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Disclaimer:	
  	
  
I’m	
  not	
  talking	
  about	
  the	
  	
  
run-­‐of-­‐the-­‐mill	
  Internet	
  of	
  Things	
  
� When people talk about the IoT, they often seem to 

be talking about a two-level system: sensor + cloud 
� We are going to talk about a locality, bandwidth, and 

energy-aware system for constructing globally 
distributed applications 
�  Locality REALLY matters 
�  At 1012 components (for instance), transmitting all 

information to and from the cloud would be impossible 
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Example:	
  a	
  Smart	
  Space	
  
�  Displays Everywhere 

�  Walls, Tables, Appliances, Smart Phones, Google Glasses…. 
�  Audio Output Everywhere 
�  Inputs Everywhere 

�  Touch Surfaces  
�  Cameras/ 

Gesture Tracking 
�  Voice 

�  Context Tracking 
�  Who is Where 
�  What do they want 
�  Which Inputs map to which applications 

�  How do we hope to organize this complexity? 
�  Not via Stovepipe solutions!  Today’s typical solution! 
�  Need something more global! 
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An	
  Applica>on	
  Model	
  

�  A Swarm Application is a  
Connected graph of Components 
�  Globally distributed, but locality and QoS aware 
�  Avoid Stovepipe solutions through reusability 

�  Many components are Shared Services written by 
programmers with a variety of skill-sets and motivations 
�  Well-defined semantics and a managed software version scheme 
�  Service Level Agreements (SLA) with micropayments 

�  Many are “Swarmlets” written by domain programmers 
�  They care what application does, not how it does it 

Sensors 
with 

Aggregation 

Distributed 
Archival 
Storage 

Real-Time 
Components 

SwarmLet 
(“The Application”) 

Transform 
and Archive 

Channel 
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SWARMLETs	
  
�  SWARMLET: a software component written by domain 

programmer that is easy to write but exhibits 
sophisticated behavior by exploiting services distributed 
within the infrastructure 

�  Swarmlets specify their needs in terms of human-
understandable requirements 
�  Necessary Services, Frame rates, Minimum Bandwidths 
�  Locality, Ownership, and Micropayment parameters for 

sensors and/or data 
�  Swarmlets may evolve into Shared Services  
�  Programmers of Services used by Swarmlets think in 

terms of contracts provided to swarmlets 
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Mee>ng	
  the	
  needs	
  of	
  	
  
the	
  Swarm	
  

�  Discover and Manage resource 
�  Integrate sensors, portable devices, cloud components 
�  Guarantee responsiveness, real-time behavior, throughput 
�  Self-adapt to failure and provide performance predictability 
�  Secure, high-performance, durable, available information 
�  Monetize resources when necessary: micropayments 

Metropolitan 
Middleware 

Personal/Local  
Swarm 

Cloud Services 
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The	
  Missing	
  Link?	
  
Home	
  security/	
  

emergency	
  

Unpad	
  Energy-­‐efficient	
  
home	
  

Health	
  
monitoring	
  Apps	
  

Resources	
   Sensors/	
  
Input	
  devs	
  

Actuators/	
  
Output	
  devs	
  

Networks	
  

Storage	
  

Computing	
  

SWARM-­‐OS	
  

SWARM-­‐OS:	
  A	
  mediation	
  layer	
  that	
  discovers	
  	
  
resources	
  and	
  connects	
  them	
  with	
  applications	
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The	
  Cell	
  Model	
  for	
  	
  
Swarm	
  Components	
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A	
  Resource-­‐Centric	
  Approach:	
  
Guaranteeing	
  Resources	
  

�  What might we want to guarantee? 
�  Guarantees of BW (say data committed to Cloud Storage) 
�  Guarantees of Requests/Unit time (DB service) 
�  Guarantees of Latency to Response (Deadline scheduling) 
�  Guarantees of maximum time to Durability in cloud 
�  Guarantees of total energy/battery power available to Cell 

�  What level of guarantee? 
�  Firm Guarantee (Better than existing systems) 

�  With high confidence (specified), Maximum deviation, etc. 

