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Abstract. In the generalized Russian cards problem, we have a card deck X of n cards and three
participants, Alice, Bob, and Cathy, dealt a, b, and c cards, respectively. Once the cards are dealt,
Alice and Bob wish to privately communicate their hands to each other via public announcements,
without the advantage of a shared secret or public key infrastructure. Cathy, for her part, should
remain ignorant of all but her own cards after Alice and Bob have made their announcements. Notions
for Cathy’s ignorance in literature range from Cathy not learning the fate of any individual card with
certainty (weak 1-security) to not gaining any probabilistic advantage in guessing the fate of some set
of δ cards (perfect δ-security). As we demonstrate in this work, the generalized Russian cards problem
has close ties to the field of combinatorial designs, on which we rely heavily, particularly for perfect
security notions. Our main result establishes an equivalence between perfectly δ-secure strategies and
(c + δ)-designs on n points with block size a, when announcements are chosen uniformly at random
from the set of possible announcements. We also provide construction methods and examples solutions,
including a construction that yields perfect 1-security against Cathy when c = 2. Finally, we consider
a variant of the problem that yields solutions that are easy to construct and optimal with respect to
both the number of announcements and level of security achieved. Moreover, this is the first method
obtaining weak δ-security that allows Alice to hold an arbitrary number of cards and Cathy to hold
a set of c = ba−δ

2
c cards. Alternatively, the construction yields solutions for arbitrary δ, c and any

a ≥ δ + 2c.

1 Introduction

In the generalized Russian cards problem, we have a card deck X and three participants, Alice,
Bob, and Cathy. Once the cards are dealt, Alice and Bob wish to privately communicate their hands
to each other via public announcements, without the advantage of a shared secret or public key
infrastructure. Here we focus on protocols of length two, which allows us to consider only Alice’s
announcement. That is, Alice should make an informative announcement, so that Bob learns the
card deal. Bob, after hearing Alice’s informative announcement, can always announce Cathy’s hand.
Cathy, for her part, should remain ignorant of all but her own cards after Alice and Bob have made
their announcements.
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Notions for Cathy’s ignorance in literature range from Cathy not learning the fate of any indi-
vidual card with certainty (weak 1-security) to not gaining any probabilistic advantage in guessing
the fate of some set of δ cards (perfect δ-security). As we discuss in this work, the generalized
Russian cards problem has close ties to the field of combinatorial designs, on which we rely heavily,
particularly for perfect security notions.

If a scheme satisfies weak 1-security, Cathy should not be able to say whether a given card is
held by Alice or Bob (unless she holds the card herself). If a scheme satisfies perfect 1-security,
each card is equally likely to be held by Alice. When Alice’s strategy is equitable (in the sense that
Alice picks uniformly at random from some set of possible announcements), we show an equivalence
between perfectly secure strategies and sets of 2-designs on n points with block size a.

Generalizing these notions of weak and perfect security, which focus on the probability that
individual cards are held by Alice, we consider instead the probability that a given set of δ cards
is held by Alice. If the probability distribution is uniform across δ-sets, we say the scheme satisfies
perfect δ-security, and if the distribution is not uniform (but positive for every possible δ-set), then
we have weak δ-security. We consider equitable strategies and show an equivalence between perfectly
δ-secure strategies and (c + δ)-designs on n points with block size a. For equitable, informative,
and perfectly (a− c− 1)-secure strategies, we show c = 1 and demonstrate an equivalence between
these strategies and Steiner systems S(a−1, a, n), a result first shown in Swanson and Stinson [27],
albeit with a much more complicated proof than we present here.

Building on results in Swanson and Stinson [27], we show how to use a t-(n, a, 1)-design to
construct equitable (a, b, c)-strategies that are informative for Bob and perfectly (t − c)-secure
against Cathy for any choice of c satisfying c ≤ min{t − 1, a − t}. In particular, this indicates
that if an appropriate t-design exists, it is possible to achieve perfect security for deals where
Cathy holds more than one card. We present an example construction, based on inversive planes,
for (q + 1, q2 − q − 2, 2)-strategies which are perfectly 1-secure against Cathy and informative
for Bob, where q is a prime power. This example, first given in Swanson [28], is among the first
strategies presented in the literature that is informative for Bob and achieves perfect 1-security
against Cathy for c > 1. This example was found independently from the work of Cordón-Franco
et al. [8], discussed later, which presents a protocol that for certain parameters achieves perfect
1-security against Cathy for c = 2.

Finally, we discuss a variation on the generalized Russian cards problem, where the card deck is
first split into a piles, and Alice and Cathy’s hands consist of at most one card from each pile, with
Bob receiving the remaining cards. This variant admits a nice solution using transversal designs
with λ = 1 that achieves weak (a − 2c)-security. In particular, this solution is easy to construct
and is optimal with respect to both the number of announcements and level of security achieved.
Moreover, this is the first method obtaining weak δ-security that allows Alice to hold an arbitrary
number of cards and Cathy to hold a set of c = ba−δ2 c cards. Alternatively, the construction yields
solutions for arbitrary δ, c and any a ≥ δ + 2c.

1.1 Paper outline

After reviewing basic results from combinatorial designs in Section 2, we review the basic framework
for the generalized Russian cards problem and establish relevant notation in Section 3. In Section 4,
we study and define the notion of an informative strategy. We then move to a formal discussion of
secure strategies in Section 5. In Section 6, we explore strategies that are simultaneously informative
and either weakly or perfectly δ-secure, discussing construction methods and examples in Section 7.
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In Section 8 we discuss a variant of the generalized Russian cards problem and present a solution
using transversal designs. We discuss related work in Section 9. Finally, we give some concluding
remarks in Section 10.

2 Combinatorial Designs

In this section, we present fundamental definitions and standard results from the theory of combi-
natorial designs needed in this paper. For general references on this material, we refer the reader
to Stinson [25] and Colbourn and Dinitz [5]. All results stated in this section without proof can be
found in [5, 25].

2.1 t-designs

Definition 2.1. Let v, k, λ, and t be positive integers with v > k ≥ t. A t-(v, k, λ)-design is a set
system (X,B) such that the following are satisfied:

1. |X| = v,

2. each block contains exactly k points, and

3. every subset of t distinct points from X occurs in precisely λ blocks.

Remark 2.2. A 2-(v, k, λ)-design is also called a (v, k, λ) balanced incomplete block design, or (v, k, λ)-
BIBD.

Definition 2.3. A symmetric BIBD is a (v, k, λ)-BIBD in which there are v blocks.

Theorem 2.4. In a symmetric BIBD, any two blocks intersect in exactly λ points.

Definition 2.5. The design formed by taking λ copies of every k-subset of a v-set as blocks is a

t-
(
v, k, λ

(
v−t
k−t
))

-design, called a trivial t-design.

The following theorems are standard results for t-designs:

Theorem 2.6. Let (X,B) be a t-(v, k, λ)-design. Let Y ⊆ X such that |Y | = s ≤ t. Then there are
precisely

λs =
λ
(
v−s
t−s
)(

k−s
t−s
)

blocks in B that contain Y .

Theorem 2.7. Let (X,B) be a t-(v, k, λ)-design. Let Y ⊆ X and Z ⊆ X such that Y ∩ Z = ∅,
|Y | = i, |Z| = j, and i+ j ≤ t. Then there are precisely

λji =
λ
(
v−i−j
k−i

)(
v−t
k−t
)

blocks in B that contain all the points in Y and none of the points in Z.

3
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Example 2.8. A 3-(8, 4, 1)-design.

X = {0, 1, 2, 3, 4, 5, 6, 7} and

B = {3456, 2567, 2347, 1457, 1367, 1246, 1235, 0467, 0357, 0245, 0236, 0156, 0134, 0127}.

Definition 2.9. A t-(v, k, 1)-design is called a Steiner system with parameters t, k, v and is denoted
by S(t, k, v).

Remark 2.10. A Steiner triple system of order v, or STS(v), is an S(2, 3, v), i.e., a Steiner system
in which k = 3. It is known that an STS(n) exists if and only if n ≡ 1, 3 mod 6, n ≥ 7.

Definition 2.11. A large set of t-(v, k, 1)-designs is a set {(X,B1), . . . , (X,BN )} of t-(v, k, 1)-
designs (all of which have the same point set, X), in which every k-subset of X occurs as a block
in precisely one of the Bis. That is, the Bis form a partition of

(
X
k

)
.

Remark 2.12. It is easy to prove that there must be exactly N =
(
v−t
k−t
)

designs in a large set of
t-(v, k, 1)-designs.

Remark 2.13. There are v−2 designs in a large set of STS(v). It is known that a large set of STS(v)
exists if and only if v ≡ 1, 3 mod 6 and v ≥ 9.

Example 2.14. A large set of STS(9) [22].

