
Slide 1 Sept 29th, 2013 Swarm at the Edge of the Cloud

John Kubiatowicz
UC Berkeley Swarm Lab
September 29th, 2013

Slide 2 Sept 29th, 2013 Swarm at the Edge of the Cloud

Disclaimer:	
 	

I’m	
 not	
 talking	
 about	
 the	
 	

run-­‐of-­‐the-­‐mill	
 Internet	
 of	
 Things	

� When people talk about the IoT, they often seem to

be talking about a two-level system: sensor + cloud
� We are going to talk about a locality, bandwidth, and

energy-aware system for constructing globally
distributed applications
�  Locality REALLY matters
�  At 1012 components (for instance), transmitting all

information to and from the cloud would be impossible

Slide 3 Sept 29th, 2013 Swarm at the Edge of the Cloud

Example:	
 a	
 Smart	
 Space	

�  Displays Everywhere

�  Walls, Tables, Appliances, Smart Phones, Google Glasses….
�  Audio Output Everywhere
�  Inputs Everywhere

�  Touch Surfaces
�  Cameras/

Gesture Tracking
�  Voice

�  Context Tracking
�  Who is Where
�  What do they want
�  Which Inputs map to which applications

�  How do we hope to organize this complexity?
�  Not via Stovepipe solutions! Today’s typical solution!
�  Need something more global!

Slide 4 Sept 29th, 2013 Swarm at the Edge of the Cloud

An	
 Applica>on	
 Model	

�  A Swarm Application is a
Connected graph of Components
�  Globally distributed, but locality and QoS aware
�  Avoid Stovepipe solutions through reusability

�  Many components are Shared Services written by
programmers with a variety of skill-sets and motivations
�  Well-defined semantics and a managed software version scheme
�  Service Level Agreements (SLA) with micropayments

�  Many are “Swarmlets” written by domain programmers
�  They care what application does, not how it does it

Sensors
with

Aggregation

Distributed
Archival
Storage

Real-Time
Components

SwarmLet
(“The Application”)

Transform
and Archive

Channel

Slide 5 Sept 29th, 2013 Swarm at the Edge of the Cloud

SWARMLETs	

�  SWARMLET: a software component written by domain

programmer that is easy to write but exhibits
sophisticated behavior by exploiting services distributed
within the infrastructure

�  Swarmlets specify their needs in terms of human-
understandable requirements
�  Necessary Services, Frame rates, Minimum Bandwidths
�  Locality, Ownership, and Micropayment parameters for

sensors and/or data
�  Swarmlets may evolve into Shared Services
�  Programmers of Services used by Swarmlets think in

terms of contracts provided to swarmlets

Slide 6 Sept 29th, 2013 Swarm at the Edge of the Cloud

Mee>ng	
 the	
 needs	
 of	
 	

the	
 Swarm	

�  Discover and Manage resource
�  Integrate sensors, portable devices, cloud components
�  Guarantee responsiveness, real-time behavior, throughput
�  Self-adapt to failure and provide performance predictability
�  Secure, high-performance, durable, available information
�  Monetize resources when necessary: micropayments

Metropolitan
Middleware

Personal/Local
Swarm

Cloud Services

Slide 7 Sept 29th, 2013 Swarm at the Edge of the Cloud

The	
 Missing	
 Link?	

Home	
 security/	

emergency	

Unpad	
 Energy-­‐efficient	

home	

Health	

monitoring	
 Apps	

Resources	
 Sensors/	

Input	
 devs	

Actuators/	

Output	
 devs	

Networks	

Storage	

Computing	

SWARM-­‐OS	

SWARM-­‐OS:	
 A	
 mediation	
 layer	
 that	
 discovers	
 	

resources	
 and	
 connects	
 them	
 with	
 applications	

Slide 8 Sept 29th, 2013 Swarm at the Edge of the Cloud

The	
 Cell	
 Model	
 for	
 	

Swarm	
 Components	

	

Slide 9 Sept 29th, 2013 Swarm at the Edge of the Cloud

A	
 Resource-­‐Centric	
 Approach:	

Guaranteeing	
 Resources	

�  What might we want to guarantee?
�  Guarantees of BW (say data committed to Cloud Storage)
�  Guarantees of Requests/Unit time (DB service)
�  Guarantees of Latency to Response (Deadline scheduling)
�  Guarantees of maximum time to Durability in cloud
�  Guarantees of total energy/battery power available to Cell

�  What level of guarantee?
�  Firm Guarantee (Better than existing systems)

�  With high confidence (specified), Maximum deviation, etc.