�  What does it mean to have guaranteed resources? 
�  A Service Level Agreement (SLA) 

�  “Impedance-mismatch” problem 
�  The SLA guarantees properties that programmer/user wants 
�  The resources required to satisfy SLA are not things that 

programmer/user really understands 
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New	
  Abstrac>on:	
  the	
  Cell	
  
�  Properties of a Cell 

�  A user-level software component with guaranteed resources 
�  Has full control over resources it owns (“Bare Metal”) 
�  Contains a set of secured channel endpoints to other Cells 
�  Contains a security context which may protect and decrypt 

information 
� When mapped to the hardware, a cell gets: 

�  Gang-schedule hardware thread resources (“Harts”) 
�  Guaranteed fractions of other physical resources 

�  DRAM, Cache partitions, memory bandwidth, power 
�  Guaranteed fractions of system services 

�  Predictability of performance ⇒  
�  Ability to model performance vs resources 
�  Ability for user-level schedulers to better provide QoS 



Slide 11 Sept 29th, 2013 Swarm at the Edge of the Cloud 

Applica>ons	
  Composed	
  of	
  
Interconnected	
  Cells	
  

�  Component-based model of computation 
�  Applications consist of interacting components 
�  Components may be local or remote 

�  Communication impacts Security and Performance 
�  Channels are points at which data may be compromised 
�  Channels define points for QoS constraints 

�  Naming process for initiating endpoints 
�  Need to find compatible remote services 
�  Continuous adaptation: links changing over time! 

Secure 
Channel 

External 
Services 

File 
Service 

Secure 

Channel 
Secure 

Channel 

Secure 
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Real-Time 
Cells 

(Audio, 
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Core Application 
Parallel 
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Example:	
  Cells	
  on	
  Mul>core	
  	
  
via	
  Space-­‐Time	
  Par>>oning	
  

�  Spatial Partition: 
Performance isolation 
�  Each partition receives a 

vector of basic resources 
�  A number HW threads 
�  Chunk of physical memory 
�  A portion of shared cache 
�  A fraction of memory BW 
�  Shared fractions of services 
 

�  Partitioning varies over time 
�  Fine-grained multiplexing and 

guarantee of resources 
�  Resources are gang-scheduled 

�  Controlled multiplexing, not 
uncontrolled virtualization 

�  Partitioning adapted to the 
system’s needs 

Time	
  

Space	
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Signature, Policy 
Version, GUID 

Secure	
  Cell:	
  Trusted	
  Swarm	
  PlaKorm	
  

� External Data Encrypted  
All The Time  

� Only decrypted in “Data Jails” (trusted platform) 
�  Build in hardware or in software with secure attestation 
�  Data leaving cell automatically reencrypted 

� Trusted Platform given keys to do its work 
�  Keys never given out to application software 

�  Similar idea: Hardware micropayment support 

Signature, Policy 
Version, GUID 

Decrypt Encrypt 

Distributed Public Key  
Infrastructure 
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What	
  would	
  this	
  mean	
  for	
  the	
  Swarm?	
  
� Where are Cells in the swarm? 

�  In the Cloud and Fog at the edges of the cloud 
�  Mobile devices with significant processing 

� What about Sensors or Actuators?  
�  Very little processing, but ability to provide guarantees could 

be quite important 
�  QoS in form of probabilistic guarantees 
�  Resistance to denial of service 

� What about the network?  Is it a Service? 
�  Probabilistic guarantees? 
�  Wireless channel reservation? 
�  Flow-level guarantees (AVB)? 