X = {1, 2, 3, 4, 5, 6, 7, 8, 9} and B1, . . . ,B7,

where the 7 block sets B1, . . . ,B7 are given by the rows of the following table:

123 145 169 178 249 257 268 348 356 379 467 589
124 136 158 179 235 267 289 349 378 457 468 569
125 137 149 168 238 247 269 346 359 458 567 789
126 139 148 157 234 259 278 358 367 456 479 689
127 135 146 189 239 248 256 347 368 459 578 679
128 134 159 167 236 245 279 357 389 469 478 568
129 138 147 156 237 246 258 345 369 489 579 678

2.2 Transversal Designs

Definition 2.15. Let t, v, k, and λ be positive integers satisfying k ≥ t ≥ 2. A transversal design
TDλ(t, k, v) is a triple (X,G,B) such that the following properties are satisfied:

1. X is a set of kv elements called points,
2. G is a partition of X into k subsets of size v called groups,
3. B is a set of k-subsets of X called blocks,
4. any group and any block contain exactly one common point, and
5. every subset of t points from distinct groups occurs in precisely λ blocks.

Many of the standard results for t-designs can be extended to transversal designs. The following
terminology and results are useful:

4
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Definition 2.16. Let (X,G,B) be a TDλ(t, k, v) and write G = {Gj : 1 ≤ j ≤ k}. Suppose Z ⊆ X
such that |Z| = i ≤ k and |Z ∩ Gj | ≤ 1 for 1 ≤ j ≤ k. We say Z is a partial transversal of G. If
i = k, then we say Z is a transversal of G.

Definition 2.17. For a partial transversal Z of G, we let GZ = {Gj ∈ G : Z ∩Gj 6= ∅} denote the
set of groups that intersect Z. If Y , Z ⊆ X are partial transversals of G such that GZ ∩ GY = ∅,
we say Y , Z are group disjoint.

Theorem 2.18. Let (X,G,B) be a TDλ(t, k, v). Suppose Y ⊆ X such that |Y | = s ≤ t and Y is a
partial transversal of G. Then there are exactly λs = λvt−s blocks containing all the points in Y .

Proof. Fix a subset of t − s groups disjoint from Y , say G′1, . . . , G
′
t−s. Consider a t-subset X

consisting of all the points from Y and one point from each of G′1, . . . , G
′
t−s. In particular, there

are vt−s such t-subsets X, and each such X occurs in precisely λ blocks. Note that every block
that contains Y is a transversal of G, so every such block contains exactly one such t-subset X.
Therefore Y occurs in precisely λvt−s blocks, as desired.

Theorem 2.19. Let (X,G,B) be a TDλ(t, k, v). Suppose Y , Z ⊆ X are group disjoint partial
transversals of G such that |Y | = i, |Z| = j, and i+ j ≤ t. Then there are exactly

λji = λvt−i−j(v − 1)j

blocks in B that contain all the points in Y and none of the points in Z.

Proof. Consider the set of groups GZ that intersect Z. There are (v − 1)j subsets X such that X
consists of all the points from Y and one point from each group in GZ , but X contains no points
from Z. Each such (i + j)-subset X occurs in precisely λi+j blocks by Theorem 2.18. Therefore
there are λi+j(v − 1)j = λvt−i−j(v − 1)j blocks that contain all the points of Y but none of the
points of Z.

We can also apply the notion of large sets to transversal designs:

Definition 2.20. A large set of TDλ(t, k, v) on the point set X and group partition G is a set
{(X,G,B1), . . . , (X,G,BN )} of TDλ(t, k, v) in which every set of k points from distinct groups of
X occurs as a block in precisely one of the Bis.

Remark 2.21. It is easy to see that there must be N = vk

λvt transversal designs in a large set of
TDλ(t, k, v).

Transversal designs are equivalent to orthogonal arrays:

Definition 2.22. Let t, v, k, and λ be positive integers satisfying k ≥ t ≥ 2. An orthogonal array
OAλ(t, k, v) is a pair (X,D) such that the following properties are satisfied:

1. X is a set of v elements called points,

2. D is a λvt by k array whose entries are elements of X, and

3. within any t columns of D, every t-tuple of points occurs in precisely λ rows.

5
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Example 2.23. An OA1(2, 4, 3).
1 1 1 1
1 2 3 3
1 3 2 2
2 1 2 3
2 2 1 2
2 3 3 1
3 1 3 2
3 2 2 1
3 3 1 3

It is easy to see the correspondence between orthogonal arrays and transversal designs. Suppose
(X,D) is an OAλ(t, k, v). We define a bijection φ between the rows rj of D and the blocks Bj of a
TDλ(t, k, v) as follows. For each row rj = [xj1xj2 · · ·xjk] of D, let

φ(rj) = {(xj1, 1), (xj2, 2), . . . (xjk, k)} = Bj

define a block Bj . Define Gi = {1, . . . , v} × {i} for 1 ≤ i ≤ k. Then (X × {1, . . . , k},G,B) is a
TDλ(t, k, v) with G = {Gi : 1 ≤ i ≤ k} and B = {Bj : 1 ≤ j ≤ λvt}.

Example 2.24. The blocks of the TD1(2, 4, 3) obtained from the OA1(2, 4, 3) in Example 2.23:

B1 : (1, 1) (1, 2) (1, 3) (1, 4)
B2 : (1, 1) (2, 2) (3, 3) (3, 4)
B3 : (1, 1) (3, 2) (2, 3) (2, 4)
B4 : (2, 1) (1, 2) (2, 3) (3, 4)
B5 : (2, 1) (2, 2) (1, 3) (2, 4)
B6 : (2, 1) (3, 2) (3, 3) (1, 4)
B7 : (3, 1) (1, 2) (3, 3) (2, 4)
B8 : (3, 1) (2, 2) (2, 3) (1, 4)
B9 : (3, 1) (3, 2) (1, 3) (3, 4)

The above construction method can be reversed for an arbitrary TDλ(t, k, v), say (X,G,B). To
see this, note that we can relabel the points such that X = {1, . . . , v} × {1, . . . , k} and G = {Gi :
1 ≤ i ≤ k}. Then the fact that any block and any group must contain exactly one common point
implies that for each B ∈ B, we can form the k-tuple (b1, . . . , bk), where bi ∈ B ∩Gi for 1 ≤ i ≤ k.
We can form an orthogonal array OAλ(t, k, v) by taking all of these k-tuples as rows.

Definition 2.25. A large set of OAλ(t, k, v) on the point set X is a set of OAλ(t, k, v), say
{(X,D1), . . . , (X,DN )}, in which every k-tuple of elements from X occurs as a row in precisely one
of the Dis. That is, the Dis form a partition of the set Xk of k-tuples with entries from X.

Remark 2.26. It is easy to see that there must be N = vk

λvt orthogonal arrays in a large set of
OAλ(t, k, v).

A useful type of orthogonal array is a linear array, especially for constructing large sets:

Definition 2.27. Let (X,D) be an OAλ(t, k, v). We say (X,D) is linear if X = Fq for some prime
power q and the rows of D form a subspace of (Fq)k of dimension logq|D|.

6
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Linear orthogonal arrays (and hence the corresponding transversal designs) are easy to con-
struct. In particular, the following is a useful construction method.

Theorem 2.28. Suppose q is a prime power and k and ` are positive integers. Suppose M is an `
by k matrix over Fq such that every set of t columns of M is linearly independent. Then (X,D) is
a linear OAq`−t(t, k, q), where D is the q` by k matrix formed by taking all linear combinations of
the rows of M .

Let q be a prime power and for every x ∈ Fq, let x = [1, x, x2, . . . , xt−1] ∈ (Fq)t for some integer
t ≥ 2. Construct the t by q matrix M by taking the columns to be the vectors (x)T for every x ∈ Fq,
where here (x)T means the transpose of x. Applying Theorem 2.28 to M yields the following result:

Corollary 2.29. Let t ≥ 2 be an integer and let q be a prime power. Then there exists a linear
OA1(t, q, q).

The following result is immediate.

Corollary 2.30. Let t ≥ 2 be an integer and let q be a prime power. Then there exists a linear
TD1(t, q, q).

Remark 2.31. The constructions discussed in Corollaries 2.29 and 2.30 are known as Reed-Solomon
codes [25].

We now discuss how to construct a large set of linear orthogonal arrays from a “starting” linear
orthogonal array. Suppose (X,D) is a linear OAλ(t, k, v). We can obtain a large set of orthogonal
arrays (and therefore transversal designs) from (X,D) by taking the set of cosets of D in (Fq)k. In
particular, D is a subspace of (Fq)k, so the cosets of D form a partition of (Fq)k.

3 Terminology and Notation

We review the terminology and notation established by Swanson and Stinson [27]. Throughout, we
let
(
X
t

)
denote the set of

(
n
t

)
t-subsets of X, where t is a positive integer.

