
1

5/99 DARPA Software Enabled Control, UC Berkeley

 Hybrid System Design and Implementation
Methodologies for Multi-Vehicle Multi-Modal Control

 Shankar Sastry, Thomas Henzinger and EdwardLee

Alberto Sangiovanni Vincentelli

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley

Statement of Work

l Thrust I: Experimental Evaluation of Multi-Vehicle Control
System Designs. Run Time Executions:

 1. Mode Switching in UAVs: flight envelop protection,
 survivability in normal modes of operation.

2. Degraded Modes of Operation: loss of communication,
loss of individual sensors, actuators.

 3. Multiple UAV Coordination: formation flying, pursuit-
evasion scenarios.

l Thrust II Multi-modal Control Derivation and Analysis.
Design Tools. Design Tools:

 1. Algorithmic Analysis for Nonlinear Hybrid Control
 2. Hierarchical Hybrid Control Design, Modular techniques
 3. Model Reduction and Conservative Approximatons

2

Statement of Work Part II

l Thrust III: Hybrid Model Simulation and Implementation on
the Open Control Platform. Run Time Implementation.

1. Hybrid Multi-Vehicle Model Simulation: mixed models of
computation.
2. Structuring Mechanisms for Hybrid Models: for managing
complexity.
3. Executability of Hybrid Models: determinacy,
receptiveness.
4. Architectural Mapping and Real time Analysis of Hybrid
Control Designs: mapping “proven” designs onto OCP and
to provide “guarantees” for different implementations:
synchronous at low level, Corba/Tao at networked level?
5. Robustness and Error Analysis of Hybrid Control
Designs.

Statement of Work Part II

l Thrust III : Hybrid Model Simulation and Implementation on
the Open Control Platform. Run Time Implementation.

1. Hybrid Multi-Vehicle Model Simulation: mixed models of
computation.
2. Structuring Mechanisms for Hybrid Models: for managing
complexity.
3. Executability of Hybrid Models: determinacy,
receptiveness.
4. Architectural Mapping and Real time Analysis of Hybrid
Control Designs: mapping “proven” designs onto OCP and
to provide “guarantees” for different implementations:
synchronous at low level, Corba/Tao at networked level?
5. Robustness and Error Analysis of Hybrid Control
Designs.

3

Statemement of Work Part III

l Thrust IV: Probabilistic Design and Active Fault Handling
for Hybrid Systems. Design Time / Real Time.
1. Probabilistic Control: when specs cannot be met
deterministically.
2. Probabilistic Analysis: probabilistic estimates of safe and
desired behavior.
3. On-line Customization of Control: Active Hybrid Control:
“adaptive control” during operation of system, embedding
design abstractions.

TCP/IPTCP/IP

Wireless LAN

GROUNDSTATION
VIRTUAL COCKPIT

 GRAPHICAL
EMMULATION

WIRELESS
HUB

System Configuration

4

Motivation
ll GoalGoal

–– Design a multi-agent multi-modal control system forDesign a multi-agent multi-modal control system for
Unmanned Aerial Vehicles (Unmanned Aerial Vehicles (UAVsUAVs))

•• Intelligent coordination among agentsIntelligent coordination among agents

•• Rapid adaptation to changing environmentsRapid adaptation to changing environments
•• Interaction of models of operationInteraction of models of operation

–– GuaranteeGuarantee
•• SafetySafety

•• PerformancePerformance
•• Fault toleranceFault tolerance
•• Mission completionMission completion

Conflict ResolutionConflict Resolution
Collision AvoidanceCollision Avoidance
Envelope ProtectionEnvelope Protection

Tracking ErrorTracking Error
Fuel ConsumptionFuel Consumption
Response TimeResponse TimeSensor FailureSensor Failure

Actuator FailureActuator Failure Path FollowingPath Following
Object SearchingObject Searching
Pursuit-EvasionPursuit-Evasion

Motivation

ll ExampleExample
–– Envelope Protecting ModeEnvelope Protecting Mode
–– Normal Flight ModeNormal Flight Mode

Safety
Invariant
 ↑↓
Liveness
Reachability HierarchicalHierarchical

Hybrid SystemHybrid System

5

System Design Flow

ll Mission SpecificationsMission Specifications

ll System IdentificationSystem Identification
ll Controller SynthesisController Synthesis

ll Hybrid System SynthesisHybrid System Synthesis

ll Hierarchical Hybrid System SynthesisHierarchical Hybrid System Synthesis
ll VerificationVerification

ll SimulationSimulation

ll Embedded System SynthesisEmbedded System Synthesis

ll ValidationValidation

Safety/Mission CompletionSafety/Mission Completion

Path Following/Object Searching/Pursuit-EvasionPath Following/Object Searching/Pursuit-Evasion

