
Concepts for Swarm System Software

Daniel Graff, Jan Richling
Communication and Operating Systems Group

Technische Universität Berlin
10587 Berlin, Germany

Email: {daniel.graff,jan.richling}@tu-berlin.de

Matthias Werner
Operating Systems Group

Chemnitz, University of Technology
09111 Chemnitz, Germany

mwerner@informatik.tu-chemnitz.de

I. APPROACH

Cyber-physical systems (CPS) tightly interact with their
physical environment “usually with feedback loops where
physical processes affect computations and vice versa” [1].
In the future there will be a plethora of devices [2] im-
plying a variety of programming approaches, user interface
concepts and system software, making the handling of these
devices and especially the cooperation between different
devices even harder. Therefore, it is an established idea
to consider the sum of all these devices as one emerging
system: the swarm [3].

Considering the challenge of dealing with such a swarm
from a historical perspective, this situation is very similar
to the one regarding general purpose computers in the
50s of the last century. Here, a computer was exclusively
used for one application that had full control over all
resources while multiple programs were only possible by
batch operation. This resulted in rather low utilization of
resources and bad response times for many applications.
The solution was the introduction of time-sharing operating
systems that allowed the operation of several independently
developed applications in parallel. Resources were no longer
directly controlled by the application, instead, appropriate
abstractions of the operating system were used to enable it
to manage them in a reasonable manner.

Thus, our approach is to design a swarm operating sys-
tem that has to take control of resources while enabling
several swarm applications in parallel. These applications
are developed independently from each other and no longer
control hardware resources directly but by means of the
swarm operating system. In standard operating systems, the
basic concept for this is virtualization both for resources as
well as for execution. Therefore, the swarm operating system
virtualizes the physical swarm in a way that it becomes
several virtual swarms (Figure 1), each dedicated for one
swarm application [4]. Internally, it maps virtual to physical
resources in a time- and space sharing manner.

This approach raises two main questions: What is an ap-
propriate model to program swarm applications for such an
operating system (Section II) and what is a suitable runtime
system that is required for managing them (Section III)?

Swarm Operating System
local
OS

local
OS

local
OS

local
OS

local
OS

local
OS

local
OS

local
OS

Application

Figure 1. Swarm Operating System

II. PROGRAMMING MODEL

Interactions between computational and non-
computational elements, as typical for CPS, involve
real space and time and, thus, have to be coordinated on the
computational side introducing concurrency and distribution
which is often error-prone for application developers.

Thus, we argue for an adequate programming abstraction
which facilitates application development by introducing a
systemic view to system resources which hides concurrency
and distribution from the developer while synchronization
and coordination become implicit.

Going further, we provide functionality to the developer
to specify the programs intention (WHAT to do) rather than
to explicitly program every detail (HOW to do) and, thus,
reduce complexity. In [5], we presented this paradigm by
introducing the concept of Distributed Active Objects as a
design pattern in order to program such swarm applications.

According to this pattern, programs consist of building
blocks that we call actions that represent interactions with
the physical world. Such an action is comprised of im-
perative code (encapsulated in a method) describing the
impact on the physical world, a spatial-temporal constraint
that binds the action to space and time and a result that is
the outcome of the action. For instance, taking a picture
in the time interval [t1, t2] at location X is an action
that is constrained in space and time. Such actions are
programmed in a sequential manner—without synchroniza-
tion or coordination—and only the assignment of spatial-
temporal constraints induces implicit concurrency of actions.

Furthermore, the programmer specifies high level goals



for such applications that, in order to reach the goal, require
a specific composition of actions. Thus, an entire program
emerges implicitly only based on a set of basic building
blocks (actions) and spatial-temporal constraints. In this
case, spatial-temporal constraints are used in order to glue
actions together which generates relations among actions.
This can be, for instance, synchronous, parallel or dependent
execution. The composition itself is not defined by the
programmer, but emerges implicit.

III. EXECUTION MODEL

According to our approach, applications are isolated from
each other and behave as if they were using system resources
exclusively. Thus, on the system level, we have to guarantee
the isolation by coordinating actions in space and time
which allows us to efficiently use system resources. For
this, we apply the concept of virtualization. Therefore, we
plan the entire amount of actions—from all applications—
on virtualized resources (exclusive for one application) and
map them to physical (shared by all applications).

