
Security-Aware Mapping for CAN-Based Real-Time
Distributed Automotive Systems

Chung-Wei Lin∗, Qi Zhu†, Calvin Phung†, and Alberto Sangiovanni-Vincentelli∗
University of California, Berkeley, Berkeley, CA∗, University of California, Riverside, Riverside, CA†

E-Mails: cwlin@eecs.berkeley.edu, qzhu@ee.ucr.edu, phungc@cs.ucr.edu, alberto@eecs.berkeley.edu

Abstract—Cyber-security is a rising issue for automotive elec-
tronic systems, and it is critical to system safety and dependability.
Current in-vehicles architectures, such as those based on the
Controller Area Network (CAN), do not provide direct support
for secure communications. When retrofitting these architectures
with security mechanisms, a major challenge is to ensure that
system safety will not be hindered, given the limited computation
and communication resources. We apply Message Authentication
Codes (MACs) to protect against masquerade and replay attacks
on CAN networks, and propose an optimal Mixed Integer Linear
Programming (MILP) formulation for solving the mapping problem
from a functional model to the CAN-based platform while meeting
both the security and the safety requirements. We also develop an
efficient heuristic for the mapping problem under security and safety
constraints. To the best of our knowledge, this is the first work to
address security and safety in an integrated formulation in the
design automation of automotive electronic systems. Experimental
results of an industrial case study show the effectiveness of our
approach.

I. INTRODUCTION

Cyber-security has become a pressing issue for automotive
electronic systems. In [4], [8], [9], [14], the authors demonstrated
that modern vehicles can be attacked from various interfaces,
including direct or indirect physical access, short-range wireless
access, and long-range wireless channels. Furthermore, the au-
thors showed that by infiltrating one automotive Electronic Con-
trol Unit (ECU) through those interfaces, the adversary can gain
access to other ECUs via communication buses, including safety
critical components such as brakes and engines, and conduct
various attacks such as eavesdropping, spoofing, injection, and
message replay. Such security challenges are expected to grow
for automotive electronic systems, with the dramatic increase of
their communication to external entities (in particular through
telematics) and the resource sharing among different function-
alities. Rather than assuming the attack interfaces will not be
breached, it is important to harden the in-vehicle communications
with security mechanism to limit the damages from compromised
ECUs.

In in-vehicle communications, the Controller Area Network
(CAN) is the most used protocol for safety critical applications,
and it will likely be used for a long time to come in the future. It
has been the most attractive protocol for attackers [6], [10], [12].
There is no direct support for secure communication in CAN, and
the limitations on bus bandwidths and message lengths make it
very challenging to embed security in CAN without hindering the
safety applications [18]. Several approaches have been proposed
to add Message Authentication Codes (MACs) in CAN data
frames to provide message authentication [5], [11], [12], [16],
[17]. In [12], a delayed data authentication method is proposed
to detect and possibly recover from injection and modification
attacks based on compound MACs transmitted over multiple

messages. In [5], [11], [17], security mechanisms based on MACs
and counters are proposed specifically for CAN. For instance, the
mechanism in [11] can protect against the masquerade attack,
where an attacker sends a message in which it claims to be a
node other than itself, and the replay attack, where an attacker
sends a message that it has received from the CAN bus without
any modification.

However, adding MAC bits to an existing design may not
lead to optimal or even feasible systems because

• There might not be enough space in messages for the
required MAC bits because of the message length limita-
tion (only 64 bits for payload in basic CAN protocol [1]).

• Adding MAC bits increases the message transmission
time (in particular if MACs are truncated and transmitted
over multiple messages), which may cause the violation
of timing constraints and affect system safety.

Some extensions of CAN provide longer message length [2],
[20]. For instance, the CAN with Flexible Data-Rate (CAN-FD)
protocol [2] can allow messages with 64 bytes payload. However,
the problems above may still exist if the MAC bits are added in
an ad-hoc fashion or after the other parts of the design are done.
Therefore, to achieve a secure and safe design, it is crucial to
address security together with other objectives such as latency
and utilization during the design space exploration of the system.

