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Statement of Work

e Thrust I: Experimental Evaluation of Multi-Vehicle Control
System Designs. Run Time Executions:

1. Mode Switching in UAVs: flight envelop protection,
survivability in normal modes of operation.

2. Degraded Modes of Operation: loss of communication,
loss of individual sensors, actuators.

3. Multiple UAV Coordination: formation flying, pursuit-
evasion scenarios.

e Thrust Il Multi-modal Control Derivation and Analysis.
Design Tools. Design Tools:

1. Algorithmic Analysis for Nonlinear Hybrid Control
2. Hierarchical Hybrid Control Design, Modular techniques
3. Model Reduction and Conservative Approximatons




Statement of Work Part Il

e Thrust Ill: Hybrid Model Simulation and Implementation on
the Open Control Platform. Run Time Implementation.

1. Hybrid Multi-Vehicle Model Simulation: mixed models of
computation.

2. Structuring Mechanisms for Hybrid Models: for managing
complexity.

3. Executability of Hybrid Models: determinacy,
receptiveness.

4. Architectural Mapping and Real time Analysis of Hybrid
Control Designs: mapping “proven” designs onto OCP and

to provide “guarantees” for different implementations:
synchronous at low level, Corba/Tao at networked level?

5. Robustness and Error Analysis of Hybrid Control

Designs.
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Statemement of Work Part Il

e Thrust IV: Probabilistic Design and Active Fault Handling
for Hybrid Systems. Design Time / Real Time.
1. Probabilistic Control: when specs cannot be met
deterministically.
2. Probabilistic Analysis: probabilistic estimates of safe and
desired behavior.
3. On-line Customization of Control: Active Hybrid Control:
“adaptive control” during operation of system, embedding
design abstractions.
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Motivation

e Goal

— Design a multi-agent multi-modal control system for
Unmanned Aerial Vehicles (UAVs)

Intelligent coordination among agents
Rapid adaptation to changing environments
Interaction of models of operation

Conflict Resolution
— Guarantee Coll -
Olll Tracking Error
Safety =

24 Path Following
Object Searching
Pursuit-Evasion

Mission comipietion

e Example
— Envelope Protecting M@de
— Normal Flight Mode
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System Design Flow

Mission Sp ecifications Path Following/Object Searching/Pursuit-Evasion

System Identification Nonlinear Model/Linear Model

Controller Synthesis Envelope Protection/Tracking/Regulation

Hybrid System Synthesis Conflict Resolution/Collision Avoidance/Flight Mode Switching
Hierarchical Hybrid System Synthesis  Fiight Management System

Verification Safety/Mission Completion

Simulation Hierarchical Hybrid System
Embedded System Synthesis HW/SW+RTOS
Validation simulation/Emulation

What Are Hybrid Systems?

Dynamical systems with interacting
continuous and discrete dynamics
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Why Hybrid Systems?

e Modeling abstraction of

— Continuous systems with phased operation (e.g.
walking robots, mechanical systems with collisions,
circuits with diodes)

— Continuous systems controlled by discrete inputs (e.g.
switches, valves, digital computers)

— Coordinating processes (multi-agent systems)
e Important in applications

— Hardware verification/CAD, real time software

— Manufacturing, communication networks, multimedia
e Large scale, multi-agent systems

— Automated Highway Systems (AHS)

— Air Traffic Management Systems (ATM)

— Uninhabited Aerial Vehicles (UAV), Power Networks

Control Challenges

e Large number of semiautonomous agents T{?ﬂ

e Coordinate to \ (7//<€
— Make efficient use of common resourﬁiﬂ f&ﬂ
— Achieve a common goal P & \

=N =\

Individual agents have various modes of operation

Agents optimize locally, coordinate to resolve conflicts

System architecture is hierarchical and distributed

Safety critical systems

Challenge: Develop models, analysis, and synthesis tools for
designing and verifying the safety of multi-agent systems




Hybrid Automata

e Hybrid Automaton H = (X;V;Init;f;Inv;R)
— State space X =XcAXp
— Input space V=VcAaVp
— Initial states Init A X
— Vector field f:XAaV] £
— Invariant set InvAX 3V
— Transition relation R:X a3V 2X
® Remarks:

- Xp:;VD countable, Xc= Ve
— State X = (qy) 92X
— Can add outputs, etc.