�  What does it mean to have guaranteed resources?
�  A Service Level Agreement (SLA)

�  “Impedance-mismatch” problem
�  The SLA guarantees properties that programmer/user wants
�  The resources required to satisfy SLA are not things that

programmer/user really understands

Slide 10 Sept 29th, 2013 Swarm at the Edge of the Cloud

New	
 Abstrac>on:	
 the	
 Cell	

�  Properties of a Cell

�  A user-level software component with guaranteed resources
�  Has full control over resources it owns (“Bare Metal”)
�  Contains a set of secured channel endpoints to other Cells
�  Contains a security context which may protect and decrypt

information
� When mapped to the hardware, a cell gets:

�  Gang-schedule hardware thread resources (“Harts”)
�  Guaranteed fractions of other physical resources

�  DRAM, Cache partitions, memory bandwidth, power
�  Guaranteed fractions of system services

�  Predictability of performance ⇒
�  Ability to model performance vs resources
�  Ability for user-level schedulers to better provide QoS

Slide 11 Sept 29th, 2013 Swarm at the Edge of the Cloud

Applica>ons	
 Composed	
 of	

Interconnected	
 Cells	

�  Component-based model of computation
�  Applications consist of interacting components
�  Components may be local or remote

�  Communication impacts Security and Performance
�  Channels are points at which data may be compromised
�  Channels define points for QoS constraints

�  Naming process for initiating endpoints
�  Need to find compatible remote services
�  Continuous adaptation: links changing over time!

Secure
Channel

External
Services

File
Service

Secure

Channel
Secure

Channel

Secure
Channel

Real-Time
Cells

(Audio,
Video)

Core Application
Parallel
Library

Slide 12 Sept 29th, 2013 Swarm at the Edge of the Cloud

Example:	
 Cells	
 on	
 Mul>core	
 	

via	
 Space-­‐Time	
 Par>>oning	

�  Spatial Partition:
Performance isolation
�  Each partition receives a

vector of basic resources
�  A number HW threads
�  Chunk of physical memory
�  A portion of shared cache
�  A fraction of memory BW
�  Shared fractions of services

�  Partitioning varies over time
�  Fine-grained multiplexing and

guarantee of resources
�  Resources are gang-scheduled

�  Controlled multiplexing, not
uncontrolled virtualization

�  Partitioning adapted to the
system’s needs

Time	

Space	

Slide 13 Sept 29th, 2013 Swarm at the Edge of the Cloud

Signature, Policy
Version, GUID

Secure	
 Cell:	
 Trusted	
 Swarm	
 PlaKorm	

� External Data Encrypted
All The Time

� Only decrypted in “Data Jails” (trusted platform)
�  Build in hardware or in software with secure attestation
�  Data leaving cell automatically reencrypted

� Trusted Platform given keys to do its work
�  Keys never given out to application software

�  Similar idea: Hardware micropayment support

Signature, Policy
Version, GUID

Decrypt Encrypt

Distributed Public Key
Infrastructure

Slide 14 Sept 29th, 2013 Swarm at the Edge of the Cloud

What	
 would	
 this	
 mean	
 for	
 the	
 Swarm?	

� Where are Cells in the swarm?

�  In the Cloud and Fog at the edges of the cloud
�  Mobile devices with significant processing

� What about Sensors or Actuators?
�  Very little processing, but ability to provide guarantees could

be quite important
�  QoS in form of probabilistic guarantees
�  Resistance to denial of service

� What about the network? Is it a Service?
�  Probabilistic guarantees?
�  Wireless channel reservation?
�  Flow-level guarantees (AVB)?

�  Is there a minimal hardware base for swarm integration?
�  QoS enforcement, Secure Cell, Network guarantees

Slide 15 Sept 29th, 2013 Swarm at the Edge of the Cloud

Resource	
 	

Distribu>on	
 and	
 Adapta>on	

Slide 16 Sept 29th, 2013 Swarm at the Edge of the Cloud

Resource	
 Discovery	
 and	
 Ontology	

�  Dynamically discover resources, services, and cyber-physical

components (sensors/actuators) that meet application
requirements
�  Find local components that meet some specification
�  Use ontology to describe exactly what component do
�  Distribute these resources (or fractions of services) to

application cells in order to meet QoS requirements
�  Many partial solutions out there, no complete solutions

�  Must deal with locality (discover local items) while at same time
dealing with remote (global) services

�  Must gracefully handle failover of components
�  One important aspect is that resources must be handed out

only to authorized users
�  Authorization can involve ownership, micropayments, etc..

Slide 17 Sept 29th, 2013 Swarm at the Edge of the Cloud

Brokering	
 Service:	

The	
 Hierarchy	
 of	
 Ownership	

� Discover Resources in “Domain”
�  Devices, Services, Other Brokers
�  Resources self-describing?