In this paper, we propose an integrated Mixed Integer Linear
Programming (MILP) formulation to address both the security
and the safety requirements during the exploration of the map-
ping from the functional model to the CAN-based architecture
platform. The mapping design space we explore includes the
allocation of tasks onto ECUs, the packing of signals into
messages, the sharing of MACs among multiple receiving ECUs,
and priority assignment of tasks and messages. The security
constraints are set to prevent direct and indirect attacks on the
MACs. We extend the security mechanism in [11] by allowing
multiple receiving ECUs to share one MAC in a message. This
provides more design flexibility under limited resources, while
also requires quantitative measurement of the security cost in
our formulation. The safety constraints are defined on the end-
to-end latency deadlines for safety-critical functional paths. We
extend the formulation proposed in [19] for the modeling of
path latencies, by adding the consideration of MAC bits ([19]
optimizes the path latencies without considering any security
constraint).

To the best of our knowledge, this is the first work to address
security and safety in an integrated formulation in the design au-
tomation of automotive electronic systems. Based on the optimal
MILP formulation, we further propose a three-step algorithm that
gradually solves the mapping problem in three simplified MILPs.



ECU CAN bus

fu
n

ct
io

n
al

m
o

d
el

τ3

σ1

µ1,1

µ1,2

τ2

τ1

τ6

τ5

τ4

τ8

τ7

σ2

σ3

σ4

σ5

σ6

ε2ε1
µ2,1

µ2,2

ε3

ar
ch

it
ec

tu
re

p
la

tf
o

rm

task allocation signal packing

broadcast

task signal

message

ar
ch

it
ec

tu
re

Fig. 1. System model of a CAN-based distributed system.

This approach balances optimality and efficiency, and enables
solving complex industrial-size problems. We also propose a
greedy heuristic algorithm for more efficiency. We apply our
algorithms to an industrial case study and demonstrate their
effectiveness in addressing both system security and safety.

The paper is organized as follows: Section II introduces
the system model, the security model and constraints, and the
end-to-end latency constraints. Section III presents the MILP
formulation for the entire mapping problem, and the three-
step MILP-based algorithm. Section IV introduces the greedy
heuristic algorithm. Section V shows the experimental results,
and Section VI concludes the paper.

II. SYSTEM MODEL AND CONSTRAINTS

A. System Model
The mapping problem addressed in this paper is based

on the Platform-Based Design paradigm [3], [7], [15], where
the functional model and the architecture platform are ini-
tially captured separately and then brought together through
a mapping process. As shown in Figure 1, the architecture
model is a distributed CAN-based platform that consists of
nE ECUs, denoted by E = {ε1, ε2, . . . , εnE}, and a CAN
bus that connects all the ECUs. Each ECU εk can send nM

k
messages, denoted by Mk = {µk,1, µk,2, . . . , µk,nM

k
}. ECUs are

assumed to run AUTOSAR/OSEK-compliant operation systems
that support preemptive priority-based task scheduling [13].
The bus uses the standard CAN bus arbitration model that
features non-preemptive priority-based message scheduling [1].
The functional model is a task graph that consists of nT tasks,
denoted by T = {τ1, τ2, . . . , τnT }, and nS signals, denoted by
S = {σ1, σ2, . . . , σnS}. Each signal σi is between a source
task srcσi and a destination task dstσi . Tasks are activated
periodically and communicate with each other through signals.

A path π is an ordered interleaving sequence of tasks
and signals, defined as π = [τr1 , σr1 , τr2 , σr2 , . . . , σrk−1

, τrk ].
src(π) = τr1 is the path’s source and snk(π) = τrk is its sink.
Sources are activated by external events, while sinks activate
actuators. The worst case end-to-end latency incurred when
traveling a path π is denoted as lπ, which represents the largest
possible time interval that is required for the change of the input
(or sensed) value at the source to be propagated and cause a
value change (or an actuation response) at the sink.

During mapping, the functional model is mapped onto the
architecture platform, as shown in Figure 1. The design space

of task allocation, signal packing, priority assignment and key
sharing is explored with respect to a set of design objectives and
constraints. For instance, a path deadline dπ may be set for path π
as an application requirement, and we use P to denote the set of
time-sensitive paths with such deadline requirements. There are
also utilization constraints on ECUs and the CAN bus, payload
size constraints on messages, and constraints on security costs.
The details of the security and end-to-end latency constraints
are introduced in the following sections, and all constraints are
formulated in the MILP formulation in Section III.

B. Security Mechanism
We focus on using MACs to protect against two types of

attacks within a CAN network—masquerade attack and replay
attack, both from a compromised ECU to other ECUs on the
same bus. A masquerade attack is the case that an attacker (a
compromised node) sends a message in which it claims to be a
node other than itself. A replay attack is the case that an attacker
sends a message that it has received from the CAN bus without
any modification.

