A Networked Robotic System and its Use in an Oil Spill Monitoring Exercise

Elói Pereira∗†
Co-authors: Pedro Silva†, Clemens Krainer‡, Christoph Kirsch†, José Morgado†, and Raja Sengupta∗
cpcc.berkeley.edu, eloipereira.com
eloi@berkeley.edu

Swarm at the Edge of the Could - ESWeek’13, Montreal, Canada
September 29, 2013

∗ - Systems Engineering, UC Berkeley
† - Research Center, Portuguese Air Force Academy
‡ - Computer Science Dept., University of Salzburg
Programming the Ubiquitous World

- In networked mobile systems (e.g. teams of robots, smartphones, etc.) the location and connectivity of “machines” may vary during the execution of its “programs” (computation specifications).
- We investigate models for bridging “programs” and “machines” with dynamic structure (location and connectivity).
- BigActors [PKSBdS13, PPKS13, PS13] are actors [Agh86] hosted by entities of the physical structure denoted as bigraph nodes [Mil09].

Case study: Oil spill monitoring scenario

• “Bilge dumping” is an environmental problem of great relevance for countries with large area of jurisdictional waters
• EC created the European Maritime Safety Agency to “…prevent and respond to pollution by ships within the EU”
• How to use networked robotics to monitor and take evidences of “bilge dumping”

Figure: Portuguese Jurisdiction waters and evidences of “Bilge dumping”.
Vehicles and sensors living in the physical world

- Network of vehicles and sensors collaborating to monitor an oil spill caused by a tanker
- UAVs use their optical sensors to detect the oil spill and collects AIS information of vessels and drifters
- A vessel deploys AIS/GPS drifters to forecast the oil spill dynamics
- A submarine collects samples of the oil spill
Vehicles and sensors living in the physical world

- How to model vehicles and sensors embedded in the physical world in a logical abstraction?
- How to program computing entities living and interacting in this logical world?

Nesting locations as a forest

Abstraction to a logical world
Connectivity as an hypergraph
Programming the logical world

- BigActor program that keeps sending the UAV to the oil spill location:

```
"gotoOil" hosted_at "uav0" with_behavior{
  loop{
    MOVE_HOST_TO oilSpill
  }
}
```

- This program would be interpreted to a series of physical UAV commands:

```
autopilotWaypointCtr(Lat0,Long0,Alt0,radius)
autopilotWaypointCtr(Lat1,Long1,Alt1,radius)
autopilotWaypointCtr(Lat2,Long2,Alt2,radius)
autopilotWaypointCtr(Lat3,Long3,Alt3,radius)
...
```

- Logical space programming focuses on “what” you want to do rather than “how” to do it
Video: Networked vehicles and sensors demonstration

Oil Spill Monitoring using Networked Vehicles and Sensors
REP13 Exercise, Portimão, Portugal
July 2013
BigActor Runtime Environment for Networked Robotics

- BigActor implementation for networked robotics is comprised of two major software components:
 - BigActor Domain Specific Language using Scala Actors
 - BigActor Runtime Environment implemented over the Robot Operating System (ROS) - a widely used middleware for robotics
Distributed Bigraph Estimation

- Each robot observes the world locally as a bigraph
- Local observations are shared amongst robots over the internet
- Each robot calculates a bigraph estimate of the overall system
- When a robot receives a distributed bigraph estimate (DBigraph), it fuses it with its own estimate, using a bigraph fuser:

\[\text{bigraphFuser} : (\text{DBigraph}, \text{DBigraph}) \Rightarrow \text{DBigraph} \]
Example: handover of UAV control authority

"handover" hosted_at "GCS0" with_behavior{
 HANDOVER uav0 TO GCS1
}

Distributed Bigraph

Local Bigraph 1

Local Bigraph 0

Distributed Bigraph
Example: handover of UAV control authority

"handover" hosted_at "GCS0" with_behavior{
 HANDOVER uav0 TO GCS1
}

Distributed Bigraph

Local Bigraph 1

Local Bigraph 0

Distributed Bigraph
Programming models with space as first-class citizen

- Ambient Calculus models bounded locations where computation may occur [CG98]
- Borcea et al. introduce Spatial Programming (SP) - a space-aware programming model for outdoor distributed computing. In SP, physical spaces are abstracted as circular regions that circumscribes the physical space [BIK+04]
- Gaia [RC00] is a software infrastructure that supports Active Spaces - a model that maps the abstract perception of space into a first-class software citizen. Active spaces store location information and define their behaviour
- Bigraphs [Mil09] provide a rich model that entails both location and connectivity.
- In contrast with SP and Active Spaces, Bigraph provides a nested location model.
- Bigraphs do not explicitly represent intersection of spaces (Shared Bigraphs introduce this concept).
Comparison with other spatial programming models

- BigActors combine a widely known model of concurrency combined with a bigraph abstraction of the world.
- SP is based on *Smart Messages* (SMs) model of concurrency while the BigActor model uses Actors.
- SM model is based on migration of computing units between entities a shared memory infrastructure.
- Actors are based on asynchronous message-passing.
- In the Gaia framework, Active Spaces encapsulate themselves state and behaviour of the physical spaces.
- The BigActor Model specifies the physical space in the bigraph and the computing entities as actors. This provides a separation of concerns between the physical space and what actually changes it.
Conclusions

- Robots live in a physical world
- We explore BigActors as a model for logically program networked robotics
- Programming at a logical level reduces operational complexity
 - spatial programming example
 - hand-over manoeuvre example
- We introduce a BigActor Runtime Environment that runs over ROS and Scala Actors
- The model and the implementation was successfully demonstrated over the summer specifying missions of networked vehicles performing an environmental monitoring scenario.
“We can only see a short distance ahead, but we can see plenty there that needs to be done.” Alan Turing [Tur50]

“I was concerned... to ask what the limits of computation may be. This interaction business began to seem to me to be breaking the mould...” Robin Milner [Berger interview]

Thank You!
Gul Agha.
\textit{Actors: a model of concurrent computation in distributed systems.}

L. Birkedal, S. Debois, E. Elsborg, T. Hildebrandt, and H. Niss.
Bigraphical models of context-aware systems.

P. Bonnet, J. Gehrke, and P. Seshadri.
Querying the physical world.
ISSN 10709916.

Spatial programming using smart messages: design and implementation.

L. Cardelli and A. Gordon.
Mobile ambients.
S. Debois.
Computation in the informatic jungle.

R. Milner.
Communicating and mobile systems: the π-calculus.

Robin Milner.
The Space and Motion of Communicating Agents.

A model checker for bigraphs.

E. Pereira, C. Kirsch, R. Sengupta, and J. Borges de Sousa.
Bigactors - a model for structure-aware computation.

E. Pereira, C. Potiron, C. Kirsch, and R. Sengupta.
Modeling and controlling the structure of heterogeneous mobile robotic systems: A bigactor approach.
Eloi Pereira and Raja Sengupta.
Computation Over Worlds With Dynamic Structure.

Manuel Roman and RH Campbell.
Gaia: enabling active spaces.

DA Randell, Z Cui, and AG Cohn.
A spatial logic based on regions and connection.

A. Turing.
Computing Machinery and Intelligence.

Leslie G Valiant.
A bridging model for parallel computation.

John von Neumann.
First draft of a report on the EDVAC.