�  Is there a minimal hardware base for swarm integration? 
�  QoS enforcement, Secure Cell, Network guarantees 
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Resource	
  	
  
Distribu>on	
  and	
  Adapta>on	
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Resource	
  Discovery	
  and	
  Ontology	
  
�  Dynamically discover resources, services, and cyber-physical 

components (sensors/actuators) that meet application 
requirements 
�  Find local components that meet some specification 
�  Use ontology to describe exactly what component do 
�  Distribute these resources (or fractions of services) to 

application cells in order to meet QoS requirements 
�  Many partial solutions out there, no complete solutions 

�  Must deal with locality (discover local items) while at same time 
dealing with remote (global) services 

�  Must gracefully handle failover of components 
�  One important aspect is that resources must be handed out 

only to authorized users 
�  Authorization can involve ownership, micropayments, etc.. 
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Brokering	
  Service:	
  
The	
  Hierarchy	
  of	
  Ownership	
  

� Discover Resources in “Domain” 
�  Devices, Services, Other Brokers 
�  Resources self-describing? 

� Allocate and Distribute Resources 
to Cells that need them 
�  Solve Impedance-mismatch 

problem 
�  Dynamically optimize execution 
�  Hand out Service-Level 

Agreements (SLAs) to Cells 
�  Deny admission to Cells which 

violate existing agreements 
� Complete hierarchy 

�  World graph of applications 

Local 
Broker 

Sibling 
Broker 

Parent 
Broker 

Child 
Broker 
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Convex	
  Optimization	
  	
  
with	
  Online	
  Application	
  
Performance	
  Models	
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Example:	
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  alloca>on	
  (PACORA)	
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Example:	
  Feedback	
  alloca>on	
  
� Utilize dynamic control loops to fine-tune resources 
�  Example: Video Player interaction with Network 

�  Server or GUI changes between high and low bit rate 
�  Goal: set guaranteed network rate: 

� Alternative: Application Driven Policy 
�  Static models 
�  Let network choose when to decrease allocation 
�  Application-informed metrics such as needed BW 
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The	
  Internet	
  for	
  the	
  	
  
Internet	
  of	
  Things	
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DataCentric	
  Vision	
  
� Hardware resources are a commodity 

�  Computation resource fails?  Get another 
�  Sensor fails?  Find another 
�  Change your location?  Find new resources 

� All that really matters is the information 
�  Integrity, Privacy, Availability, Durability 
�  Hardware to prevent accidental information leakage 

�  Permanent state handled by Universal Data Storage, 
Distribution, and Archiving 

� We need a new Internet for the Internet of Things 
�  Communication and Storage are really duals 
�  Why separate them? 
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Universal	
  Data:	
  	
  
The	
  Great	
  Integrator	
  

Universal	
  Data	
  Plane:	
  
Archival	
  Storage	
  and	
  
Opimized	
  Streaming	
  

Personal	
  
Cache	
  

Aggregate/Filter	
  
Universal	
  Tivo	
  

Cloud Services 
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Internet	
  for	
  the	
  Internet	
  of	
  Things	
  
�  Duality between communication and storage 

�  Why explicitly distinguish them? 
�  The “Data Grid” equivalent to the “Power Grid” 
�  All data is is read-only  and time stamped at the time that it 

enters the grid and preserved as long as it stays in the grid 
�  Provide a large flat namespace for routing to endpoints 

independent of their location 
�  Endpoints can be services, sensors, or archival objects 
�  Automatically locate close objects with given endpoint (when 

there are multiple of them such as cached read-only data) 
�  Dynamic Optimization: Gain advantages normally available 

only to large internet providers 
�  Generate optimized multicast networks when necessary 
�  Construct content distribution networks (CDNs) on the fly 

�  Security, authentication, privacy, micropayments  
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Conclusion	
  
� Advance the Swarm by making it easy for programmers 

to construct applications 
�  Distributed application model focused on QoS, 

micropayments, stable services 
�  Sophisticated applications built with Swarmlets 

� Cell Model 
�  User-Level Resource Container with guaranteed resources 
�  Hardware-Enforced Security Context  

� Dynamic Resource Discovery, Brokerage, Optimization 
� Universal Data Plane 

�  Provide a better Internet for the Internet of Things 
�  Security, dynamic optimization, caching, archival storage 

� Tessellation OS: http://tessellation.cs.berkeley.edu 
SwarmLab: http://swarmlab.eecs.berkeley.edu 


