

- Modeling abstraction of
 - Continuous systems with phased operation (e.g. walking robots, mechanical systems with collisions, circuits with diodes)
 - Continuous systems controlled by discrete inputs (e.g. switches, valves, digital computers)
 - Coordinating processes (multi-agent systems)
- Important in applications
 - Hardware verification/CAD, real time software
 - Manufacturing, communication networks, multimedia
- Large scale, multi-agent systems
 - Automated Highway Systems (AHS)
 - Air Traffic Management Systems (ATM)
 - Uninhabited Aerial Vehicles (UAV), Power Networks

- Decidability requires the bisimulation algorithm to
 - Terminate in finite number of steps and
 - Be computable
- For the bisimulation algorithm to be computable we need to
 - Represent sets symbollically,
 - Perform boolean combinations on sets
 - Check emptyness of a set,
 - Compute Pre(P) of a set P
- Class of sets and vector fields must be topologically simple
 - Set operations must not produce pathological sets
 - Sets must have desirable finiteness properties

