
GATD: A Robust, Extensible, Versatile Swarm Dataplane
Pat Pannuto, Brad Campbell, Prabal Dutta

Electrical Engineering and Computer Science Department
University of Michigan
Ann Arbor, MI 48109

{ppannuto,bradjc,prabal}@umich.edu

Abstract
We propose Get All The Data (GATD), a data collection

and dissemination system for the Swarm. GATD offers a
flexible architecture to connect arbitrary producers of data
and consumers of events. Too many sensor networks are
fragile, vertical silos, with a series of one-off handlers writ-
ten to shuttle data, manipulate it, process it, and present it.
Instead of being mired in details and rigid schemas, we ar-
gue that sensor network deployment should be simple. The
key in GATD’s design is the observation that there are com-
mon patterns to how disparate sensor network applications
handle and process their generated data.

To take advantage of these similarities we present a sys-
tem comprised of common modules that different applica-
tions can leverage. To join GATD, new sensors simply send
raw data. GATD will buffer this raw data indefinitely until
an application specific formatter is written to map the raw
data to key-value pairs. These streams can be combined,
processed, graphed, stored, or otherwise manipulated by a
standard set of transforms or new custom drivers. With this
architecture, we argue that GATD provides a robust, extensi-
ble, and versatile Swarm dataplane.

1 Introduction
Efficient incoming data stream management, storage,

processing, fusing, and publishing is critical for handling
the influx of data from new swarms of sensors. However,
building a data management system for each application or
deployment is unmaintainable and, we argue, unnecessary.
From our experience, the process of managing and storing
data for a variety of different applications follows a similar
pattern. Many common operations, for instance converting
raw sensor values, streaming data in real-time to a display,
and storing data, can be shared across different applications.

GATD is a strawman system that attempts to exploit these
patterns and divide common operations into reusable mod-
ules to explore the viability of such a general framework. It
is based on three design tenets:

• Robust. All data must be accepted. If it is unknown it
will be archived and processed later.

• Extensible. New applications will arise. The system
must be extensible with minimal to no downtime.

• Versatile. Real-time streaming, long-term archival, and
anything in-between must be supported.

2 System Architecture
Our system architecture is divided into a number of

purpose-centric modules. These modules communicate us-
ing a message broker model, similar to SEDA [2], which

provides significant decoupling and allows them to run in a
distributed manner. Using message queues provides a robust
layer to connect the modules and dynamic load balancing
between different versions or copies of modules.
2.1 Ideal Model: Producers / Consumers

Conceptually, we model GATD as a series of producer
and/or consumer modules interconnected with queues of in-
finite depth. Each queue may have an arbitrary number of
independent readers, all of whom receive copies of each
message. The boundless queue abstraction is important for
presenting a simple, unified interface: GATD transparently
morphs into a data archival service if a reader attaches itself
to a queue but never actually consumes any messages.

These magic structures do not exist today and the mod-
ules and queues are forced to take on a more limited capacity
in our GATD implementation. It is easy to map pieces such
as the archive module as an implementation detail that facil-
itates the infinite-depth queue abstraction.
2.2 Implementation: GATD Modules

The basic breakdown of modules is shown in Figure 1.
Many instantiations of each type can exist, to support, for
instance, different communication protocols.

Receiver: A receiver is a generic interface for getting
data into GATD. The purpose of receivers is to abstract away
the transport medium used to communicate with GATD. Re-
ceivers do no processing on data, they simply timestamp its
receipt and pass it on as an opaque block. Currently we have
raw UDP and TCP receivers, and a HTTP module that ac-
cepts POST requests, though others could be easily added.

Queryer: The queryer is a compatibility receiver-like
module to convert a polled data source to a push stream. A
queryer can be configured to emit packets at a constant fre-
quency or every time the polled data changes.

Formatter: GATD formatters are responsible for canon-
icalizing raw data from a receiver into a series of key-value
pairs. Formatters have great leeway in their action. The
simplest formatters are near no-ops, copying to their outputs
what they received as inputs. Others may convert raw data
to standard units or unpack a data struct. In some cases, for-
matters subscribe to multiple producers and aggregate them.

In lieu of a magical queue, when a formatter is not avail-
able for incoming data it is stored in an archive database.
This database is replayed when a formatter comes online
than can handle the data. Once data is formatted it is stored in
a database and pushed to any subscribed streaming queues.

