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Active Information Acquisition Problem: 

 Given a finite horizon T, choose a control policy to maximize the 

mutual information between the measurements and the final 

target state: 
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The Objective (Task D.3.3) 
Design a scalable control strategy for a swarm of mobile sensors to 

observe and evolving phenomenon of interest (target) efficiently 

Sensor & Target Characteristics 
 Sensor Motion Model (SMM):  

 Target Motion Model (TMM): 

 Sensor Observation Model (SOM): 
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Linear Gaussian Assumptions 
 TMM: 

 SOM: 
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Separation Principle: 

Under linear Gaussian assumptions, open-loop policies are optimal  

and the problem reduces to a deterministic control problem: 
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Σ is the covariance of the target distribution, ρ is the Riccati map  

Forward Value Iteration: 

 keeps all reachable nodes 

 obtains optimal solution 

Greedy policy: 

 keeps only the best node per stage 

 no sub-optimality guarantees 

What about the middle ground? 

Algebraic Redundancy: 
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Theorem: 

For some [1, ], let ( , )  be a node in the -th level of the 

search tree. If there exists a set { , } {( , )} such that:
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Relaxing the Conditions 
 Remove paths which are: 
 almost crossing at time t 
 almost algebraically-redundant paths  

 Regularity assumptions are necessary 

Theorem: 
*

,
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The sub-optimality gap between the cost V  of the

optimal sensor path and the cost V  of the path 

obtained after the reductions satisfies:
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Our Contribution 
 Non-myopic control strategy for mobile sensors with linear 

Gaussian observation models to track targets with linear 

Gaussian dynamics 

 Sub-optimality guarantees on the performance 

 Considers sensor dynamics & continuous space of configurations 

 Trade-off between computation and optimality via the parameters 

 Provably better than the widely used greedy control policy 

 Linearization & Model Predictive Control to obtain closed-loop 

control policy for sensors with non-linear observation models 

 Target state inference is still done with a non-linear estimator 

 

 

Future Direction 
 Distributed control and estimation: 

 Estimation from local observations and interaction with neighbors 

 Choose controls locally, while maintaining performance guarantees 

 Applications & experimental validation in the Smart City testbed 

 Applications with more general sensing models such as active 

semantic localization 

 Distributed self-localization method with consistency guarantees 

 Collaborate with others working on localization (Task D.3.2) 


