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& How do ‘things’ become ‘smart’?
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& Standardization?
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& An Actor-based Design Pattern

Accessors provide access to any resource that is reachable through
an arbitrary protocol and exposes some interface

Accessors

e \Wrap an existing
service

e Export an actor
interface

e Are composable with
other actors

e Are executableon a
accessor host

data stream or
time-stamped events
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& What an accessor looks like

DOPENtry
key var options = {
tri ; response ‘host’:"xxx.xxx.xxx.xxx’, ‘port':8000,
99¢€ // Accessor that opens the 'protocol''https’, 'method':'GET,
@ // door of the DOP center 'path’:'/unlock’, "headers":{},
S 'keepAlive".false, 'query':'delay=1&key=',
> exports.setup = function() { rustAll'-true
}
accessor.input(‘trigger’); I:> exports.initialize = function() {
accessor.output('response’); options.query += get(‘’key');
I:> accessor.input('key’, { }
type’'string’, )  exports.fire = function () {

‘value':"xXxxxxxxx', http.get(options, function (resp) {

‘description’:'Shared secret.’ send(JSON.stringify(resp),

N; ‘response’);
Y };
> var http = require(*httpClient’); }
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& A “Hello world!”-example
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See www.terraswarm.org/accessors for more examples.
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& The Accessor Host

Features

e A scripting environment

This is an implementation of the base class
of the Accessor.

Our current prototypes only use JavaScript.

e Models of Computation
E.g., Discrete Events, Dataflow, Rendez-vous.
So far only supported in Ptolemy II.

s9dAjojo.ud

e An actor library
Pre-installed trusted components.

The availability of these features
determine the extend to which a
Swarmlet hosts supports the
requirements of an Accessor.
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& Platform-based Design

loT applications

e The Accessor host is a
universal platform for
component- based design

e No one platform that rules
them all, but one platform
that incorporates them all

e Accessors can be provided Accessors
by manufactu rers as We” as Swarmlets - - ® Models of Cqmpu_tation
third parties Component libraries

e Enable interoperability of
independently designed
components
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& Horizontal Contracts
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& Vertical Contracts

Modules provided by the host
Protocol support

Isolation properties

Timing constraints

Practical example: our door accessor
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Q Accessing the Swarm
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m Interface

Subtyping?
Ontologies?
Contracts?

Discovery?

m Component

Languages”?
Libraries?
Isolation?

Authentication?

m Composition
m Which MoC(s)?

m Time predictability?
m Error handling?
m Host
m Modules?

m Deployment?



XY/ Questions