Streamer: Streamers are the output analog of receivers.
They are initiated in response to a stream subscription sent to
GATD and send all formatted data blobs that match a given
query. Currently there exists a streamer for sending data to

1



Queryer

Receiver

Formatter

Archive

Streamer

Storage Miner

Client

REST

Message Message
Queue

Figure 1: Architecture of GATD—Queryers and receivers push messages into the system. These messages are timestamped
upon receipt and buffered in a queue indefinitely until retrieved by a formatter. Formatted messages are written out to long-term
storage for future queries. Formatters also write out messages in real-time after formatting to any services that have subscribed
to the formatter. A subscription creates another queue of infinite depth, allowing the formatter to emit messages independent of
the rate that a subscriber is able to consume them.

web browsers and one that uses a raw TCP connection for
streaming to arbitrary clients.

Miner: Miner modules are used as an optimized in-
terface for historical data queries, allowing direct database
query access. From the model perspective, a miner is a tran-
sient block that consumes multiple messages from multiple
streams and produces only one message in an output queue.

In practice, the miner interface is a band-aid that solves
the absence of a GATD control plane that could dynamically
create a purely computational producer/consumer block on
the fly to satisfy a subscription request for a currently non-
existent queue. Our GATD hypothesis argues that if a pro-
ducer and consumer subscription model is sufficient, then
complex queries can be expressed as a subscription to a spe-
cific queue that an intelligent GATD control plane could dy-
namically create, optimized with the knowledge of current
compute resources and required data location.

3 Limitations / Future Work
GATD has been a very useful tool for the collection and

processing of sensor network data, however there remain
challenges to expanding its design if it is the be the foun-
dation of a more general purpose SwarmOS dataplane.
3.1 Latency Sensitive Applications / QoS

GATD only has one quality of service (QoS) mode: even-
tual delivery of all messages exactly and in-order (for a given
producer). Many applications have different demands. We
postulate that a consumer-driver subscription model may be
sufficient to express QoS more generally. When a consumer
subscribes to a queue, it expresses its QoS requirements.
These requirements can be “bubbled up” as the subscribee
must verify that it can provide the consumer’s request before
allowing the subscription. In such a model, the long-term
data storage model can be conceptualized as a consumer of
the current type—requiring every message but not requiring
anything better than eventual delivery.
3.2 Global Time / Global Order

Currently, when each receiver receives a message it adds
a timestamp. This happens to generate a total global order-
ing of events as all of the receivers are currently running on
the same machine. Once GATD components are actually dis-
tributed across machines clock drift will eliminate this total

ordering property. As precise network time is challenging,
we look to the distributed systems community for possible
solutions. Lloyd et al’s recent scalable consistency work pro-
vides a nice summary of the state of distributed consistency
in addition to its new “causal consistency” primitive, which
may be very apropos for an event-based system [1]. While
formatters could network together to build an “overlay con-
sistency network”, ordering is a property that may be better
expressed as a more fundamental primitive. It is not clear,
however, how to discover and partition modules that require
ordering. We need a better understanding of systems that
require ordering before attempting to propose a solution.
3.3 Security and Privacy

When data streams come in to the same server, are stored
together, and combined or aggregated, obvious data privacy
concerns arise. Should sensitive data streams be combined
with completely public streams? If two streams have over-
lapping access controls can they be combined by GATD?
How are the access controls specified, and at what level?
If streams have only best-effort QoS constraints, what side-
channel information is potentially leaked?

The current GATD implementation does very little to ad-
dress this. Streams are marked as either public (available to
all users) or private (requires authentication to get data from
the stream). An attempt to read from an unauthenticated pri-
vate stream will simply return no data (so as not to leak the
presence or absence of the stream itself). Authentication is
handled out of band, issues of distributing trust remain an
issue.
3.4 Location

With a large spread of sensors reporting data, it may be
important to know where the sample was taken. Therefore,
at some point, location data needs to be appended to the data
packet. However, where in the system this should be added?
What happens with mobile nodes? If a node can localize
itself, how should it report this data?

4 References
[1] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Don’t

settle for eventual: scalable causal consistency for wide-area storage
with COPS. SOSP ’11, pages 401–416, New York, NY, USA, 2011.

[2] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture for
well-conditioned, scalable internet services. SOSP ’01, 2001.

2


	Introduction
	System Architecture
	Ideal Model: Producers / Consumers
	Implementation: GATD Modules

	Limitations / Future Work
	Latency Sensitive Applications / QoS
	Global Time / Global Order
	Security and Privacy
	Location

	References