Let X be a deck of n cards. In an (a, b, c)-deal of X, Alice is dealt a hand HA of a cards, Bob
is dealt a hand HB of b cards, and Cathy is dealt a hand HC of c cards, such that a + b + c = n.
That is, it must be the case that HA ∪ HB ∪ HC = X. We assume these hands are random and
dealt by some external entity.

An announcement by Alice is a subset of
(
X
a

)
containing Alice’s current hand, HA. More gener-

ally, Alice chooses a set of m announcements A1,A2, . . . ,Am ⊆
(
X
a

)
satisfying ∪mi=1Ai =

(
X
a

)
. For

every HA ∈
(
X
a

)
, we define g(HA) = {i : HA ∈ Ai}, i.e., the set of possible announcements for Alice

given the hand HA. Alice’s announcement strategy, or simply strategy, consists of a probability
distribution pHA defined on g(HA), for every HA ∈

(
X
a

)
.

In keeping with Kerckhoffs’ principle, we assume the set of announcements and probability
distributions are fixed ahead of time and public knowledge. For a given hand HA ∈

(
X
a

)
, Alice ran-

domly chooses an index i ∈ g(HA) according to the probability distribution pHA . Alice broadcasts
the integer i to specify her announcement Ai. Without loss of generality, we assume that pHA(i) > 0
for all i ∈ g(HA).

For the purposes of this paper, we assume there exists some constant γ such that |g(HA)| = γ
for every HA and that every probability distribution pHA is uniform; such strategies are termed

7
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γ-equitable, or simply equitable. Throughout, we use the phrase (a, b, c)-strategy A to denote a
strategy for an (a, b, c)-deal, where A is the associated set of possible announcements for Alice.

The following notation is useful in discussing the properties of a given strategy A. For any
subset Y ⊆ X and any announcement Ai ∈ A, we define

PA (Y, i) = {HA ∈ Ai : HA ∩ Y = ∅} .

That is, PA (Y, i) is the set of hands of Ai that do not intersect the subset Y . When the strategy
A is clear from context, we write PA (Y, i) as P (Y, i).

4 Informative strategies

Suppose we have an (a, b, c)-deal and Alice chooses announcement Ai from the set A of possi-
ble announcements. From Bob’s point of view, the set of possible hands for Alice given Alice’s
announcement Ai and Bob’s hand HB ∈

(
X
b

)
is

P (HB, i) = {HA ∈ Ai : HA ∩HB = ∅} .

We say Alice’s strategy is informative for Bob provided that

|P (HB, i)| ≤ 1 (1)

for all HB ∈
(
X
b

)
and for all i. That is, if Equation (1) is satisfied, Bob can determine the set

of a cards that Alice holds from Alice’s announcement. In particular, this implies that Bob can
announce Cathy’s hand, thereby informing Alice of the card deal as well. Specified on the level of
individual announcements, we say an announcement Ai is informative provided |P (HB, i)| ≤ 1 for
any hand HB ∈

(
X
b

)
.

The following theorem, first shown by Albert et al. [1], is a useful equivalence condition for
informative announcements:

Theorem 4.1. [1] The announcement Ai is informative for Bob if and only if there do not exist
two distinct sets HA, H ′A ∈ Ai such that |HA ∩H ′A| ≥ a− c.

The following is an immediate corollary.

Corollary 4.2. Suppose there exists a strategy for Alice that is informative for Bob. Then a > c.

We make the following observation, which follows directly from Theorem 4.1 and the definition
of a t-design.

Corollary 4.3. Suppose a > c and each announcement Ai in an (a, b, c)-strategy is a ti-(n, a, 1)-
design, where ti ≤ a− c. Then the strategy is informative for Bob.

It is possible to have informative (a, b, c)-strategies using announcements which are t-designs
with λ > 1. In particular, Theorem 4.1 indicates that the block intersection properties of the
chosen design are relevant to whether or not the strategy is informative. If every announcement is
a symmetric BIBD, for example, then the strategy is guaranteed to be informative when a− c > λ.
This is because the intersection of any two blocks in a symmetric BIBD contains exactly λ points,
as stated in Theorem 2.4.

We make one more observation relating combinatorial designs and informative strategies.

8
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Lemma 4.4. Suppose a > c and each announcement Ai in an (a, b, c)-strategy A is a ti-(n, a, λi)-
design, where ti ≥ a− c. If A is informative for Bob, then ti = a− c and λi = 1 for all i.

Proof. Consider an announcement Ai ∈ A. If λi > 1, then there exist two blocks whose intersection
has cardinality at least ti ≥ a− c. This contradicts Theorem 4.1, so λi = 1, as desired.

If ti > a− c, then from Theorem 2.6, there are

v − (ti − 1)

k − (ti − 1)
> 1

blocks that contain ti−1 fixed points. Since ti−1 ≥ a−c, this contradicts Theorem 4.1, so ti = a−c,
as desired.

5 Secure strategies

We provide the general security definitions and state the equivalent combinatorial characterization
of secure equitable strategies from Swanson and Stinson [27].

Definition 5.1. Let 1 ≤ δ ≤ a.

1. Alice’s strategy is weakly δ-secure against Cathy provided that for any announcement Ai, for
any HC ∈

(
X
c

)
such that P (HC , i) 6= ∅, and for any δ′-subset Y ⊆ X\HC where 1 ≤ δ′ ≤ δ, it

holds that

0 < Pr [Y ⊆ HA | i,HC ] < 1.

Weak security means that, from Cathy’s point of view, any set of δ or fewer elements from
X\HC may or may not be held by Alice.

2. Alice’s strategy is perfectly δ-secure against Cathy provided that for any announcement Ai, for
any HC ∈

(
X
c

)
such that P (HC , i) 6= ∅, and for any δ′-subset Y ⊆ X\HC where 1 ≤ δ′ ≤ δ, it

holds that

Pr [Y ⊆ HA | i,HC ] =

(
a
δ′

)(
a+b
δ′

) .
Perfect security means that, from Cathy’s point of view, the probability that any set of δ or
fewer cards from X\HC is held by Alice is a constant.

Swanson and Stinson [27] show that in an equitable strategy any hand HA ∈ P (HC , i) is equally
likely from Cathy’s point of view:

Lemma 5.2. [27] Suppose that Alice’s strategy is γ-equitable, Alice’s announcement is Ai, HC ∈(
X
c

)
and HA ∈ P (HC , i). Then

Pr [HA | HC , i] =
1

|P (HC , i)|
. (2)

Swanson and Stinson [27] also establish the following equivalent combinatorial conditions:

Theorem 5.3. [27] Suppose that Alice’s strategy is γ-equitable. Then the following hold:

9
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1. Alice’s strategy is weakly δ-secure against Cathy if and only if, for any announcement Ai, for
any HC ∈

(
X
c

)
such that P (HC , i) 6= ∅, and for any δ′-subset Y ⊆ X\HC where 1 ≤ δ′ ≤ δ, it

holds that
1 ≤ |{HA ∈ P (HC , i) : Y ⊆ HA}| ≤ |P (HC , i)| − 1.

2. Alice’s strategy is perfectly δ-secure against Cathy if and only if, for any announcement Ai and
for any HC ∈

(
X
c

)
such that P (HC , i) 6= ∅, it holds that

|{HA ∈ P (HC , i) : Y ⊆ HA}| =
(
a
δ

)
|P (HC , i)|(
a+b
δ

)
for any δ-subset Y ⊆ X\HC .

We have the following elementary result:

Lemma 5.4. Consider an (a, b, c)-strategy A that is weakly 1-secure. Then for all Ai ∈ A and
x ∈ X, we have P ({x}, i) 6= ∅.

Proof. We proceed by contradiction. Suppose P ({x}, i) = ∅ for some Ai ∈ A and x ∈ X. Then x
occurs in every hand of Ai. That is, if Alice announces Ai, then Alice must hold x. In particular,
this implies that Cathy’s hand, say HC , does not contain x and Pr [x ∈ HA | i,HC ] = 1.

Here is a sufficient condition for an equitable strategy to be perfectly 1-secure against Cathy,
first shown by Swanson and Stinson [27]:

Lemma 5.5. [27] Suppose that each announcement Ai in an equitable (a, b, 1)-strategy A is a
2-(n, a, λi)-design. Then the strategy is perfectly 1-secure against Cathy.

In fact, the condition that every announcement Ai be a 2-(n, a, λi)-design is also a necessary
condition for an equitable (a, b, 1)-strategy to be perfectly 1-secure, as the following Theorem shows.

Theorem 5.6. Suppose we have an equitable (a, b, 1)-strategy A that is perfectly 1-secure against
Cathy. Then every announcement Ai ∈ A is a 2-(n, a, λi)-design.

Proof. First observe that since Cathy holds only one card, Lemma 5.4 immediately implies that
any element x ∈ X is a possible hand for Cathy. Consider an announcement Ai ∈ A. We proceed
by showing that every pair of distinct elements x, y ∈ X occurs in a constant number of hands of
Ai.

