
Accessor Tutorial
Bringing Sanity to IoT’s use of Callbacks

Edward A. Lee
Robert S. Pepper Distinguished Professor
UC Berkeley

TerraSwarm E-Workshop
February 24, 2016 – Berkeley, CA

A	Common	Design	Pa.ern:	
Asynchronous	Atomic	Callbacks	(AAC)	

Asynchronous	Atomic	Callbacks	
(AAC)	(also	called	the	Reactor	
Pa6ern)	is	a	pa.ern	where	short	
atomic	ac>ons	are	interleaved	with	
atomic	invoca>on	of	response	
handlers.	

	
In	the	Web,	AAC	is	widely	used.	It	is	central	to	
many	popular	internet	programming	frameworks	
such	as	Node.js	&	Vert.x,	and	to	CPS	frameworks	
such	as	TinyOS.	

2

Client	
program	

Thing	

request response

Request
encodes all
state info
(credentials,
commands,
etc.)

Response is
typically
asynchronous
to avoid
blocking the
client program.

Response
handler
executes
atomically. Lee, Berkeley

Another	Common	Design	Pa.ern:	
Actors	

Streaming	requests:	

3

Sequence	of	requests	for	a	service	(a	stream)	
triggers	a	sequence	of	responses.	

Lee, Berkeley

Actors	embrace	concurrency	and	scale	well.	

Actors	and	AAC	

Streaming	requests:	

4

Thing	

request asynchronous
response

This	is	the	essence	of	accessors,	a	design	pa.ern	for	
IoT	that	embraces	concurrency,	asynchrony,	and	
atomicity.	

Weather Station

Lee, Berkeley

We	are	not	alone	pursuing		
this	approach	

Notable	efforts:	
•  Node	Red	(IBM)	
•  Calvin	(Ericsson)	

Our	emphasis	is	on	
rigorous	contracts	for	
interac>ons.	

Lee, Berkeley 5

From: “Home Automation with
Node Red, JeeNodes and Open
Energy Monitor,” Dom Bramley's
Blog of Maximo and the 'Internet
of Things’, IBM Developer Works,
Dec., 2013.

Accessor	Architecture	Version	1.0	
h.p://accessors.org	

6

Base	Accessor	

Accessor	

Accessor	Interface	

Module	API	Defini>on	
CommonJS	+	Text	

Module	Implementa>on	
JavaScript	+	Java	(Nashorn)	

Module	Implementa>on	
JavaScript	(Node.js)	

Accessor	Host	
Nashorn	+	Ptolemy	II	

Accessor	Host	
Nashorn	+	Java	

Accessor	Host	
Node.js	

implements	

runs	
in	

requires	
implements	

runs	
in	

Module	Implementa>on	
JavaScript	

Accessor	Host	
Browser	TerraSwarm

extends	

Recent	Developments	

•  Common	JavaScript	core	for	three	hosts:	
–  Browser,	Node.js,	Cape	Code	

•  Composite	accessors	(w/	a	DE-like	MoC)	

Lee, Berkeley 7

exports.setup = function() {
 input('input', {'type':'number', 'value':0});
 output('output', {'type':'number'});
 var gain = instantiate('TestGain', 'test/TestGain');
 gain.setParameter('gain', 4);
 var adder = instantiate('TestAdder', 'test/TestAdder');
 connect('input', adder, 'inputLeft');
 connect('input', gain, 'input');
 connect(gain, 'scaled', adder, 'inputRight');
 connect(adder, 'sum', 'output');
}

Browser	Host	

Lee, Berkeley 8

Key challenge:
Many accessors
require modules
that cannot be
supported in a
browser due to
security
constraints.

Node.js	Host	

Lee, Berkeley 9

Key challenges:

Deterministic timed
orchestration and
coordination.

Maintain
compatibility
between modules
supported by this
host and the others.

Coordinated	Timing	

If	we	use	the	>med	ac>on	support	in	browsers	and	
in	Node.js,	we	will	not	get	determinis>c	interac>on.	

Lee, Berkeley 10

CapeCode	Host	

Lee, Berkeley

CapeCode, based on Ptolemy II)
integrates multiple accessors
and distributed swarmlets under
an actor model, which
emphasizes streaming data.

11

Key	Element	of	the	CapeCode	
Host:	The	DE	Director	

Lee, Berkeley

Task 2.2:
Programming
Models and
Modeling
Formalisms

Orchestration of accessors is
governed by a timed discrete-
event (DE) model of computation
with strong formal properties.

12

Coordinated	Timing	

In	Cape	Code,	the	Event	Aggregator	gets	
simultaneous	events	from	the	two	generators.	

Lee, Berkeley 13

Another	Timing	Challenge	with	
Actors	and	AAC	

Example	of	a	poten>al	problem:	

14

Thing	

HTTP
request

response

The	responses	may	not	come	back	in	the	same	order	as	the	requests!	
CapeCode’s	realiza>on	of	the	h.pClient	module	reorders	responses	to	
match	the	order	of	the	requests.	

Weather Station

Lee, Berkeley

Focus	on	Interfaces	

15

Sound timing
semantics is
part of the
horizontal
contract.

Reordering
responses to
match requests
is part of the
vertical contract.

Lee, Berkeley

An	Opportunity	

Several	lightweight,	embeddable	JavaScript	engines	have	
appeared.	A	par>cularly	a.rac>ve	one	is	Duktape	(from	
Samsung),	which	integrates	nicely	with	embedded	C	code.	

Lee, Berkeley 16

duktape.org

Code	Genera>on?	

Lee, Berkeley 17

C DE scheduler + Duktape +
JavaScript (+ Ptides?)

Ptruly Ptiny Ptarget
(PPP)

Another	Opportunity:	Distributed	
Swarmlets	using	Accessors	

Leveraging	>me	
stamps	and	
synchronized	
clocks,	we	can	
achieve	
determinis)c	
distributed	MoCs.	
See:	
•  PTIDES	[2007]	
•  Google	Spanner	
[2012]	

18 Lee, Berkeley
E.g., Intelligent gateway

The	Biggest	Problem	

A	lot	of	sofware	needs	to	be	wri.en:	
•  Module	implementa>ons	for	hosts	
•  Duktape	host	needs	to	be	designed	and	
validated.	

•  Code	generator	needs	to	be	developed	(with	
point	of	departure	being	an	exis>ng,	working,	
but	limited	C	code	generator	for	Ptolemy	II).	

Lee, Berkeley 19