Before the actual mapping process takes place, an action
management is performed in order to efficiently use system
resources. The basic idea is to merge actions in order to
reduce the resource utilization by using similarities between
actions. In this case, different actions on virtual resources
given by several applications are mapped to exactly the same
action on physical resources.

After the merging phase, the mapping phase tries to find a
spatial-temporal mapping from the actions defined on virtual
resources to physical. The mappings are dynamic and, thus,
may change over time. This allows, for instance, to replace
physical movement (of resources) by logical movement
(migration of code) in order to reduce energy consumption.
However, in order to calculate solutions for the mapping,
the following steps have to be performed: a job scheduling
in space and time and a path planning in order to move
mobile resources along a spatial-temporal trajectory. We
identify 3 kinds of mappings: a 1:1 mapping in which one
virtual resource is directly mapped to one physical. In some
cases, this is not feasible and, thus, sensor fusion becomes
an option inducing a 1:n mapping. Last, in the case one
resource is capable of satisfying the needs of other actions
too, an n:1 mapping is performed.

Finally, a dedicated runtime system is required in order to
manage, coordinate, synchronize and execute swarm appli-
cations. For this, we propose a service-oriented architecture
that consists of local and distributed services. Distributed
services are used for global system management, resource
allocation and controlling of nodes. The core services of the
system are the job scheduler and the path planner which are
responsible for planning jobs as well as calculating collision
free trajectories. Local services are used for local node
management including control of local sensors and actua-
tors, monitoring of code execution (swarm application) and

following spatial-temporal trajectories (by accurate engine
control).

IV. CONCLUSION

In this paper, we showed concepts for swarm system soft-
ware in order to realize a swarm operating system providing
a common interface to system resources which mediates
between the sum of different devices and swarm applications
developed by different programmers. The system guarantees
isolation of swarm applications by coordinating access to
shared resources (under the assumptions of a given fault
model). We have proposed virtual swarms as an abstraction
of the physical swarm representing an execution environ-
ment for swarm applications enabling multi-program oper-
ation. We introduced a programming abstraction enabling a
systemic view to virtualized system resources and presented
a design pattern to achieve high level functionality facilitat-
ing application development for CPS. Finally, we presented
an execution model that states how the virtualization and
management of swarm applications is realized.

Similar to “Platform as a Service” as part of the cloud
computing approach, a swarm operating system might en-
able “Swarm as a Service” by offering different independent
users the possibility to run their swarm applications on large
(private or public) swarm systems. This could envision a
whole software market for swarm applications.

REFERENCES

[1] E. A. Lee, “Cyber-Physical Systems – Are Computing Foun-
dations Adequate?” in Position Paper for NSF Workshop On
Cyber-Physical Systems: Research Motivation, Techniques and
Roadmap, October 2006.

[2] M. A. Uusitalo, “Global Vision for the Future Wireless World
from the WWRF,” in IEEE Vehicular Technology Magazine,
vol. 1, no. 2, 2006, pp. 4–8.

[3] E. A. Lee, J. D. Kubiatowicz, J. M. Rabaey, A. L. Sangiovanni-
Vincentelli, S. A. Seshia, J. Wawrzynek, D. Blaauw, P. Dutta,
K. Fu, C. Guestrin, R. Jafari, D. Jones, V. Kumar,
R. Murray, G. Pappas, A. Rowe, C. M. Sechen, T. S. Rosing,
B. Taskar, and D. Wessel, “The TerraSwarm Research Center
(TSRC) (A White Paper),” EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2012-207, Nov
2012. [Online]. Available: http://www.eecs.berkeley.edu/Pubs/
TechRpts/2012/EECS-2012-207.html

[4] M. Werner, J. Richling, and G. Mühl, “Two Abstractions for
Distributed Systems of Mobile Nodes,” in Seventh Interna-
tional Conference on Information Technology (ITNG 2010),
2010, pp. 1219–1220.

[5] D. Graff, J. Richling, T. M. Stupp, and M. Werner, “Distributed
Active Objects – A Systemic Approach to Distributed Mobile
Applications,” in 8th IEEE International Conference and Work-
shops on Engineering of Autonomic and Autonomous Systems,
R. Sterrit, Ed. IEEE Computer Society, April 2011, pp. 10–19.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-207.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-207.html

	Approach
	Programming Model
	Execution Model
	Conclusion
	References

