o

Programmlng the Swarm
Using Accessors

Pk
’ l‘q,,(' /
N 3 Marten Lohstroh
‘ N Graduate Student
Qe UC Berkeley
‘ S RN Advised by Prof. Edward A. Lee
RS N

Invited Talk
At the Swarm Lab Retreat 2015



@
& How do ‘things’ become ‘smart’?

e o, Ty
Bae o o
s N %






(@
& Standardization?

IEEE
Internet of Things

\! ;
@ o @
industrial intemet @ @

CONSORTIUM ‘\\\m AllJoyn




== O
& An Actor-based Design Pattern

Accessors provide access to any resource that is reachable through
an arbitrary protocol and exposes some interface

Accessors

e \Wrap an existing
service

e Export an actor
interface

e Are composable with
other actors

e Are executableon a
accessor host

data stream or
time-stamped events

Accessor ¢ Actor

Actor
runs on a
T swarmlet
/ host
\ /
v
swarmlet ¥
“ - - . -
KN service-specific link

- ~
- ~
- ~—
-~ ~

‘ Service Implementation \

1
\ request E reésponse, runs whereever

/7
- -~ the service wants
swarm service




= QO
& What an accessor looks like

DOPENtry
key var options = {
tri ; response ‘host’:"xxx.xxx.xxx.xxx’, ‘port':8000,
99¢€ // Accessor that opens the 'protocol''https’, 'method':'GET,
@ // door of the DOP center 'path’:'/unlock’, "headers":{},
S 'keepAlive".false, 'query':'delay=1&key=',
> exports.setup = function() { rustAll'-true
}
accessor.input(‘trigger’); I:> exports.initialize = function() {
accessor.output('response’); options.query += get(‘’key');
I:> accessor.input('key’, { }
type’'string’, )  exports.fire = function () {

‘value':"xXxxxxxxx', http.get(options, function (resp) {

‘description’:'Shared secret.’ send(JSON.stringify(resp),

N; ‘response’);
Y };
> var http = require(*httpClient’); }



== O
& A “Hello world!”-example

SDF Director

@ stocks: {"AMAT","IBM", "INTC", "MU", "RTN", "TXN", "UTX"}

ArrayToSequence

Const StockTick SequenceToArray  ArrayAverage
1§ o (T oo |
7 1 )

bridgelPAddress

Expression userNa‘s

4

o

(currentAverage > previousAverage)? brigk' ness

SampIeDeIayZ currentAjerage 46920 -
. (currentAverage == previousAverage)? p——--—

reviousAverage i
{0} p g satur

12750
-0

transitiontimel.’

Const2
trigger

See www.terraswarm.org/accessors for more examples.



(@
& The Accessor Host

Features

e A scripting environment

This is an implementation of the base class
of the Accessor.

Our current prototypes only use JavaScript.

e Models of Computation
E.g., Discrete Events, Dataflow, Rendez-vous.
So far only supported in Ptolemy II.

s9dAjojo.ud

e An actor library
Pre-installed trusted components.

The availability of these features
determine the extend to which a
Swarmlet hosts supports the
requirements of an Accessor.



@
& Platform-based Design

loT applications

e The Accessor host is a
universal platform for
component- based design

e No one platform that rules
them all, but one platform
that incorporates them all

e Accessors can be provided Accessors
by manufactu rers as We” as Swarmlets - - ® Models of Cqmpu_tation
third parties Component libraries

e Enable interoperability of
independently designed
components

IEEE
Internet of Thmgs

Arbitrary loT platforms and middleware



=0
& Horizontal Contracts

G(~fire = —output)

V¥rY

Js?

t?

. (d0_a0_async

fR;

d1l_a0_async

d2_sync_async




(@)
& Vertical Contracts

Modules provided by the host
Protocol support

Isolation properties

Timing constraints

Practical example: our door accessor

DOPEntry

response

key

.
.
.
»
.
.
N
Ll
N
.
L]
L
.
N
"o
N

trigger

Max. frequency

]
=
=
]
=




Q Accessing the Swarm

& [ 4”',‘.‘
PP

TBRIRACYARLYT

oAy
SINLA




m Interface

Subtyping?
Ontologies?
Contracts?

Discovery?

m Component

Languages”?
Libraries?
Isolation?

Authentication?

m Composition
m Which MoC(s)?

m Time predictability?
m Error handling?
m Host
m Modules?

m Deployment?



XY/ Questions




