Title: Rethinking the Cloud
Authors: Marten Lohstroh, Chris Shaver

The proliferation of ubiquitous, low-cost, high-bandwidth access to the Internet, both for personal computers
and mobile devices, has facilitated the development of an infrastructure that provides many forms of remote
data storage for businesses, organizations, and individuals. This infrastructure has become know as the
Cloud. Data that had in the past been stored on locally managed devices, such as biographical information,
documents, work projects, media, email, and contacts, are now being moved into the Cloud, and often
completely removed from, or merely cached in local forms of data storage. In addition, increasingly more
sensor equipped devices automatically feed their data into the Cloud, typically through a web service that is
provided by the manufacturer of the device or the developer of the software that runs on it.

This infrastructure provides the advantage of being able to access anything stored in the Cloud anywhere
there is an available Internet connection. At the same time, it makes data less susceptible to loss or
destruction, as opposed to storage on personal devices that can easily be damaged, lost, or stolen. Access
to data is mediated through a wide diversity of services, such as web applications, search tools, and social
networks, often with the ability to share or exchange data with others.

Despite the advantages of the Cloud, there are a number of significant drawbacks that emerged from the
infrastructure being developed by different companies and institutions, often providing storage for specific
forms or niches of data coupled with particular applications and services. The close integration of services
with the data stored and operated on, has lead to data being clustered in the administrative domains of the
respective service providers, ultimately fragmenting data from the perspective of the user. Rather than having
one’s personal data all in one virtual location, provided as generic data storage, data is stratified across
several proprietary platforms, stored in different formats, and potentially with great redundancy. This makes
it difficult for users to track and manage their data, or exchange it across platforms. Once captured in the
Cloud, access to a segment of data is limited by the specifics of the provided interface, and subject to the
service agreement with the provider. This imposes a barrier for interoperability with other services, but also
limits the ability for users to migrate from one platform to another.

The fate of Cloud-stored data is also tied to the companies or institutions that host each fragment. A
company going out of business or changing its business strategy can cause one’s personal data to become
suddenly less accessible, inaccessible, compromised, or even entirely lost. Issues of trust and personal
security exist as well with these providers who can profile, sell, censor, or indiscriminately modify personal
information. As data accumulated on the platforms of popular Cloud services, the companies providing those
services have even shown to become the means to facilitate mass surveillance.

In order to address these issues, an attractive alternative to this collection of heterogeneous proprietary
platforms that interweave personal data storage with the services they offer, would be an infrastructure in
which personal data could be kept separately and independently from the services that operate on it. Rather
than distributing fragments of one’s data over various service providers and relying upon them to access this
data, a single provider of generic, reliable, and secure personal data storage could store the whole of one’s
personal data in one virtual location on the Internet. It would then be up to the user to grant third parties
access to particular resources. This infrastructural alternative factors the Cloud into a 'data-store', which
provides a common access point to both personal and proprietary data, and a set of individuals and service
providers whose services and applications can interact with this data-store. Sharing would no longer be
limited to specific platforms, but become universal in the same way the early Internet made access to
hypertext universal through the use of the Uniform Resource Locator (URL).



This factoring can even allow much of personal data to remain completely independent of service providers.
A service can be delivered in the form of a client-side application that contains templates for personal
information requests to be issued to the data-store. The requests themselves can be then made by the

client securely, so that the personal data does not have to ever pass through the service provider. Client-side
applications can then pull personal data directly and integrate it into their interfaces. If heavy back-end
processing and aggregation must be done remotely to this data, this processing can still be performed
remotely, potentially on the data-store itself, but the request for this processing will be initiated on the
client-side rather than by the service provider.

One of the primary demands of an infrastructure that separates data and services is the development of a
language that can be used to identify and query data from data-stores, as well as specify back-end
processing to be done remotely on this data. The URL has served the purpose of providing a language for
identifying data in the form of files. For this reason, the language of URLs takes on the structure of a typical
hierarchical file system. More broadly, the Uniform Resource Identifier (URI) appends to the URL additional
information such as key-value pairs encoding state and inputs that condition a file or resource being
retrieved. As web applications have become more sophisticated, this language has been leveraged to more
broadly codify general information requests; the hierarchy for instance, no longer necessarily refers to an
actual file system, but instead often just codifies structured information. A URI can identify an existing file,
or identify information that is generated in response to requesting it.

However, this language of URIs lacks the syntax and static semantics to match the sophistication of the
requests it now often codifies. Requests to RESTful interfaces and other kinds of web applications encode a
domain specific request language loosely into the syntactic structures of the URI. Particularly in an
infrastructure where many different applications must be able to request information from a common
data-store, a richer declarative query language needed. As first step towards building the proposed
infrastructure, we will develop such a language to replace the URI as a means of making complex requests
for information. This language will allow for the construction of what will be called a Uniform Information
Identifier (UII).

In some respects, this language will share similarities to SQL. Indeed, behind many web services is a
database accessed with SQL queries. But unlike SQL, this new language cannot presuppose a particular
structure of information such as the table of rows of columns structure of a traditional database. Instead, the
language must be able to specify the structure of data in a flexible way, and make statements involving this
structure. The aims of this presentation at ESWeek will be to both discuss the development of this new
infrastructure and to discuss more specifically the details of this declarative language for making
sophisticated data requests.