We leverage the security mechanism proposed in [11] to
protect against these two types of attacks. In [11], a shared secret
key is distributed between any pair of nodes within a CAN
network during the initialization and used to compute MACs
during the operation. To protect against masquerade attacks, a
message is sent with MACs (one for each receiver) so that each
receiver can authenticate it by checking if the corresponding
MAC sent with the message is equal to the MAC computed
by itself. To further protect against replay attacks, a message
is also sent with a counter so that a receiver can check if the
message is fresh or not. Due to the limited size of the payload
in a CAN message, only the least significant bits of the counter
is sent with the message based on trade-off analysis, and reset
mechanisms are provided to avoid out-of-sync counters [11]. It
should be noted that the mechanism does not address Denial-
of-Service (DoS) attacks which is believed to require additional
hardware for CAN network.

C. Security Constraints and Key Distribution
MACs provide authentication to protect against masquerade

and replay attacks, and security constraints should be set at the
design time to assure there are enough MAC bits to prevent
indirect attack on the MAC bits.

Definition 1: An indirect attack is the scenario that an
attacker does not have the shared secret key between a sender
and a receiver so that it can only guess a MAC and attempt to
make a message accepted by the receiver.
If there is no prior information and the guess of MAC is purely
random, the successful probability of an indirect attack is 2−L,
where L is the number of bits of the MAC. In our design
formulation, a minimal number of bits is required for each MAC,
based on the importance of the signals in the message and the
importance of the receivers.

The security mechanism in [11] uses a dedicated shared key
for any pair of nodes, in which case only indirect attacks need
to be addressed. However, using such pair-wise key distribution
may require a significant number of MAC bits when there are
multiple receivers for a message, and may not be feasible. In this
work, we extend the mechanism in [11] by defining the notion
of receiving group to allow multiple receivers share one MAC in



(a)

N1 N2 N3 N4

N5 N6 N7

N1 N2 N3 N4

N5 N6 N7

N1 N2 N3 N4

N N N

N1 N2 N3 N4

N N N

(b)

sender receiverCAN bus receiving group

possible direct attacks

N8 N8

N NN5 N6 N7 N5 N6 N7

(c) (d)

N8 N8

Fig. 2. Given a message sent by node N1 and received by Nj (2 ≤ j ≤ 7),
(a) the pair-wise key distribution, where 6 MACs are required to be sent with
the message, and there is no possible direct attack; (b) the one-key-for-all key
distribution, where only 1 MAC is required, but there are possible direct attacks
between any pair of receivers; (c) another key distribution, where 3 MACs are
required, and (d) there are some possible direct attacks.

a message, i.e., using the same secret key. This provides more
design flexibility but has the risk from direct attack.

Definition 2: A receiving group of a message is a set of
receivers sharing one secret key with the sender of the message.

Definition 3: A direct attack is the scenario that an attacker
gets the shared secret key between a sender and a receiver so that
it can pretend as the sender and send a message to the receiver
successfully.

In pair-wise key sharing as in [11], each receiving group
contains only one receiver. The example in Figure 2 (a) shows
that one MAC is used for each receiver in the message (6
receivers in total). There is no possibility for direct attack in this
case. However, some MACs will not have enough bits available
for preventing indirect attack (assuming 32 bits in the message
payload are reserved for all MAC bits, then some MACs will
have fewer than 6 bits, which means the successful probability
of an indirect attack is higher than 3%).

The problem of limited MAC length can be relieved by
allowing multiple receivers to share one MAC. A straightforward
solution is to use one-key-for-all key distribution, where all
receivers are in the same receiving group and use the same key
(therefore the same MAC), as illustrated in Figure 2 (b). This
will provide more bits for preventing indirect attack, but it may
induce direct attacks—once one ECU in a receiving group is
compromised, it can conduct direct attacks on all other ECUs
in the same receiving group through masquerade attacks on the
message.