Let x ∈ X. Define rx to be the number of hands of Ai containing x. We proceed by counting
rx in two different ways. On the one hand, we immediately have

rx = |Ai| − |P ({x}, i)| . (3)

On the other hand, we can relate rx to P ({y}, i) for any y 6= x ∈ X as follows. Since the strategy
is perfectly 1-secure, x occurs a constant number of times in P ({y}, i), namely a

a+b |P ({y}, i)| times.
In particular, this is the number of times x occurs in a hand of Ai without y. That is, letting λxy
denote the number of times x occurs together with y in a hand of Ai, we have

rx = λxy +
a

a+ b
|P ({y}, i)| . (4)

10
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This gives us

|Ai| = λxy +
a

a+ b
|P ({y}, i)|+ |P ({x}, i)| . (5)

Now, following the same logic for y, we also have

|Ai| = λxy +
a

a+ b
|P ({x}, i)|+ |P ({y}, i)| . (6)

Equating Equations (5) and (6) shows that |P ({x}, i)| is independent of the choice of x ∈ X.
That is, rx is independent of x (by Equation (3)), so every point of X occurs in a constant number
of hands of Ai, say r hands. Moreover, Equation (4) then gives

λxy = r − a

a+ b
|P ({y}, i)| = r − a

a+ b
(|Ai| − r) ,

so λxy is independent of x and y. That is, every pair of points x, y ∈ X occurs a constant number
of times, which we denote by λi. This implies Ai is a 2-(n, a, λi)-design.

The relationship between combinatorial designs and strategies that satisfy our notion of perfect
security is quite deep. We now generalize the results from Swanson and Stinson [27] and Theorem 5.6
above to account for perfect δ-security and card deals with c ≥ 1. We begin with a generalization
of Lemma 5.5 that shows that in an equitable (a, b, c)-strategy, if each announcement is a t-design
with block size a, the strategy satisfies perfect (t− c)-security.

Theorem 5.7. Suppose that each announcement Ai in an equitable (a, b, c)-strategy A is a t-
(n, a, λi)-design, where c ≤ t− 1. Then the strategy is perfectly (t− c)-secure against Cathy.

Proof. Consider an announcement Ai ∈ A and a possible hand HC for Cathy. Since c ≤ t, Theo-
rem 2.7 implies there are

|P (HC , i)| =
λi
(
n−c
a

)(
n−t
a−t
) =

λi
(
a+b
a

)(
n−t
a−t
)

blocks in Ai that do not contain any of the points of HC .
Let δ ≤ t − c. Then Theorem 2.7 also implies that each set of δ points x1, . . . , xδ ∈ X\HC is

contained in precisely

|{HA ∈ P (HC , i) : x1, . . . , xδ ∈ HA}| =
λi
(
n−δ−c
a−δ

)(
n−t
a−t
) =

λi
(
a+b−δ
a−δ

)(
n−t
a−t
)

of these blocks.
Thus, for any set of δ points x1, . . . , xδ ∈ X\HC , we have

|P (HC , i)|
|{HA ∈ P (HC , i) : x1, . . . , xδ ∈ HA}|

=
(a+ b)!(a− δ)!
a!(a+ b− δ)!

=

(
a+b
δ

)(
a
δ

) ,

so Condition 2 of Theorem 5.3 is satisfied.

We approach a true generalization of Theorem 5.6 incrementally for readability. For deals sat-
isfying c = 1, we have the following necessary condition for an equitable strategy to be perfectly
δ-secure.

11
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Theorem 5.8. Suppose we have an equitable (a, b, 1)-strategy A that is perfectly δ-secure against
Cathy. Then every announcement Ai ∈ A is a (δ + 1)-(n, a, λi)-design.

Proof. We proceed by induction on δ. The base case (δ = 1) is shown in Theorem 5.6.
Consider an announcement Ai ∈ A. For a subset Y ⊆ X, let λY denote the number of hands of

Ai that contain Y . We show Ai must be a (δ + 1)-design as follows.
Suppose we have Y ⊆ X, where |Y | = δ + 1. Pick an element y ∈ Y . Since c = 1, we have by

Lemma 5.4 that {y} is a possible hand for Cathy. Since A is equitable and perfectly δ-secure, we
have (by Theorem 5.3)

|{HA ∈ P ({y}, i) : Y \{y} ⊆ HA}| =
(
a
δ

)
|P ({y}, i)|(
a+b
δ

) .

Moreover, since perfect δ-security implies perfect 1-security, |P ({y}, i)| is independent of y, as
shown in the proof of Theorem 5.6. That is, the number of hands of Ai that contain the δ-subset
Y \{y} but do not contain y is independent of the choice of Y and y ∈ Y , i.e. is some constant, say
s.

Now, A must be perfectly (δ − 1)-secure (since A is perfectly δ-secure), so by the inductive
hypothesis, Ai is a δ-(n, a, λ′i)-design for some λ′i. Therefore, the number of hands of Ai that
contain the δ-subset Y \{y} is precisely λ′i.

We have

λY \{y} = λY +

(
a
δ

)
|P ({y}, i)|(
a+b
δ

)
⇐⇒ λ′i = λY + s.

Therefore, λY is some constant independent of Y , so every (δ + 1)-subset occurs in a constant
number of hands of Ai, say λi. This implies Ai is a (δ + 1)-(n, a, λi)-design, as desired.

We are now ready to give a combinatorial characterization of general (a, b, c)-strategies that
are equitable and perfectly δ-secure for some δ ≥ 1. We give an inductive proof that relies on
Theorem 5.8 as the base case.

Theorem 5.9. Suppose we have an equitable (a, b, c)-strategy A that is perfectly δ-secure against
Cathy. Then every announcement Ai ∈ A is a (c+ δ)-(n, a, λi)-design.

Proof. We proceed by induction on c. The base case c = 1 is shown in Theorem 5.8. Recall that
for a strategy A, an announcement Ai ∈ A, and a subset Y ⊆ X, we make the strategy A explicit
in the notation P(Y, i) by writing PA(Y, i).

Let y ∈ X and define X ′ = X\{y}. Define an (a, b, c− 1)-strategy A′ by

A′ =
{
A′i : A′i = PA ({y}, i) , Ai ∈ A

}
.

We now show A′ is perfectly δ-secure. Suppose Cathy holds a (c− 1)-subset Y ⊆ X ′ satisfying
PA′ (Y, i) 6= ∅ for some A′i. In particular, note that if no such A′i exists, then A′ is trivially perfectly
δ-secure.

Consider a δ-subset Z ⊆ X ′\Y = X\(Y ∪ {y}). We wish to count the number of hands in
PA′ (Y, i) that contain Z. Now, PA′ (Y, i) = PA (Y ∪ {y}, i), so PA (Y ∪ {y}, i) 6= ∅ and hence

12
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Y ∪ {y} is a possible hand for Cathy in the original strategy A. Since A is perfectly δ-secure, we
see that (by Theorem 5.3)

|{HA ∈ PA (Y ∪ {y}, i) : Z ⊆ HA}| =
(
a
δ

)
|PA (Y ∪ {y}, i)|(

a+b
δ

) ,

which together with the fact that PA′ (Y, i) = PA (Y ∪ {y}, i), immediately implies A′ is perfectly
δ-secure. Moreover, since A′ is a perfectly δ-secure (a, b, c − 1)-strategy, we have by the inductive
hypothesis that every announcement A′i ∈ A′ is a (c−1+δ)-(n−1, a, λi)-design for some λ′i (where
λ′i may depend on i).

That is, every (c−1+δ)-subset of X\{y} occurs in λ′i hands of A′i = PA ({y}, i). Since we chose y
to be an arbitrary element of X, this implies A is a (c−1+δ)-perfectly secure (a, b+c−1, 1)-strategy.
Then the base case (Theorem 5.8) implies that every announcement Ai ∈ A is a (c+ δ)-(n, a, λi)-
design for some λi (where λi may depend on i), as desired.

Theorem 5.9 immediately implies the following bound on the security parameter δ for equitable
strategies:

Corollary 5.10. Suppose we have an equitable (a, b, c)-strategy A that is perfectly δ-secure against
Cathy. Then δ ≤ a− c.

Remark 5.11. If we have an equitable (a, b, c)-strategy A that is perfectly δ-secure against Cathy,
where δ = a − c, then each announcement Ai ∈ A is an a-design. In fact, since every a-subset of
X must appear a constant number of times in each Ai, we see that each Ai is a trivial a-design. In
this case, we see Alice’s strategy is not informative for Bob.

Together, Theorem 5.7 and Theorem 5.9 show a direct correspondence between t-designs and
equitable announcement strategies that are perfectly δ-secure for some δ satisfying δ ≤ t − c. We
state this result in the following theorem for clarity.