Executions
] H}/tt;rld tlume tr_aje"ct?\ry", = f[Ui : U@ﬂ: o’ finite or infinite
wi iQ; = 6 {ud ) )
e Execution y = (g;x;v) with X U] X;v:iu] Vand
— Initial Condition: x(Ug) D Init
— Discrete Evolution: X(Ui+1) 9R(x(U0;v(il)
— Continuous Evolution: over[Ui;U@ ,X continugus,
piecewise continuous, x = f(x;V)
and  (x(t); V(1)) DInv; @ D[t )
e Remarks:
¥ not function, multiple transitions possible
y constant along continuous evolution

— Can study existence uniqueness
— Use [ to denote the set of executions of H




Controller Synthesis

e Consider plant hybrid automaton, inputs partitioned to:
— Controls, U
— Disturbances, D
e Controls specified by “us”
e Disturbances specified by the “environment”
— Unmodeled dynamics
— Noise, reference signals
— Actions of other agents
e Memoryless controllerisamap g: X | 2Y
e The closed loop executions are

Eo= flixi(u;d) 2F |8 20 ut) 29(x(1)q

Controller Synthesis Problem

e GivenHand F A X find g such that
tx;(u;d) DRy § 2u x(t) QF
o AsetW A X iscontrolled invariant if there exists a
controller such that all executions starting inW remain in W

Proposition: The synthesis problem can be solved iff there
exists a unique maximal controlled invariant set with

Init AW AF
e Seek maximal controlled invariant sets & (least restrictive)

controllers that render them invariant

e Proposed solution: treat the synthesis problem as a non-
cooperative game between the control and the disturbance




Gaming Synthesis Procedure

e Discrete Systems: games on graphs, Bellman equation
e Continuous Systems: pursuit-evasion games, Isaacs PDE
e Hybrid Systems: for K;L & Fdefine
- Prey(K) X states that can be forced to jump to K
by u
- Preg(K) 4 X states that may jump out of K for some ¢

- Reach(K;L) A X states that whatever y does can be
continuously driven to K avoiding | by ¢
Initialization: WO: Fwal= .. i=0
while W'gW'al do
w1l = wh qReach(Prey(W'); Preg(W'))
i=i+1
end

Algorithm Interpretation

. If the algorithm terminates, the fixed point is
the maximal controlled invariant subset of F




Computation

e One needs to computepre, , predand Reach

e Computation of the Pre is straight forward (conceptually!):
invert the transition relation R

e Computation of Reach through a pair of coupled Hamilton-
Jacobi partial differential equations

Reach Set Computation

Can be done one discrete “location”, 4 DX @t a time
Assume there exist real valued functions k, | such that

K= fy 2Xcjk(y) < 0nL = fy 2Xcil(y) AOn
Solve the partial differential equations :

with initial condition J (y; 0) = k(y) and J_(y;0) = I(y)
where the equations are coupled through their Hamiltonian

(and likewise for H E(Y; p)
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Transition Systems

e Transition System T = (Q;1;] :Qo:QF)
e Definefor 0 91 ;P AQ

Prea(P) = fdD2Q jp 2P and g apn
e Given equivalence relation A Q A Q define

T=pF Q=1 » Qo= QFr=p)

] [T
B o

e A ~blockis aunion of equivalence classes

Bisimulations of Transition Systems

A partition ~ is a bisimulation iff

~ Qo:QF
a0l P; Preg(P)

e Alternatively, for pq: P, 2Q=pn P1\ Prea(Pp) =

= . H

=
[ ]
i || /"

e Why are bisimulations important?

»or Pq
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Bisimulation Algorithm

initialize:Q= = fQ0;QF Q Qo[ Qrny
while P1;P29Q=gi 0 7T such t hat

. -RP1\ Prea(P2)R®P1
def! ne Q= o= (Q= g nfP1A T fR1 R2n
refine Ry = P;\ Preg(P2);R2= P1pPrea(Py)

Qo

e |[f algorithm terminates, we obtain a finite bisimulation

Bisimulation Algorithm

e Refinement process is therefore decoupled
e Consider for each discrete state the finite collection of sets

