
?1

Component-Based Design of 
Embedded Control Systems

Luca Dealfaro
Chamberlain Fong
Tom Henzinger
Christopher Hylands
John Koo
Edward A. Lee
Jie Liu
Xiaojun Liu
Steve Neuendorffer
Sonia Sachs
Shankar Sastry
Win Williams

UC Berkeley

Hierarchical, Heterogeneous 
Modeling and Design

A model of 
computation governs 
the interaction of 
components at each 
level of the hierarchy. 
A submodel exposes 
a domain-polymorphic 
interface that governs 
the inter-domain 
semantics.

sensors

leader

Br Acc

Ba

bang-bang PID

follower

controller actuators

S



?2

Ptolemy II

Ptolemy II –
– Java based, network integrated
– Many domains implemented
– Multi-domain modeling
– XML syntax for persistent data
– Block-diagram GUI

– Extensible type system
– Code generator on the way

http://ptolemy.eecs.berkeley.edu

Domains Status

? Domains we understand well:
– Dataflow
– Process networks
– CSP
– Discrete events
– Continuous time

– Synchronous reactive
– Finite state machines

? Domains we are working on:
– Publish & subscribe
– Time triggered

Our focus is 
particularly on how 
these domains 
support real-time 
QOS 



?3

Concept Demonstration

? Networked sensors and actuators
? Multiple, networked controllers, controllees
? Hierarchical, heterogeneous design
? Domain polymorphic components
? Discovery
? Mutable systems

Experimental Setup

Ethernet Hub

Agilent

NCAP

Telemonitor

Tilt sensor

1451.2



?4

Networked Smart Sensors

Ethernet

Agilent

NCAP

Telemonitor

Tilt sensor

1451.2

HTTP 
interface

HTTP queries

Abstraction of the Sensor
as a Software Component

Ethernet

Agilent

NCAP

Telemonitor

Tilt sensor

1451.2

HTTP queries



?5

Smart Sensor + Ptolemy II

Tilt sensor connected to a plotter.

Issues Raised

? Concurrency management with I/O
– Separate thread handles communication
– Rendezvous with computational thread
– How to maintain time consistency?
– How to ensure no deadlock?



?6

Planned - Discovery

Ethernet

Agilent

NCAP

Telemonitor

Tilt sensor

Hub

JINI

1451.2

Register a Service

Planned - Discovery

Ethernet

Agilent

NCAP

Telemonitor

Tilt sensor

Hub

JINI

1451.2

Discover a Service



?7

Planned - Discovery

Ethernet

Agilent

NCAP

Telemonitor

Tilt sensor

Hub

JINI

1451.2

Download Interface Software

Planned - Discovery

Ethernet

Agilent

NCAP

Telemonitor

Tilt sensor

Hub

JINI

1451.2

Communicate

This would 
provide a vendor-
neutral software 
component.



?8

Actuator Setup

Proxy

serial port

IR tower

Lego Mindstorm

Linking the Tilt Sensor and 
Actuators



?9

Mutations – Dynamic Structural 
Changes to the Model

? Thread-safe Ptolemy II kernel
– Mutual exclusion protocol in the Workspace object.

? Domains control when mutations are committed.
– Mutations are queued with the Manager object.
– Manager executes mutations between iterations.
– Meaning of “iteration” is domain-dependent.

? In this example:
– The event thread in the UI queues mutation requests
– The executing model commits the mutations at safe points.

Publish and Subscribe

? Use Jini to discover the publish/subscribe fabric.
– Our current realization returns a JavaSpaces interface.
– Future realization will use OCP

? Real time
– Prioritized delivery, handling
– QOS is not part of JavaSpaces.



?10

Clock Publisher/Subscriber

Distributed Lego Controller

Tilt sensor data published, controller subscribes.

left = 4 * xTilt - 2 * yTilt
right = 4 * xTilt + 2 * yTilt



?11

Other Examples We Have 
Implemented

? Other Lego models:
– Modal controller for navigation
– Feedback of sensor data

? Hybrid systems:
– Car tracking example
– Helicopter multi-modal controller

? Pioneer robot control
– Multi-agent coordination
– Jini discovery of robots
– Publish-and-subscribe task distribution

Styles of Publish and Subscribe 
Interactions

? time stamped events?
? globally time stamped?
? reliable delivery?
? ordered delivery?
? signal coordination?
? synchronous delivery?
? blending of multiple publishers?
? dynamic redirection/resourcing?
? persistence?
? history?



?12

A Key Idea

? We need a variety of interaction mechanisms.
? In the prototype,

– Jini delivers an interaction mechanism service by 
delivering code that realizes that interaction 
mechanism.

? A "meta OCP" could similarly deliver any of 
several interaction mechanisms.

Example 1

? Component says:
– "I need a reliable stream-based delivery mechanism 

to get sampled data from here to there."
? Meta-OCP says:

– "OK, here's some code for you and the recipient of 
your data."

? Delivered code uses TCP/IP and sockets, 
bypassing any central infrastructure.
– E.g., Transporting audio data.



?13

Example 2

? Component says:
– "I need a shared data repository visible to a number 

of components."
? Meta-OCP says:

– "OK, here's some code for you and the recipient of 
your data."

? Delivered code interacts with a Linda-style 
tuple space.
– E.g., reading the current temperature from a sensor.

Example 3

? Component says:
– "I need to send time-stamped data that must be 

delivered and dealt with within 3 msec."

? Meta-OCP says:
– "OK, here's some code for you and the recipient of 

your data."

? Delivered code interacts with TAO.
– E.g., deliver motion control data.



?14

Next Steps

? OCP integration
? Define publish and subscribe semantics
? Discovery of sensor/actuator services
? Abstraction of sensor/actuator services
? Real-time QOS
? Time-driven domain (Masaccio)
? Multi-robot coordination
? Improved UI (particularly to help debugging)

The Demo Builders…

? Chamberlain Fong
? Christopher Hylands
? Jie Liu
? Xiaojun Liu
? Steve Neuendorffer
? Sonia Sachs
? Win Williams


