# Hybrid Control Synthesis Real-Time Control Problems for UAV

# DARPA SEC KICKOFF August 2, 1998

S. Shankar Sastry Edward A. Lee

**Electronics Research Laboratory University of California, Berkeley** 

# Problem: Design of Intelligent Control Architectures for Distributed Multi-Agent Systems

- An architecture design problem for a distributed system begins with specified safety and efficiency objectives for each of the system missions (surveillance, reconnaissance, combat, transport) and aims to characterize control, observation and communication.
  - Mission and task decomposition among different agents
  - Inter-agent and agent—mother ship coordination
  - Continuous control and mode switching logic for each agent
  - Fault management
- This research attempts to develop fundamental techniques, theoretical understanding and software tools for distributed intelligent control architectures with a model UAV as an example.

## Fundamental Issues for Multi-Agent Systems

- Central control paradigm breaks down when dealing with distributed multi-agent systems
  - Complexity of communication, real-time performance
  - Risk of single point failure
- Completely decentralized control
  - Has the potential to increase safety, reliability and speed of response
  - But lacks optimality and presents difficulty in mission and task decomposition
- Real-world environments
  - Complex, spatially extended, dynamic, stochastic and largely unknown
- We propose a hierarchical perception and control architecture
  - Fusion of the central control paradigm with autonomous intelligent systems
  - Hierarchical or modular design to manage complexity
  - Inter-agent and agent-ship coordination to achieve global performance
  - Robust, adaptive and fault tolerant hybrid control design and verification
  - Vision-based control and navigation (to be covered in research but not central focus of this grant)

#### **Autonomous Control of Unmanned Air Vehicles**

- UAV missions
  - Surveillance, reconnaissance, combat, transport
- Problem characteristics
  - Each UAV must switch between different modes of operation
    - Take-off, landing, hover, terrain following, target tracking, etc.
    - Normal and faulted operation
  - Individual UAVs must coordinate with each other and with the mothership
    - For safe and efficient execution of system-level tasks: surveillance, combat
    - For fault identification and reconfiguration
  - Autonomous surveillance, navigation and target tracking requires feedback coupling between hierarchies of observation and control

# Research Objectives: Design and Evaluation of Intelligent Control Architectures for Multi-agent Systems such as UAVs

#### **Research Thrusts**

- Intelligent control architectures for coordinating multi-agent systems
  - Decentralization for safety, reliability and speed of response
  - Centralization for optimality
  - Minimal coordination design
- Verification and design tools for intelligent control architectures
  - Hybrid system synthesis and verification (deterministic and probabilistic)
- Perception and action hierarchies for vision-based control and navigation
  - Hierarchical aggregation, wide-area surveillance, low-level perception

## **Experimental Testbed**

• Control of multiple coordinated semi-autonomous BEAR helicopters

#### **Methods**

- Formal Methods
  - Hybrid systems (continuous and discrete event systems)
    - Modeling
    - Verification
    - Synthesis
  - Probabilistic verification
  - Vision-based control

- Semi-Formal Methods
  - Architecture design for distributed autonomous multi-agent systems
  - Hybrid simulation
  - Structural and parametric learning
  - Real-time code generation
  - Modularity to manage:
    - Complexity
    - Scalability
    - Expansion

## Hybrid Multiagent Control Architectures

- Coordinated multi-agent system
  - Missions for the overall system: surveillance, combat, transportation
  - Limited centralized control
    - Individual agents implement individually optimal (linear, nonlinear, robust, adaptive) controllers and coordinate with others to obtain global information, execute global plan for surveillance/combat, and avoid conflicts
  - Mobile communication and coordination systems
    - Time-driven for dynamic positioning and stability
    - Event-driven for maneuverability and agility
- Research issues
  - Intrinsic models
  - Supervisory control of discrete event systems
  - Hybrid system formalism

#### **UAV Control Architecture**



## Preliminary Control Architecture for Coordinating UAVs

- Regulation Layer (fully autonomous)
  - Control of UAV actuators in different modes: stabilization and tracking
- Tactical Layer (fully autonomous)
  - Safe and efficient trajectory generation, mode switching
  - Strategic Layer (semi-autonomous)
  - Generating trajectory constraints and influencing the tasks of other agents using UAV-UAV coordination for efficient
    - Navigation, surveillance, conflict avoidance
  - Fault management
  - Weapons configuration
- Mission Control Layer (centralized)
  - Mission planning, resource allocation, mission optimization, mission emergency response, pilot interface

### Research Thrust: Verification and Design Tools

The conceptual underpinning for intelligent multi-agent systems is the ability to verify sensory-motor hierarchies perform as expected

- Difficulties with existing approaches:
  - Model checking approaches (algorithms) grow rapidly in computational complexity
  - Deductive approaches are ad-hoc
- We are developing <u>hybrid control synthesis</u> approaches that solve the problem of <u>verification</u> by deriving <u>pre-verified</u> hybrid system.
  - These algorithms are based on game-theory, hence worst-case safety criterion
  - We are in the process of relaxing them to probabilistic specifications.

