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We address the problem of correct-by-construction control design for aircraft Electric Power Systems within a Platform-Based Design methodology. We first formalize the system connectivity, safety and
performance requirements in terms of mathematical constraints. We then show that the EPS control problem can be formulated as a Mixed-Integer Linear Program (MILP) and efficiently solved to yield load
shedding, source allocation, contactor switching and battery charging policies, while optimizing a number of performance metrics, such as the number of used generators and shed loads. Our solution
comprises a hierarchical control scheme that accounts for system faults. The high-level load management system (HL-LMS) provides control optimality by solving the MILP within a receding horizon
approach. The lower-level load management system (LL-LMS) handles system faults, by directly actuating the EPS contactors and implements the solution from the high-level controller only if it is safe.
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EPS design is performed today mostly following a sequential derivative
design process (V diagram) with limited capability of estimating the
effects of earlier design decisions on the final implementation.
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Problem Formulation: Capturing the specifications and control goals as mathematical constraints to form the optimization problem
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