� Allocate and Distribute Resources
to Cells that need them
�  Solve Impedance-mismatch

problem
�  Dynamically optimize execution
�  Hand out Service-Level

Agreements (SLAs) to Cells
�  Deny admission to Cells which

violate existing agreements
� Complete hierarchy

�  World graph of applications

Local
Broker

Sibling
Broker

Parent
Broker

Child
Broker

Slide 18 Sept 29th, 2013 Swarm at the Edge of the Cloud

Convex	
 Optimization	
 	

with	
 Online	
 Application	

Performance	
 Models	

Sy
st
em

	
 P
en

al
ty
	

Allocations	
 2	

Continuously	

minimize	
 the	
 penalty	

of	
 the	
 system	

(subject	
 to	
 restrictions	
 on	

the	
 total	
 amount	
 of	

resources)	

	
 Response	
 Time1	

Pe
na

lty
1	

	
 Response	
 Time2	
 ((0,2),	
 …,	
 (n-­‐1,2))	
 	
 Response	
 Time2	

	
 Response	
 Timei	

Pe
na

lty
2	

Pe
na

lty
i	

Se
t	
 o

f	
 R
un

ni
ng

	
 A
pp

lic
at
io
ns

	
 	
 Response	
 Time1((0,1),	
 …,	
 (n-­‐1,1))	

Speech	

Recognition	

Stencil	

Graph	

Traversal	

	
 Response	
 Timei((0,i),	
 …,	
 (n-­‐1,i))	

Example:	
 Convex	
 alloca>on	
 (PACORA)	

Slide 19 Sept 29th, 2013 Swarm at the Edge of the Cloud

Example:	
 Feedback	
 alloca>on	

� Utilize dynamic control loops to fine-tune resources
�  Example: Video Player interaction with Network

�  Server or GUI changes between high and low bit rate
�  Goal: set guaranteed network rate:

� Alternative: Application Driven Policy
�  Static models
�  Let network choose when to decrease allocation
�  Application-informed metrics such as needed BW

Slide 20 Sept 29th, 2013 Swarm at the Edge of the Cloud

The	
 Internet	
 for	
 the	
 	

Internet	
 of	
 Things	

Slide 21 Sept 29th, 2013 Swarm at the Edge of the Cloud

DataCentric	
 Vision	

� Hardware resources are a commodity

�  Computation resource fails? Get another
�  Sensor fails? Find another
�  Change your location? Find new resources

� All that really matters is the information
�  Integrity, Privacy, Availability, Durability
�  Hardware to prevent accidental information leakage

�  Permanent state handled by Universal Data Storage,
Distribution, and Archiving

� We need a new Internet for the Internet of Things
�  Communication and Storage are really duals
�  Why separate them?

Slide 22 Sept 29th, 2013 Swarm at the Edge of the Cloud

Universal	
 Data:	
 	

The	
 Great	
 Integrator	

Universal	
 Data	
 Plane:	

Archival	
 Storage	
 and	

Opimized	
 Streaming	

Personal	

Cache	

Aggregate/Filter	

Universal	
 Tivo	

Cloud Services

Slide 23 Sept 29th, 2013 Swarm at the Edge of the Cloud

Internet	
 for	
 the	
 Internet	
 of	
 Things	

�  Duality between communication and storage

�  Why explicitly distinguish them?
�  The “Data Grid” equivalent to the “Power Grid”
�  All data is is read-only and time stamped at the time that it

enters the grid and preserved as long as it stays in the grid
�  Provide a large flat namespace for routing to endpoints

independent of their location
�  Endpoints can be services, sensors, or archival objects
�  Automatically locate close objects with given endpoint (when

there are multiple of them such as cached read-only data)
�  Dynamic Optimization: Gain advantages normally available

only to large internet providers
�  Generate optimized multicast networks when necessary
�  Construct content distribution networks (CDNs) on the fly

�  Security, authentication, privacy, micropayments

Slide 24 Sept 29th, 2013 Swarm at the Edge of the Cloud

Conclusion	

� Advance the Swarm by making it easy for programmers

to construct applications
�  Distributed application model focused on QoS,

micropayments, stable services
�  Sophisticated applications built with Swarmlets

� Cell Model
�  User-Level Resource Container with guaranteed resources
�  Hardware-Enforced Security Context

� Dynamic Resource Discovery, Brokerage, Optimization
� Universal Data Plane

�  Provide a better Internet for the Internet of Things
�  Security, dynamic optimization, caching, archival storage

� Tessellation OS: http://tessellation.cs.berkeley.edu
SwarmLab: http://swarmlab.eecs.berkeley.edu