Theorem 5.12. A γ-equitable (a, b, c)-strategy A on card deck X that is perfectly δ-secure against
Cathy is equivalent to a set of (c+ δ)-designs with point set X and block size a having the property
that every a-subset of X occurs in precisely γ of these designs.

6 Simultaneously Informative and Secure Strategies

In general, we want to find an (a, b, c)-strategy (for Alice) that is simultaneously informative for
Bob and (perfectly or weakly) δ-secure against Cathy. We first consider informative strategies that
provide security for individual cards and then consider informative strategies that provide security
for multiple cards.

The following was first shown by Albert et al. [1]:

Theorem 6.1. [1] If a ≤ c+1, then there does not exist a strategy for Alice that is simultaneously
informative for Bob and weakly 1-secure against Cathy.

It is worth observing that a strategy that is not informative for Cathy implies, for any announce-
ment Ai by Alice and possible hand HC ∈

(
X
c

)
such that P (HC , i) 6= ∅ , that |P (HC , i)| ≥ 2. That

is, there must exist distinct HA, H
′
A ∈ P (HC , i). Following the same technique as in the proof of

Lemma 4.1, this implies |HA ∩H ′A| ≥ a − b. If in addition the strategy is informative for Bob, by
Lemma 4.1 we have a− c > |HA ∩H ′A| ≥ a− b, so c < b. This gives us the following result (which
is also discussed by Albert et al. [1]):
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Theorem 6.2. If c ≥ b, then there does not exist a strategy for Alice that is simultaneously infor-
mative for Bob and weakly 1-secure against Cathy.

We now focus on (3, n − 4, 1)-deals and examine the relationship between informative and
perfectly 1-secure strategies and Steiner triple systems.

The following is an immediate consequence of Theorem 5.6 and Lemma 4.4.

Corollary 6.3. Suppose (a, b, c) = (3, n−4, 1) and suppose that Alice’s strategy is equitable, infor-
mative for Bob, and perfectly 1-secure against Cathy. Then every announcement is a Steiner triple
system.

In fact, any (a, b, a − 2)-strategy that is informative, equitable, and perfectly 1-secure also
satisfies c = 1 (and hence a = 3). This result was first shown in Swanson and Stinson [27], but the
proof provided here is greatly simplified.

Theorem 6.4. Consider an (a, b, c)-deal such that a − c = 2. Suppose that Alice’s strategy is
equitable, informative for Bob, and perfectly 1-secure against Cathy. Then a = 3 and c = 1.

Proof. Theorem 5.9 implies that every announcement is an (a − 1)-design. Since c ≥ 1, we have
a− 1 ≥ a− c, so we may apply Lemma 4.4. This implies a− 1 = a− c, so we have c = 1, as desired.

Our proof technique works for the generalizations of Theorem 6.4 and Corollary 6.3 shown in
Swanson and Stinson [27] as well. That is, strategies that are equitable, informative for Bob, and
perfectly (a − c − 1)-secure against Cathy must satisfy c = 1 and each announcement must be an
(a− 1)-(n, a, 1)-design, also known as a Steiner system S(a− 1, a, n).

Theorem 6.5. Consider an (a, b, c)-deal. Suppose that Alice’s strategy is equitable, informative for
Bob, and perfectly (a− c− 1)-secure against Cathy. Then c = 1.

Proof. The proof is identical to the proof of Theorem 6.4.

Corollary 6.6. Consider an equitable (a, b, 1)-strategy that is informative for Bob and perfectly
(a− 2)-secure against Cathy. Then every announcement is a Steiner system S(a− 1, a, n).

Proof. The fact that every announcement is an (a−1)-design follows immediately from Theorem 5.9.
To see that λ = 1, we may apply Lemma 4.4. This is easy to see, however: since every (a−1)-subset
occurs λ times, the fact that the strategy is informative for Bob implies λ = 1.

In fact, we can use Theorem 5.9 and Lemma 4.4 to derive the following bound on the security
parameter δ for perfectly δ-secure and informative strategies, which helps put the above results in
context.

Corollary 6.7. Suppose we have an equitable (a, b, c)-strategy that is perfectly δ-secure against
Cathy and informative for Bob. Then δ ≤ a− 2c.

Proof. If the strategy is perfectly δ-secure, then by Theorem 5.9, every announcement is a (c+ δ)-
design. Now, if c + δ < a − c holds, then δ < a − 2c, as desired. If c + δ ≥ a − c, then since the
strategy is informative for Bob, we can apply Lemma 4.4. This yields c + δ = a − c, so we have
δ = a− 2c in this case.
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7 Construction methods and examples

Theorem 5.7 indicates that we can use t-designs to construct equitable strategies that are perfectly
δ-secure against Cathy for δ = t − c, where c ≤ t − 1. In fact, so long as we use t-designs with
λ = 1 and c ≤ a− t, such a strategy will also be informative for Bob (Corollary 4.3). This is a very
interesting result, as we can use a single “starting design” to obtain equitable strategies that are
informative for Bob and perfectly δ-secure against Cathy. We give a general method for this next.
First we require some definitions.

Definition 7.1. Suppose that D = (X,B) is a t-(v, k, λ)-design. An automorphism of D is a
permutation π of X such that π fixes the multiset B. We denote the collection of all automorphisms
of D by Aut(D).

Remark 7.2. It is easy to see that Aut(D) is a subgroup of the symmetric group S|X|.

Theorem 7.3. Suppose D = (X,B) is a t-(n, a, 1)-design. Then there exists a γ-equitable (a, n −
a − c, c)-strategy with m announcements that is informative for Bob and perfectly (t − c)-secure
against Cathy for any choice of c such that c ≤ min{t − 1, a − t}, where m = n!/|Aut(D)| and

γ = m
/(

n−t
a−t
)

.

Proof. Let the symmetric group Sn act on D. We obtain a set of designs isomorphic to D, which are
the announcements in our strategy. Since each announcement is a t-(n, a, 1)-design, the resulting
scheme is perfectly (t− c)-secure against Cathy by Theorem 5.7. Furthermore, since a− c ≥ t and
λ = 1, no two blocks have more than a − c − 1 points in common, so Theorem 4.1 implies the
scheme is informative for Bob.

The total number of designs m is equal to n!/|Aut(D)| (as this is the index of Aut(D) in Sn).

To see that γ = m
/(

n−t
a−t
)

, consider a fixed t-subset A of X. Then in particular, there are
(
n−t
a−t
)

possible blocks of size a that contain A. Now, every one of the m designs contains exactly one of
these

(
n−t
a−t
)

blocks, and these
(
n−t
a−t
)

blocks occur equally often among the m designs. Thus, a given

block B occurs in m
/(

n−t
a−t
)

of the designs, as desired.

Remark 7.4. Theorem 7.3 is a generalization of a result in Swanson and Stinson [27], in which the
case c = 1 is treated.

Remark 7.5. The technique described in Theorem 7.3 shows how to use a single “starting design” D
on n points to construct a strategy that inherits its properties from D. That is, the strategy obtained
by letting the symmetric group Sn act on D will be informative and perfectly δ-secure if D is an
informative announcement that satisfies Condition 2 of Definition 5.1 for the fixed announcement
D.

We now discuss some other constructions of strategies using results from design theory, includ-
ing some applications of Remark 7.5. All constructions discussed may be found in Colbourn and
Dinitz [5].

It is clear that we can use any Steiner triple system, or 2-(n, 3, 1)-design, as a starting design to
obtain an equitable (3, n− 4, 1)-strategy that is informative for Bob and perfectly 1-secure against
Cathy. It is known that an STS(n) exists if and only if n ≡ 1, 3 mod 6, n ≥ 7. We state this result
in the following Corollary.
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Corollary 7.6. There exists an equitable (3, n− 4, 1)-strategy for Alice that is informative for Bob
and perfectly 1-secure against Cathy for any integer n such that n ≡ 1, 3 mod 6, n ≥ 7.

Similarly, Steiner quadruple systems, or 3-(n, 4, 1)-designs, exist if an only if n ≡ 2, 4 mod 6,
which yields the following result:

Corollary 7.7. There exists an equitable (4, n− 5, 1)-strategy for Alice that is informative for Bob
and perfectly 1-secure against Cathy for any integer n such that n ≡ 2, 4 mod 6.

More generally, we can use any Steiner system S(t, a, n) as a starting design to obtain an
equitable (a, n−a−c, c)-strategy that is perfectly (t−c)-secure against Cathy for c ≤ min{t−1, a−t}.
Known infinite families of S(2, a, n) include affine geometries, projective geometries, unitals, and
Denniston designs [5], which together give the following result:

Corollary 7.8. Let q be a prime power and ` ≥ 2. There exist the following equitable strategies
that are perfectly 1-secure against Cathy:

1. A (q, q` − q − 1, 1)-strategy (constructed from affine geometries);

2. A (q + 1, q` + · · ·+ q2 − 1, 1)-strategy (constructed from projective geometries);

3. A (q + 1, q3 − q − 1, 1)-strategy (constructed from unitals); and

4. A (2r, 2r+s − 2s − 1, 1)-strategy, for 2 ≤ r < s (constructed from Denniston designs).

In fact, we can use the same method to construct equitable (a, b, c)-strategies that are perfectly
δ-secure against Cathy, informative for Bob, and allow Cathy to hold more than one card. Such
a solution to the generalized Russian cards problem has not yet been presented in the literature.
We next give an infinite class of equitable and perfectly 1-secure strategies where Cathy holds two
cards.