Nonlinear Model/Linear ModelNonlinear Model/Linear Model

Envelope Protection/Tracking/RegulationEnvelope Protection/Tracking/Regulation

Conflict Resolution/Collision Avoidance/Flight Mode SwitchingConflict Resolution/Collision Avoidance/Flight Mode Switching

Flight Management SystemFlight Management System

Hierarchical Hybrid SystemHierarchical Hybrid System

Simulation/EmulationSimulation/Emulation

HW/SW+RTOSHW/SW+RTOS

What Are Hybrid Systems?
 Dynamical systems with interacting

continuous and discrete dynamics

6

Why Hybrid Systems?

l Modeling abstraction of
– Continuous systems with phased operation (e.g.

walking robots, mechanical systems with collisions,
circuits with diodes)

– Continuous systems controlled by discrete inputs (e.g.
switches, valves, digital computers)

– Coordinating processes (multi-agent systems)
l Important in applications

– Hardware verification/CAD, real time software
– Manufacturing, communication networks, multimedia

l Large scale, multi-agent systems
– Automated Highway Systems (AHS)
– Air Traffic Management Systems (ATM)
– Uninhabited Aerial Vehicles (UAV), Power Networks

Control Challenges
l Large number of semiautonomous agents
l Coordinate to

– Make efficient use of common resource
– Achieve a common goal

l Individual agents have various modes of operation
l Agents optimize locally, coordinate to resolve conflicts
l System architecture is hierarchical and distributed
l Safety critical systems

Challenge: Develop models, analysis, and synthesis tools for
designing and verifying the safety of multi-agent systems

7

Hybrid Automata
l Hybrid Automaton

– State space
– Input space
– Initial states
– Vector field
– Invariant set
– Transition relation

l Remarks:
– countable,
– State
– Can add outputs, etc.

H = (X ; V; I n i t ; f ; I n v; R)

X = X C â X D

V = VC âVD

I n i t ò X
f : X âV ! <

n

I n v òX âV

R : X âV ! 2X

X D ; VD X C = <
n ; VC ò<

m

x = (q; y) 2 X

Executions
l Hybrid time trajectory, , finite or infinite

with

l Execution with and

– Initial Condition:

– Discrete Evolution:

– Continuous Evolution: over , continuous,

piecewise continuous,

and
l Remarks:

– x, v not function, multiple transitions possible
– q constant along continuous evolution
– Can study existence uniqueness
– Use to denote the set of executions of

ü = f[üi ; ü0i]g
N
i= 0

ü0ià1 = üi ô ü0i
ÿ = (ü; x ; v) x : ü ! X ; v : ü ! V

x (ü0) 2 I n i t

x (üi+ 1) 2 R(x (ü0i) ; v(ü0i))

x

(x(t); v(t)) 2Inv;8t 2[üi; ü0i)
xç = f (x; v)

[üi ; ü0i] v

EH H

ÿ

ÿ

8

Controller Synthesis

l Consider plant hybrid automaton, inputs partitioned to:
– Controls, U
– Disturbances, D

l Controls specified by “us”
l Disturbances specified by the “environment”

– Unmodeled dynamics
– Noise, reference signals
– Actions of other agents

l Memoryless controller is a map
l The closed loop executions are

g : X ! 2U

EH g = f(ü; x ; (u ; d)) 2EH j8t 2ü; u(t) 2 g(x (t))g

Controller Synthesis Problem

l Given H and find g such that

l A set is controlled invariant if there exists a
controller such that all executions starting in remain in

Proposition: The synthesis problem can be solved iff there
exists a unique maximal controlled invariant set with

l Seek maximal controlled invariant sets & (least restrictive)
controllers that render them invariant

l Proposed solution: treat the synthesis problem as a non-
cooperative game between the control and the disturbance

8(ü; x ; (u ; d)) 2EH g; 8t 2ü; x(t) 2F
F ò X

W ò X
W W

I n it ò W òF

9

Gaming Synthesis Procedure

l Discrete Systems: games on graphs, Bellman equation
l Continuous Systems: pursuit-evasion games, Isaacs PDE
l Hybrid Systems: for define

– states that can be forced to jump to K
Kby u

– states that may jump out of K for some
d

– states that whatever u does can be
continuously driven to K avoiding L by u

 Initialization:
 while do

 end

K ; L ò F

P r eu(K) ò X

P r ed(K) ò X

R ea ch (K ; L) ò X

W0 = F ; Wà1 = ;; i = 0

W i
6= W ià1

i = i + 1
W i+ 1 = W i

nR ea ch (P r eu(Wi) ; P r ed(W i))