Aa= f1(@): (Xo)g (XFanf fG(e);R(e)je DEn

e Let ‘q‘beapartition compatible with  Ag

Initialize X=g[qQ

for eachqg9oxp

while ori;Po9g  such that .gpi\ PregP2)gP1
definer;= P1\ PregP2);R2= P1 nPrey(Py)
refine Q= (QnfPiAf fRuR2n

end while; end for
e Algorithm must terminate for each discrete location
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Computability & Finitiness

e Decidability requires the bisimulation algorithm to
— Terminate in finite number of steps and
— Be computable
e For the bisimulation algorithm to be computable we need to
— Represent sets symbollically,
— Perform boolean combinations on sets
— Check emptyness of a set,
— Compute Pre(P) of aset P
e Class of sets and vector fields must be topologically simple
— Set operations must not produce pathological sets
— Sets must have desirable finiteness properties

O-Minimal Theories

e Adefinable setis f(x1;...;Xn) 7<n ib(xX1 .. xn)

Example:§x 9 ~jp(x) > 0fgr polynomial p(x)
Recent o-minimal theories

(&g<;+:0;1) Semilinear Sets
(«<;+:53:0;1) Semialgebraic Sets
(&<:+ 4 1e¥;0:1) Exponential Flows

: édp; 1) Subanalytic Sets (bounded)

(c<i* 8 ff
(&<i*+:3:¢:ff40;1) spirals 2??
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O-Minimal Hybrid Systems

A hybrid system H is said to be o-minimal if
the continuous state lives in

For each discrete state, the flow of the vector field is
complete

For each discrete state, all relevant sets and the flow of
the vector field are definable in the same o-minimal
theory

Main Theorem
Every o-minimal hybrid system admits a finite bisimulation.

e Bisimulation alg. terminates for o-minimal hybrid systems
e Various corollaries for each o-minimal theory

Controlled Invariance Problem

e Discrete Time System : collection H=(X,V,Init,f)

- X set of state variables

— V=(U,D) set of input and disturbance variables
— Init set of initial states

- fiXxV 2% reset relation

e Controlled Invariance Problem: Given a discrete time system H,
and a set FO X, compute W, the maximal controlled invariant
subset of F, and g(x), the least restrictive controller




Controlled Invariance Algorithm

initialization W°=F, W™*=X, I =0

while W'*W}@N')C z@ do
W = Prefw! )={xOW' |tu0U 0d OD, f (x,u,d) & f :(p}
I=1+1

endwhile

set W= W

120

@(X):%{u[lu 10d 0D f(xu,d)N (@) :(p} <OW
B xOW

Implementation for Linear DTS

e X=0"U-={ulEusn}, D = {d|Gd<sy}, f={Ax+Bu+Cd},
F = {x/Mx<B}.
e Pre(W) ={x/¢/(x)}
@(x) = Cu Od | [Mx<Pc[Eusn]O
[(Gd>Y)AMAXx+MBu+M Cd <)
e Implementation

— Quantifier Elimination on d: Linear Programming
— Quantifier Elimination on u: Linear Algebra

— Emptiness: Linear Programming
— Redundancy: Linear Programming
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Implementation for Linear DTS

e QE.ond [(Gd>Y)I(MAx+MBu+MCd < p/)] =
[MAXx+MBu+max{MCd | Gd<y}<p/)]
e QE.onu: [Eusn] OMAX+MBu+dMC)<p)] =
[N(IMAXx+&MC)) < NB] where AN'M'B=0, NE=0, N'n=0, N'=0
e Emptiness min{t/Mx<p+1..1)"} >0 where
M =[M;NMA]  and B =[B ;N(P'-AMC))]

e Redundancy max{m;"x [M'x< B} </

Decidability Results for Algorithm

The controlled invariant set calculation problem is
e Semi-decidable in general.

e Decidable when F is arectangle, and A,b is in controllable
canonical form for single input single disturbance.

Extensions:

Hybrid systems with continuous state evolving according to
discrete time dynamics: difficulties arise because sets may not
be convex or connected.

There are other classes of decidable systems which need to be
identified.
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Example 1

2 states, 1 input, 1 disturbance, 4 constraints
Converges in 2 iterations

Iteration 1 Iteration 2
100 100
50 50
0 0
-50 -50
-100 -100

-100  -50 0 50 100 -100  -50 0 50 100




Example 2

2 states, 1 input, 1 disturbance, 4 constraints
converges in an infinite number of iterations

Iteration 1 Iteration 2 Iteration 3

80 80
60 60
2 2
20 20

0 0
.20 20

50 w0 ® 50 w © 50 100
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