Example 7.9. Consider the inversive plane with q = 23; this is a 3-(65, 9, 1)-design. The construction
method in Theorem 7.3 yields an equitable (9, 55, 1)-strategy that is perfectly 2-secure against
Cathy and informative for Bob and (more interestingly) a (9, 54, 2)-strategy that is perfectly 1-
secure against Cathy and informative for Bob.

It is known that 3-(q2 + 1, q + 1, 1)-designs (or inversive planes) exist whenever q is a prime
power. This gives us the following result.

Corollary 7.10. There exists an equitable
(
q + 1, q2 − q − 2, 2

)
-strategy that is informative for

Bob and perfectly 1-secure against Cathy and an equitable
(
q + 1, q2 − q − 1, 1

)
-strategy that is

informative for Bob and perfectly 2-secure against Cathy, for every prime power q ≥ 4.

More generally, we can use spherical geometries, which are 3-(qn+1, q+1, 1)-designs (or, equiv-
alently, S(3, q+ 1, qn + 1)) for q a prime power and n ≥ 2 to construct strategies allowing Cathy to
hold two cards:

Corollary 7.11. There exists an equitable (q + 1, qn − q − 2, 2)-strategy that is informative for Bob
and perfectly 1-secure against Cathy and an equitable (q + 1, qn − q − 1, 1)-strategy that is informa-
tive for Bob and perfectly 2-secure against Cathy, for every prime power q and n ≥ 2.

16

NOT FOR DISTRIBUTION - Copyright (c) 2013, by the author(s) 
Pre-release to the SRC community by the TerraSwarm Research Center. 



	
  

NOT FOR D
IS

TRIB
UTIO

N

Table 1. Perfectly (t− c)-secure strategies from Steiner t-designs for t = 4, 5

5-design (a, b, c)-strategy 5− c Derived 4-design (a, b, c)-strategy 4− c
S(5, 8, 24) (8, 15, 1) 4 S(4, 7, 23) (7, 15, 1) 3

(8, 14, 2) 3 (7, 14, 2) 2
(8, 13, 3) 2 (7, 13, 3) 1

S(5, 7, 28) (7, 20, 1) 4 S(4, 6, 27) (6, 20, 1) 3
(7, 19, 2) 3 (6, 19, 2) 2

S(5, 6, 12) (6, 5, 1) 4 S(4, 5, 11) (5, 5, 1) 3

S(5, 6, 24) (6, 17, 1) 4 S(4, 5, 23) (5, 17, 1) 3

S(5, 6, 48) (6, 41, 1) 4 S(4, 5, 47) (5, 41, 1) 3

S(5, 6, 72) (6, 65, 1) 4 S(4, 5, 71) (5, 65, 1) 3

S(5, 6, 84) (6, 77, 1) 4 S(4, 5, 83) (5, 77, 1) 3

S(5, 6, 108) (6, 101, 1) 4 S(4, 5, 107) (5, 101, 1) 3

S(5, 6, 132) (6, 125, 1) 4 S(4, 5, 131) (5, 125, 1) 3

S(5, 6, 168) (6, 161, 1) 4 S(4, 5, 167) (5, 161, 1) 3

S(5, 6, 244) (6, 137, 1) 4 S(4, 5, 243) (5, 137, 1) 3

However, only finitely many Steiner t-designs are known for t > 3 and none are known for t > 5.
Table 1 lists strategies resulting from known Steiner 5- and 4-designs. All known S(4, a, n) designs
are derived designs from S(5, a+ 1, n+ 1) designs, formed by choosing an element x, selecting all
blocks containing x and then deleting x from these blocks.

We next discuss existence results for optimal strategies. As shown in Swanson and Stinson [27],
the number of announcements m in an informative (a, b, c)-strategy must satisfy m ≥

(
n−a+c

c

)
.

A strategy is optimal if m =
(
n−a+c

c

)
. The following result by Swanson and Stinson [27] follows

immediately from the existence of large sets of Steiner triples, discussed in Remark 2.13, and
Lemma 5.5.

Theorem 7.12. [27] Suppose (a, b, c) = (3, n − 4, 1), where n ≡ 1, 3 mod 6, n > 7. Then there
exists an optimal strategy for Alice that is informative for Bob and perfectly 1-secure against Cathy.

Example 7.13. Consider the large set of STS(9) from Example 2.14. This set of announcements is
an optimal (3, 5, 1) strategy that is perfectly 1-secure against Cathy and informative for Bob.

As discussed in Theorem 7.12, if we can construct a large set of 2-(n, 3, 1)-designs, this set
forms an optimal strategy that is informative and perfectly 1-secure, and a large set of STS(n)
exists whenever n ≡ 1, 3 mod 6 and n > 7. However, there are certain choices of n for which there
is a particularly nice construction for a large set of STS(n), such that it would be easy for Alice and
Bob to create this large set on their own. We forego the details of this construction, which is due
to Schreiber [24], but remark that this construction method applies whenever each prime divisor p
of n− 2 has the property that the order of (−2) modulo p is congruent to 2 modulo 4.

Two other types of designs that can be used to construct informative and perfectly 1-secure
strategies where Cathy holds one card are hyperplanes in projective spaces and Hadamard designs.
For a discussion of these constructions, we refer the reader to Stinson [25]. We have the following
results.

Corollary 7.14. There exists an equitable
(
qd−1
q−1 , q

d − 1, 1
)

-strategy that is informative for Bob

and perfectly 1-secure against Cathy, where q ≥ 2 is a prime power and d ≥ 2 is an integer.
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Proof. It is known that there exists a symmetric
(
qd+1−1
q−1 , q

d−1
q−1 ,

qd−1−1
q−1

)
-BIBD D for every prime

power q ≥ 2 and integer d ≥ 2. The design D is a hyperplane in a projective space (or, in the
case d = 2, a finite projective plane). Let the symmetric group Sn act on D as in the proof of
Theorem 7.3, where n = (qd+1 − 1)/(q − 1), to obtain Alice’s strategy.

Lemma 5.5 immediately implies that this strategy is perfectly 1-secure against Cathy. To see
that this strategy is informative, recall that the intersection of two blocks in a symmetric BIBD
has size λ = (qd−1 − 1)/(q − 1). It is easy to see that the strategy will be informative provided
a− c > λ, which is the case here.

Corollary 7.15. There exists an equitable
(
q−1
2 , q−12 , 1

)
-strategy that is informative for Bob and

perfectly 1-secure against Cathy, where q ≡ 3 mod 4 is an odd prime power.

Proof. It is known that there exists a symmetric
(
q, q−12 , q−34

)
-BIBD D for every odd prime power

q such that q ≡ 3 mod 4. The design D is a Hadamard design. Let the symmetric group Sq act on
D as in the proof of Theorem 7.3 to obtain Alice’s strategy.

Lemma 5.5 immediately implies that this strategy is perfectly 1-secure against Cathy. To see
that this strategy is informative, recall that the intersection of two blocks in a symmetric BIBD
has size λ = (q − 3)/4. It is easy to see that the strategy will be informative provided a − c > λ,
which is the case here.

Remark 7.16. Any symmetric BIBD may be used to construct equitable strategies that are perfectly
1-secure against Cathy for c = 1. If D is a symmetric 2-(n, a, λ)-design, the order of D is a − λ.
The block intersection property we need to guarantee that the strategy is informative is that the
order is greater than 1, which will always be the case. Colbourn and Dinitz [5] list known families
of symmetric BIBDs.

7.1 Cordón-Franco et al. Geometric Protocol

Cordón-Franco et al. [8] present a geometric protocol based on hyperplanes that yields informative
and weakly δ-secure equitable (a, b, c)-strategies for arbitrary c, δ > 0 and appropriate parameters
a and b. The geometric protocol is stated as follows.

Protocol 1 (Geometric Protocol [8]) Let p be a prime power and let d and s < p be positive
integers. Let X be a deck of pd+1 cards and suppose we have an (a, b, c)-deal such that a = spd.
Given a hand HA ∈

(
X
a

)
, the set of possible announcements for Alice is the set of bijections from

X to AGd+1(p) satisfying the condition that HA maps to the union of s parallel hyperplanes in
AGd+1(p). For every HA ∈

(
X
a

)
, assume Alice picks uniformly at random from the set of possible

bijections.