K
u

dK

u
K L d

Proposition: If the algorithm terminates, the fixed point is
the maximal controlled invariant subset of F

Proposition: If the algorithm terminates, the fixed point is
the maximal controlled invariant subset of F

Algorithm Interpretation
X

(W i) c

P r e d(W i)
P r eu(W i)

R ea ch (P r ed(W i); P r eu(W i))

10

Computation
l One needs to compute , and
l Computation of the Pre is straight forward (conceptually!):

invert the transition relation R

l Computation of Reach through a pair of coupled Hamilton-
Jacobi partial differential equations

P r eu P r ed R ea ch

P r e d(K) = fx 2 X jx 2 K c

P r e u (K) = fx 2 K j9u 2 U; 8d 2 D ; (x ; (u ; d)) 62 I n v ^
R (x ; (u ; d)) ò K g

8u 2 U; 9d 2 D ; R (x ; (u ; d)) \ K c
6= ;g

Reach Set Computation
Can be done one discrete “location”, ,at a time
Assume there exist real valued functions k, l such that

Solve the partial differential equations :

with initial condition and
where the equations are coupled through their Hamiltonian

(and likewise for)

K = fy 2 X C j k(y) < 0g; L = fy 2 X C j l(y) ô 0g

q 2 X D

@J K =@t = àm in 0; H ãK (y; @J K =@y)è é@J L =@t = à m in 0; H ãL (y; @J L =@y)è éJ K (y; 0) = k(y) J L (y; 0) = l(y)

H ãK (y; p) = m in
u2U

m ax
d2D

pTf (q; y; u ; d) i f J L (y; t) > 0

H ãK (y; p) = 0 if J L (y; t) ô 0

H ãL(y; p)

11

Transition Systems

l Transition System
l Define for

l Given equivalence relation define

T = (Q ; Î ; ! ; Q O; Q F)
û 2 Î ; P ò Q

P r eû(P) = fq 2 Q j9p 2 P a n d q ! û pg
øò Q âQ

T= ø= (Q = ø; Î ; ! ø; Q O= ø; Q F = ø)

l A ~ block is a union of equivalence classes

Q O

Q F

Bisimulations of Transition Systems
A partition ~ is a bisimulation iff

– are ~ blocks
– For all and all ~ blocks is a ~ block

A partition ~ is a bisimulation iff
– are ~ blocks
– For all and all ~ blocks is a ~ block

l Why are bisimulations important?

Q O ; Q F

û 2 Î P ; P r eû(P)

l Alternatively, for P 1; P 2 2 Q = ø; P 1 \ P r eû(P 2) = ; or P 1

Q O

Q F

P r e û(Q F)

12

Bisimulation Algorithm
initialize :
while such that

define

refine

Q = ø= fQ O; Q F ; Q n(Q O [Q Fg
9P 1; P 2 2 Q = ø; û 2 Î

;6= P 1 \ P r eû(P 2)6= P 1

R 1 = P 1 \ P r eû(P 2) ; R 2 = P 1 nP r eû(P 2)

Q = ø= (Q = ønfP 1g) [fR 1; R 2g

Q O

Q F

P r e û(Q F)

l If algorithm terminates, we obtain a finite bisimulation

Bisimulation Algorithm

Initialize

for each

while such that

 define

 refine

end while; end for

X = ø= [q Sq

9P 1; P 2 2Sq ;6= P 1 \ P r eü(P 2)6= P 1

R 1 = P 1 \ P r eü(P 2) ; R 2 = P 1 nP r eü(P 2)

Sq = (Sq nfP 1g) [fR 1; R 2g

l Algorithm must terminate for each discrete location

l Refinement process is therefore decoupled
l Consider for each discrete state the finite collection of sets

l Let be a partition compatible with
Aq = fI (q); (X O)q; (X F) qg[fG (e) ; R (e)je 2 E g

Sq Aq

q 2 X D

13

l Decidability requires the bisimulation algorithm to
– Terminate in finite number of steps and
– Be computable

l For the bisimulation algorithm to be computable we need to
– Represent sets symbollically,
– Perform boolean combinations on sets
– Check emptyness of a set,
– Compute Pre(P) of a set P

l Class of sets and vector fields must be topologically simple
– Set operations must not produce pathological sets
– Sets must have desirable finiteness properties

Computability & Finitiness

O-Minimal Theories

l A definable set is

 A theory of the reals is called o-minimal if every definable
subset of the reals is a finite union of points and intervals

l Example: for polynomial
l Recent o-minimal theories

 Semilinear Sets

 Semialgebraic Sets
 Exponential Flows
 Subanalytic Sets (bounded)
 Spirals ???

f(x 1; . . .; x n) 2<
n

jþ(x 1; . . .; x n)g

(<; < ; + ; 0; 1)
(<; < ; + ; â ; 0; 1)

(<; < ; + ; â ; e x ; 0; 1)
(<; < ; + ; â ; ffêg; 0; 1)
(<; < ; + ; â ; e x ; ffêg; 0; 1)

fx 2<jp(x) > 0g p(x)

Exponential flows

?