## Symbolic Model Checking



### HyTech [Henzinger, Ho & Wong-Toi]



## HyTech

- Applications of HyTech
  - Automative (engine control [Villa], suspension control [Muller])
  - Aero (collision avoidance [Tomlin], landing gear control [Najdm-Tehrani])
  - Robotics [Corbett], chemical plants [Preussig]
  - Academic benchmarks (audio control, steam boiler, railway control)
- Improvements necessary for next level
  - Approximate and probabilistic, instead of exact analysis
  - Compositional and hierarchical, instead of global analysis
  - Semialgorithmic and interactive, instead of automatic analysis

## Hybrid Control Synthesis and Verification

#### Approach

- The heart of the approach is not to verify that every run of the hybrid system satisfies certain safety or liveness parameters, rather to ensure critical properties are satisfied with a certain safety critical probability
- Design Mode Verification (switching laws)
  - To avoid unstable or unsafe states caused by mode switching (takeoff, hover, land, etc.)
- Faulted Mode Verification (detection and handling)
  - To maintain integrity and safety, and ensure gradual degraded performance
- Probabilistic Verification (worst case vs. the mean behavior)
  - To soften the verification of hybrid systems by rapprochement between Markov decision networks

## **Controller Synthesis for Hybrid Systems**

- The key problem in the design of multi-modal or multi-agent hybrid control systems is a synthesis procedure.
- Our approach to controller synthesis is in the spirit of controller synthesis for automata as well as continuous robust controller synthesis. It is based on the notion of a game theoretic approach to hybrid control design.
- Synthesis procedure involves solution of Hamilton Jacobi equations for computation of safe sets.
- The systems that we apply the procedure to may be proven to be at best semi-decidable, but approximation procedures apply.
- Latex presentation of synthesis technique goes here.

### Research Thrust: Perception and Action Hierarchies

Design a perception and action hierarchy centered around the vision sensor to support surveillance, observation, and control functions

- Hierarchical vision for planning at different levels of control hierarchy
  - Strategic or situational 3D scene description, tactical target recognition, tracking, and assessment, and guiding motor actions
- Control around the vision sensor
  - Visual servoing and tracking, landing on moving platforms

#### What Vision Can Do for Control

- Global situation scene description and assessment
  - Estimating the 3D geometry of the scene, object and target locations, behavior of the objects
    - Allows looking ahead in planning, anticipation of future events
    - Provides additional information for multi-agent interaction
- Tactical target recognition and tracking
  - Using model-based recognition to identify targets and objects, estimating the motion of these objects
    - Allows greater flexibility and accuracy in tactical missions
    - Provides the focus of attention in situation planning

#### Relation between Control and Vision



- Higher-level visual processing: precise, global information, computational intensive
- Lower-level visual processing: local information, fast, higher ambiguity

#### **Research Contributions**

- Fundamental Research Contributions
  - Design of hybrid control synthesis and verification tools that can be used for a wide range of real-time embedded systems
  - Design of simulation and verification environments for rapid prototyping of new controller designs
  - Hierarchical vision for planning at different levels of control hierarchy
    - Control around the vision sensor
- Our multi-agent control architecture can be used for many applications
  - Military applications
    - UAVs, simulated battlefield environment, distributed command and control, automatic target recognition, decision support aids for human-centered systems, intelligent telemedical system
  - General engineering applications
    - Distributed communication systems, distributed power systems, air traffic management systems, intelligent vehicle highway systems, automotive control

#### Research Schedule



#### **Deliverables**

| Task                                    | Duration     | Deliverables                   |
|-----------------------------------------|--------------|--------------------------------|
| Intelligent Control Architectures (SSS) |              |                                |
| Specification Tools                     | 8/98 - 11/98 | software, technical reports    |
| Design Tools                            | 8/98 - 9/99  | software, technical reports    |
| Architecture Evaluation Environment     | 8/98- 12/00  | software, technical reports    |
| UAV Application                         | 8/98 - 8/00  | experiments, technical reports |
| Synthesis Toolkit (SSS, TAH)            |              |                                |
| Design Mode Verification                | 8/98 - 7/99  | software, technical reports    |
| Faulted Mode Verification               | 1/99- 12/99  | software, technical reports    |
| Probabilistic Verification              | 9/98 - 9/99  | software, technical reports    |
| Simulation Toolkit (EAL)                |              |                                |
| Generalized Hybrid systems              | 8/98 - 12/98 | technical reports, software    |
| Ptolemy based hybrid systems            | 8/98- 8/99   | software                       |
| Matlab + SHIFT comparison               | 8/98-8/00    | technical reports, software    |
| Synthesis + Verification environment    | 8/99 -8/00   | software                       |

## **Expected Accomplishments**

Controller synthesis for hybrid systems.

Developed algorithms and computational procedures for designing verified hybrid controllers optimizing multiple objectives

Multi-agent decentralized observation problem.
 Designed inter-agent communication scheme to detect and isolate distinguished events in system dynamics

• SmartAerobots. 3D virtual environment simulation.

Visualization tool for control schemes and vision algorithms—built on top of a simulation based on mathematical models of helicopter dynamics

## **Berkeley Team**

| Name           | Role                         | Tel                                                | E-mail                             |
|----------------|------------------------------|----------------------------------------------------|------------------------------------|
| Shankar Sastry | Principal<br>Investigator    | (510) 642-7200<br>(510) 642-1857<br>(510) 643-2584 | sastry@robotics.eecs.berkeley.edu  |
| Edward Lee     | Co-Principal<br>Investigator | (510) 642-7597                                     | eal@eecs.berkeley.edu              |
| John Lygeros   | Postdoc                      | (510) 643-5795                                     | lygeros@robotics.eecs.berkeley.edu |
| George Pappas  | Grad Student<br>/ Postdoc    | (510) 643-5806                                     | gpappas@robotics.eecs.berkeley.edu |