In particular, the geometric protocol defines an equitable strategy in which Cathy may hold
more than one card. We analyze when the geometric protocol achieves perfect, rather than weak,
security, whereas Cordón-Franco et al. [8] show that the general case achieves weak s-security for
a card deck of size pd+1, where a = spd, if c < spd − s2pd−1 and max{c+ s, cs} ≤ p.

We translate the geometric protocol into our model in the next observation.

Observation 7.17 Let A be the strategy defined by the geometric protocol. An announcement
Ai ∈ A is equivalent to the set of all possible unions of s parallel hyperplanes. In particular, there
are

(
p
s

)
(pd+1 − 1)/(p− 1) possible hands for Alice in each Ai.
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We first consider general results from design theory with respect to the above construction.
Let us view X as the set of points in AGd+1(p), and let B be denote the set of all hyper-
planes in AGd+1(p). It is well-known that (X,B) is a resolvable

(
pd+1, pd, λ

)
-BIBD, where λ =

(pd − 1)/(p− 1). Moreover, each point has degree r = (pd+1 − 1)/(p− 1), and there are r equiv-
alance classes of parallel hyperplanes, each of size p. Let Π1, . . . ,Πr denote these equivalence classes.
Note that in each such equivalence class, every point of Fd+1

p occurs exactly once.

Define the design (X, C) by forming a collection of all possible unions of s parallel hyperplanes.
Stated formally, for 1 ≤ i ≤ r, define Bi to be the collection of all s-subsets of the parallel class Πi,
and define C to be the union of the Bi over the parallel classes. That is,

Bi = {C ⊆ Πi : |C| = s} and C =
r⋃
i=1

Bi.

Then (X, C) is a
(
pd+1, spd, λ′

)
-BIBD, where λ′ =

(
p−1
s−1
) spd−1
p−1 . The above discussion immediately

implies the following observation:

Observation 7.18 Let p be a prime power and let d ≥ 1 be a positive integer. Let X be a deck of
pd+1 cards and fix an (a, b, c)-deal with a = spd. Then in the strategy A defined by the geometric

protocol, each announcement Ai is a 2-
(
pd+1, spd, λ

)
-design, where λ =

(
p−1
s−1
) spd−1
p−1 .

Observation 7.18 and Theorem 5.7 imply that the Geometric Protocol achieves perfect 1-security
when Cathy holds one card, i.e., for (spd, pd+1 − spd − 1, 1)-deals where p is a prime power and
s < p.

Moreover, as shown by Stinson et al. [26], the design (X, C) is a 3-design precisely when p = 2s,
so p must be an even prime power. In this case, (X, C) is a 3-

(
pd+1, pd+1/2, λ′′

)
-design, where

λ′′ =

(
p− 1

p/2− 1

)
pd+1 − 4

4(p− 1)
.

That is, for card decks and deals satisfying certain parameters, the strategy defined by the
geometric protocol is a 3-design. This implies that we can sometimes achieve perfect 2-security for
deals in which Cathy holds one card, or perfect 1-security for deals in which Cathy holds two cards.
We state the result in the following theorem for clarity.

Theorem 7.19. Let p be a prime power and let d ≥ 1 be a positive integer. Let X be a deck of
pd+1 cards and fix an (a, b, c)-deal with a = spd. Then in the strategy A defined by the geometric
protocol, each announcement Ai is a 3-design if and only if p = 2` for some positive integer ` and
s = 2`−1.

8 A Variant of the Russian Cards Problem

In this section, we consider a variation of the generalized Russian cards problem, in which we change
the manner in which the cards are dealt. Our motivation for restricting the deal is to widen the
solution space. Since the generalized Russian cards problem requires a suitable set of t-designs to
maximize security against Cathy—and constructing t-designs for t > 2 is in general quite difficult—
we explore certain types of deals where suitable constructions are more readily available. An added
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advantage of our deal restriction is that in this new framework, we can view Alice’s hand as an
a-tuple over an alphabet of size v. If Alice’s hand represents a secret key, this variation is more in
keeping with traditional key agreement schemes in cryptography, as typically secret keys are tuples
rather than sets.

Suppose our deck X consists of n = va cards, where v and a are positive integers such that
v > a. Rather than allowing Alice, Bob, and Cathy to have any hand of the appropriate size, we
first split the deck X into a piles, each of size v. Alice is given a hand HA of a cards, such that she
holds exactly one card from each pile. Cathy’s hand HC of c cards is assumed to contain no more
than one card from each pile. The remainder of the deck becomes Bob’s hand, HB. Observe that we
can use the same framework for this problem as for the original; we have only placed a limitation
on the set of possible hands Alice, Bob, and Cathy might hold. The necessary modifications to the
security definitions and the definition of an informative strategy are straightforward.

This variant admits a nice solution using transversal designs; we refer the reader to Section 2.2
for the relevant definitions and a discussion of these designs. In the context of a transversal design
TDλ(t, a, v), we can view the piles of cards as the groups G1, . . . , Ga of the design. In this case,
Alice’s hand is a transversal and Cathy’s hand is a partial transversal of G1, . . . , Ga. Note that
Cathy therefore only considers transversals as possible hands for Alice. When we discuss weak (or
perfect) δ-security, we are interested in the probability (from Cathy’s point of view) that Alice
holds partial transversals of order δ.

We first show Theorem 4.1 holds for this variant of the Russian cards problem:

Theorem 8.1. The announcement Ai is informative for Bob if and only if there do not exist two
distinct sets HA, H

′
A ∈ Ai such that |HA ∩H ′A| ≥ a− c.

Proof. Suppose there exist two distinct sets HA, H
′
A ∈ Ai such that |HA ∩H ′A| ≥ a−c. We proceed

by constructing a card deal consistent with the announcement Ai such that {HA, H
′
A} ⊆ P (HB, i) ,

which implies the announcement is not informative for Bob.
Write |HA ∩H ′A| = `. Let Alice’s hand be HA, so it is possible for Alice to announce Ai.

Let Cathy’s hand contain all the cards in H ′A that are not also contained in HA; this is possible
since c ≥ a − `. Then Bob’s hand HB contains all the remaining cards. In particular, we have
HB ∩ (HA ∪H ′A) = ∅, so {HA, H

′
A} ⊆ P (HB, i), as desired.

Conversely, suppose {HA, H
′
A} ⊆ P (HB, i), where HA 6= H ′A. Then |HA ∪H ′A| ≤ n− b = a+ c,

and hence |HA ∩H ′A| ≥ a− c.

In light of Theorem 8.1, the following result is straightforward.

Theorem 8.2. Consider an (a, b, c)-deal following the above rules and suppose that each announce-
ment in an equitable (a, b, c)-strategy is a TD1(t, a, v) satisfying t ≤ a − c. Then the strategy is
informative for Bob.

We can use an argument similar to that of Swanson and Stinson [27] to derive a lower bound
on the size of Alice’s announcement.

Theorem 8.3. Suppose a > c and there exists a strategy for Alice that is informative for Bob.
Then the number of announcements m satisfies m ≥ vc.

Proof. Fix a set of cards X ′ of size a − c, no two of which are from the same pile. There are vc

possible hands for Alice that contain X ′. These hands must occur in different announcements, by
Theorem 4.1 (which holds for this variation of the problem). Therefore m ≥ vc.
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As before, we refer to a strategy that meets this bound as optimal. We have the following result.

Theorem 8.4. Suppose that a > c. An optimal (a, b, c)-strategy for Alice that is informative for
Bob is equivalent to a large set of TD1(t, a, v), where t = a− c.

Proof. Suppose there exists a large set of TD1(a− c, a, v). Recall from Definition 2.20 that the set
of all blocks sets (i.e., possible announcements) in this large set form a partition of the set of all
transversals and that there are precisely vc designs in such a set. Then it is easy to see that this
immediately yields an optimal (a, b, c)-strategy for Alice that is informative for Bob.

Conversely, suppose there is an optimal (a, b, c)-strategy for Alice that is informative for Bob.
We need to show that every announcement is a TD1(a − c, a, v). As in the proof of Theorem 8.3,
fix a set of cards X ′ of size a − c, no two of which are from the same pile. The vc possible hands
for Alice that contain X ′ must occur in different announcements. However, there are a total of vc

announcements, so every announcement must contain exactly one block that contains X ′.

The following result shows how transversal designs with arbitrary t can be used to achieve
weak δ-security for permissible parameters δ ≤ t− c. As in Definition 2.17, for a transversal design
TDλ(t, a, v), say (X,G,B), and a partial transversal Y of G, we let GY denote the set of groups of
the transversal design that have nonempty intersection with the partial transversal Y .

Theorem 8.5. Consider an (a, b, c)-deal following the above rules and suppose that each announce-
ment in an equitable (a, b, c)-strategy is a TDλ(t, a, v), where c ≤ t− 1. Then the strategy is weakly
(t− c)-secure against Cathy.

