time
of the system was obtained with 5 minutes of simula-
tion time. At first sight, this result seems surprising
since simulation required less time than the actual time
that would have been required by the embedded system.
The explanation of this result is simple: the software is
run on a workstation whose processor is more powerful
than the micro-controller core!

The timing results needed to verify the correctness of
the implementation with respect to the real time con-
straints are obtained using the performance model used
for the controller. In particular, the number of cycles
required by each instruction in the instruction set of
the processor have to be provided. Because of the com-
plex architecture of modern microprocessors, the PO-
LIS group has developed a method to obtain the pa-
rameters of the performance model by running on an
evaluation board a set of tests.

The actual running time estimates provided by the sim-
ulation are not 100% accurate but it has been possi-
ble to demonstrate that the accuracy of the estimation
is acceptable (the actual running time on the imple-
mented system was within 20% of the estimation).

Figure 9: Simulation Result after HW-SW partition:
'r7 y7z7¢

Because of the speed of the simulation with the per-
formance estimation models (which include a model for
the operating system and the scheduler as well), several
different implementation choices can be tried. In partic-
ular, different micro-controllers and different scheduling
algorithms can be evaluated. Once several architectures
have been validated, the designer can choose the most
suitable architecture, depending on cost efficiency trade
off consideration.

To exemplify this point, we implemented the system
using a Motorola 68hcll, 8 bit micro-controller and a
round robin scheduler. The implementation yields an
unstable system, as shown in figure 10. Analysis on the
dynamical system shows that bandwidth of the system
is too high to achieve acceptable performance with a
slow processor. In particular, part of the design has to
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be implemented in hardware to meet the design spec-
ification with such architecture. Further simulations
show that the design specification is met if the regula-
tion layer is implemented with an ASIC. The switch-
ing condition between flight modes needs to be relaxed,
since the state information is not available to the tac-
tical planner at all times.

5 Conclusion

A formal approach to reactive system synthesis using
POLIS has been presented. A design example of FMS
of UAV has been exploited. For such a hierarchical sys-
tem with complex behavior, the behavior is specified
in Esterel and compiled into a network of CFSMs cho-
sen as the MOC for describing a locally synchronous
and globally asynchronous system. Formal verification
can be carried out with the CFSM model. After ver-
ification of the desired design properties, partition of
hardware and software can take place under the choice
provided by the designer. Automatic synthesis of hard-
ware, software and interface, including the Real Time
Operating System (RTOS), is then performed. In this
experiment, we found that a great value of the POLIS
system 1s in the quick system-level analysis that allows
an architectural optimization that would not be pos-
sible otherwise especially for complex systems such as
the ones analyzed in this paper.

The design 1s validated through simulation in Ptolemy
environment. However, 1t is clear that final validation
has to be carried out in a prototype implementation of
the entire system since the high-level simulation carried
out in the Ptolemy environment with POLIS models
and software synthesis methods is based on approxi-
mate performance models. It is our intention to build
such a system with the micro-processor selected in the
evaluation phase with the scheduling algorithm tested

in the simulation.
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