14

O-Minimal Hybrid Systems
A hybrid system H is said to be o-minimal if

• the continuous state lives in
• For each discrete state, the flow of the vector field is

complete
• For each discrete state, all relevant sets and the flow of

the vector field are definable in the same o-minimal
theory

Main TheoremMain Theorem
Every o-minimal hybrid system admits a Every o-minimal hybrid system admits a finitefinite bisimulationbisimulation..

l Bisimulation alg. terminates for o-minimal hybrid systems
l Various corollaries for each o-minimal theory

<
n

Controlled Invariance Problem

l Discrete Time System : collection H=(X,V,Init,f)
– X set of state variables
– V = (U,D) set of input and disturbance variables
– Init set of initial states
– f : X × V → 2X reset relation

l Controlled Invariance Problem: Given a discrete time system H,
and a set F ⊂ X, compute W, the maximal controlled invariant
subset of F, and g(x), the least restrictive controller

15

Controlled Invariance Algorithm

()
() (){ }

(){ }






∉
∈=∈∀∈=

=

+=
=∈∀∈∃∈==

≠

===

≥

+

+

−

Wx

WxWduxfduxg

WW

ll

WduxfduWxWW

WW

lWFW

C

l

l

Clll

Cll

ˆ U

ˆˆ),,(|)(ˆ

 ˆ set

 whileend

1

ˆ),,(, | Pre

do while

0 , ,tion initializa

0

1

1

10

φ

φ

φ

I

I

I

I

DU

DU

X

Implementation for Linear DTS

l X = ℜn, U = {u|Eu≤η}, D = {d|Gd≤γ}, f = {Ax+Bu+Cd},
 F = {x|Mx≤β}.
l Pre(Wl) = {x | ϕl(x)}

 ϕl(x) = ∃u ∀d | [Mlx≤βl]c[Eu≤η]∧
 [(Gd>γ)∨(MlAx+MlBu+MlCd ≤βl)]

l Implementation
– Quantifier Elimination on d: Linear Programming
– Quantifier Elimination on u: Linear Algebra
– Emptiness: Linear Programming
– Redundancy: Linear Programming

16

Implementation for Linear DTS

l Q.E. on d: [(Gd>γ)∨(MlAx+MlBu+MlCd ≤ βl)] ⇔

[MlAx+MlBu+max{MlCd | Gd≤γ}≤βl)]

l Q.E. on u: [Eu≤η] ∧ [MlAx+MlBu+δ(MlC) ≤ βl)] ⇔

[Λl(MlAx+δ(MlC)) ≤ Λlβl] where ΛlMlB=0, ΛlE=0, Λlη≥0, Λl≥0

l Emptiness min{t | M‘x ≤ β‘+(1...1)Tt} > 0 where

M‘ = [Ml ; ΛlMlA] and β‘ = [βl ; Λl(βl -δ(MlC))]

l Redundancy max{mi
T x | M‘x ≤ β‘} ≤ βi

‘

Decidability Results for Algorithm

The controlled invariant set calculation problem is
l Semi-decidable in general.
l Decidable when F is a rectangle, and A,b is in controllable

canonical form for single input single disturbance.

Extensions:
Hybrid systems with continuous state evolving according to

discrete time dynamics: difficulties arise because sets may not
be convex or connected.

There are other classes of decidable systems which need to be
identified.

17

-100 -50 0 50 100
-100

-50

0

50

100
Iteration 1

-100 -50 0 50 100
-100

-50

0

50

100
Iteration 2

Example 1

2 states, 1 input, 1 disturbance, 4 constraints
Converges in 2 iterations

18

0 50 100
-40

-20

0

20

40

60

80
Iteration 1

0 50 100
-40

-20

0

20

40

60

80
Iteration 2

0 50 100
-40

-20

0

20

40

60

80
Iteration 3

Example 2

2 states, 1 input, 1 disturbance, 4 constraints
converges in an infinite number of iterations