Proof. Fix an announcement Ai for Alice. Suppose Ai is a TDλ(t, a, v), say (X,G,B). Consider a
possible hand HC for Cathy. In particular, HC is a partial transversal of the groups G1, . . . , Ga ∈ G.

Since c ≤ t, Theorem 2.19 implies there are

|P (HC , i)| = λvt−c(v − 1)c

blocks in Ai that do not contain any of the points of HC .
Consider a partial transversal Y of order δ ≤ t − c. Since Y is not necessarily group disjoint

from HC , we must consider the number of groups which intersect both Y and HC . In particular, the
δ-subset Y never occurs with any other cards from GY ∩GHC , by definition of transversal designs.

Let ` = |GHC\GY |. That is, ` is the number of groups that do not intersect Y , but from which
Cathy has cards. Write z1, . . . , z` for Cathy’s cards from these ` groups. We wish to compute the
number of blocks which contain all the points in Y but miss all of the points of HC . This is the
same as the number of blocks that contain all the points in Y but miss all the points in {z1, . . . , z`}.
Since `+ δ ≤ t, by Theorem 2.19, we have λvt−`−δ(v − 1)` such blocks.

That is, a given set of points x1, . . . , xδ ∈ X\HC that might be held by Alice is contained in
precisely

|{HA ∈ P (HC , i) : x1, . . . , xδ ∈ HA}| = λvt−`−δ(v − 1)`

of the blocks in P (HC , i), where ` =
∣∣GHC∖G{x1,...,xδ}∣∣ .

Thus, for any partial transversal of δ distinct points x1, . . . , xδ ∈ X\HC , we have

|{HA ∈ P (HC , i) : x1, . . . , xδ ∈ HA}|
|P (HC , i)|

=
λvt−`−δ(v − 1)`

λvt−c(v − 1)c
=

1

vδ+`−c(v − 1)c−`
,

so Condition 1 of Theorem 5.3 is satisfied.
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Remark 8.6. We do not achieve perfect (t−c)-security in Theorem 8.5 because the number of hands
of P (HC , i) containing a given partial transversal Y of δ distinct points, where δ ≤ t− c, depends
on ` = |GHC\GY |. In fact, we cannot expect to achieve better security than that of the construction
given in Theorem 8.5 for this variant of the generalized Russian cards problem. This is because the
rules for the deal imply that for each pile from which Cathy holds a card, Cathy knows that Alice
holds one of the other (v − 1) cards, and for every other pile, Cathy knows only that Alice holds
one of the other v cards.

As discussed in Section 2.2, large sets of transversal designs TDλ(t, k, v) are easy to con-
struct when you have a linear TDλ(t, k, v) “starting design”. As stated in Theorem 2.29, a linear
TD1(t, q, q) exists whenever the point set X = (Fq)2 and q is a prime power. The construction
method for such a transversal design is simple; we refer the reader to the relevant discussion in
Section 2.2 on Theorem 2.28 and Corollaries 2.29 and 2.30.

In particular, we can construct a linear TD1(t, a, q) for a prime power q ≥ a by first constructing
a TD1(t, q, q) and then (if necessary) deleting q− a groups. This yields a wide range of informative
and weakly (t− c)-secure (a, n− a− c, c)-strategies for card decks of size n = aq and any choice of
c satisfying c ≤ min{t− 1, a− t}. If we take t = a− c, these strategies are optimal. We summarize
this result in the following theorem.

Theorem 8.7. Consider the above variant of the generalized Russian cards problem. Let q be a
prime power such that q ≥ a and c ≤ a−1

2 . Then there exists an equitable (a, aq − a− c, c)-strategy
that is optimal, informative for Bob, and weakly (a− 2c)-secure against Cathy.

9 Discussion and Comparison with Related Work

The Russian cards problem and variants of it has received a fair amount of attention in the literature,
with focus ranging from possible applications to key generation [2,3,15–19,21,23], to analyses based
on epistemic logic [9–12], to card deals with more than three players [14,20]. Of more relevance to
our work is the recent research that takes a combinatorial approach [1–4, 6, 27], on which we now
focus.

Many useful results concerning parameter bounds and announcement sizes for weak 1-security,
some of which we use in this paper, are given by Albert et al. [1]. Albert et al. [2, 3] and Cordón-
Franco et al. [6] discuss protocols for card deals of a particular form that achieve weak 1-security,
using card sums modulo an appropriate parameter for announcements. Atkinson et al. [4] is the
only work of which we are aware that treats security notions stronger than weak 1-security, other
than work by Swanson and Stinson [27] and subsequent work by Cordón-Franco et al. [8].

In addition, there has been recent work [7, 13] in which protocols consisting of more than one
announcement by Alice and Bob are considered, which is a generalization of the problem which
we consider here. van Ditmarsch and Soler-Toscano [13] show that no good announcement exists
for card deals of the form (4, 4, 2) using bounds from Albert et al. [1]. The authors instead give
an interactive protocol that requires at least three rounds of communication in order for Alice and
Bob to learn each other’s hands; their protocol uses combinatorial designs to determine the initial
announcement by Alice and the protocol analysis is done using epistemic logic.

Cordón-Franco et al. [7] consider four-step solutions for the generalized Russian cards problem
with parameters (a, b, c) such that c > a. Although Cordón-Franco et al. [7] present a “protocol”,
their solution is not a protocol in the typical sense of the word, as it is unclear if the protocol
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is executable or not. The authors demonstrate the existence of a necessary construction for their
protocol when the card deal parameters satisfy specific conditions, but do not address the feasibility
of finding such constructions in practice. In particular, the security of the protocol itself relies
heavily on the ability of the players to pick such a construction uniformly at random from all
possible constructions. Since it is unclear if this is feasible, the protocol is questionable, albeit
theoretically interesting in that it attempts to treat cases where c > a.

In this paper, we build extensively on results by Swanson and Stinson [27]. In particular, we
greatly simplify the proofs for results connecting certain types of perfectly δ-secure deals and
Steiner systems, originally shown in Swanson and Stinson [27]. The construction technique using
a “starting design”, given in Theorem 7.3 is a generalization of the technique given by Swanson
and Stinson [27]. This generalized construction technique allows us to answer in the affirmative the
question on the existence of perfectly secure and informative strategies for deals in which Cathy
holds more than one card.

Cordón-Franco et al. [8] further elaborate on protocols of length two and the notion of weak
δ-security. The authors present a geometric protocol, discussed in Section 7.1, based on hyperplanes
that yields informative and weakly δ-secure equitable (a, b, c)-strategies for appropriate parameters.
In particular, this protocol allows Cathy to hold more than one card. In certain card deals, this
protocol achieves perfect δ-security for δ equal to one or two. We remark that with the exception
of Section 7.1, our results were completed independently of Cordón-Franco et al. [8].

10 Concluding Remarks and Future Work

We give a characterization for solutions to the generalized Russian cards problem that are perfectly
δ-secure. That is, we show an equivalence between a γ-equitable strategy that is perfectly δ-secure
for some δ and a set of (c + δ)-designs on n points with block size a, where this set must satisfy
the additional property that every a-subset of X occurs in precisely γ of these designs.

Building on the results of Swanson and Stinson [27], we show how to use a “starting” t-(n, a, 1)-
design to construct equitable (a, b, c)-strategies that are informative and perfectly (t − c)-secure
against Cathy for any choice of c satisfying c ≤ min{t − 1, a − t}. In particular, this indicates
that if an appropriate t-design exists, it is possible to achieve perfect security for deals where
Cathy holds more than one card. We present an example construction, based on inversive planes,
for (q + 1, q2 − q − 2, 2)-strategies which are perfectly 1-secure against Cathy and informative for
Bob, where q is a prime power. We also analyze the security properties of Cordón-Franco et al.’s [8]
geometric protocol, remarking that this protocol yields a nice construction for a 3-design for certain
parameters.

In addition, we discuss a variation of the Russian cards problem which admits nice solutions
using transversal designs. The variant changes the manner in which the cards are dealt, but the
resulting problem can be solved using large sets of transversal designs with λ = 1 and arbitrary
t, which are easy to construct. In particular, this solution is optimal in terms of the number of
announcements and provides the strongest possible security for appropriate parameters. That is,
for card decks of size aq, where q ≥ a is a prime power, we achieve (a, aq − a− c, c)-strategies that
are optimal, informative for Bob, and weakly (a− 2c)-secure against Cathy for c ≤ a−1

2 .

There are many open problems in the area, especially for deals with c > 1. Given the general
difficulty of constructing t-designs for t > 2 and λ = 1, we see that constructing perfectly δ-secure
and informative strategies for c > 1 is a difficult combinatorial problem. A more promising direction
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for the case c > 1 may be strategies that are weakly δ-secure for δ > 1, a concept first introduced by
Swanson and Stinson [27], which has received some attention in current literature [8]. In particular,
further characterizing such strategies using combinatorial notions might prove informative.
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