In our design formulation, we explore the grouping of
receivers into different receiving groups to trade off between
direct attack risk and indirect attack risk, based on the total
available MAC bits in a message, how critical a message is falsely
accepted by a receiver, and how likely an existing node may be
compromised. For instance, as illustrated in Figure 2 (c) and (d),
if N5 is extremely critical, then no other receiver will be assigned
in its receiving group, and there will be no possible direct attack
toward it. On the other hand, if N6 and N7 are trusted that they

are very difficult to be compromised, then they can be assigned
in the same receiving group because the probability of a direct
attack between them is very low. We assume the factors that affect
direct and indirect attack risks are quantitatively measured and
given as parameters in the design inputs, and we set constraints
in our formulation to restrict these risks.

D. End-to-End Latency and Response Times
An important aspect in our approach is to make sure the

design with security mechanism still meets the end-to-end la-
tency constraints along functional paths, which directly affect
the safety of the system. Assuming an asynchronous sampling
communication scheme, the worst-case end-to-end latency of a
path π can be computed by adding the worst-case response times
of all the tasks and global signals on the path, as well as the
periods of all global signals and their destination tasks on the
path, similarly as in [19]:

lπ =
∑
τi∈π

rτi +
∑

σi∈π∧σi∈SG

(rσi + Tσi + Tdstσi
), (1)

where rτi and rσi are the response times of task τi and signal
σi, respectively; Tτi and Tσi are the periods of τi and σi,
respectively; SG is the set of all global signals. The key for
calculating end-to-end latency and resource scheduling is to
compute the response times of tasks and messages (the response
time of a signal is equal to the response time of the message
to which the signal is packed into), and they have been defined
in [19].

III. MILP-BASED MAPPING ALGORITHM

A. Definitions
The notations of the indices, elements, sets, quantities are

listed in Table I. The notations of the constant parameters are
listed in Table II, and we assume these parameters are given as
design inputs. Ri,j is decided by how critical σi,j is. Ri,j,k′,k′′

depends on how likely εk′ may be taken control by a malicious
attacker and how much the computation of εk′′ depends on σi,j .
Li,j includes the payload data length and also the length of its
corresponding counter, which is decided in advance by checking
the given bound of the probability of a false rejection [11]. L′

i,j,k
is decided by checking the given bound of the probability of a
false acceptance [11]. Ri,j and Ri,j,k′,k′′ address the security
risk of a direct attack, and L′

i,j,k addresses the security risk of
an indirect attack. The current maximum allowed security risk
is defined at signal-level, but it can also be defined at receiver-
level or at system-level with minor modifications. Finally, the
notations of the decision variables are also listed in Table II.

B. Constraints
In this section, we introduce the various constraints on

allocation, security cost, and end-to-end latency1.
1) Allocation and Packing Constraints:

∀i,
∑
k

ai,k = 1; (2)

∀i, j, k, ai,k + aj,k + si,j ̸= 2. (3)

1If there is no specific mention, the ranges of variables are 1 ≤ i, j ≤ nT ,
1 ≤ k ≤ nE , 1 ≤ l ≤ nM

k , 1 ≤ g ≤ nG
k,l, and 1 ≤ h ≤ nP . If a constraint is

trivial for all tasks, signals, ECUs, messages, receiving group, or paths, then its
“∀” may be omitted in the following paragraphs.



TABLE I. The notations of indices, elements, sets, and quantities.

i, i′, j, j′ the index of a task.
k, k′, k′′ the index of an ECU.
l, l′, l′′ the index of a message sent from an ECU.
m the index of a multicast signal from a task.
g the index of a receiving group of a message.
h the index of a path.
τi the i-th task.
σi,j a signal between τi and τj .
εk the k-th ECU.
µk,l the l-th message of εk .
Γk,l,g the g-th receiving group of µk,l.
πh the h-th path.
T the set of tasks.
S the set of signals.
E the set of ECUs.
M the set of messages.
Gk,l the set of receiving groups of µk,l.
P the set of paths.

T <
i,m the set of receiving tasks of the m-th multicast signal of τi.
nT the number of tasks.
nS the number of signals.
nE the number of ECUs.
nM
k the number of messages of εk .

nG
k,l the number of receiving groups of µk,l.
nP the number of paths.

Equation (2) guarantees that τi is allocated to exactly one ECU2.
Equation (3) guarantees that si,j = 1 if and only if there exists
k such that ai,k = aj,k = 1, satisfying the definition of si,j .

∀σi,j ∈ S, k,
∑
l

ti,j,k,l = ai,k(1− aj,k); (4)

∀σi,j ∈ S, k, l, ti,j,k,l ≤ vk,l; (5)
∀σi,j ∈ S, k, l, ti,j,k,lT

µ
k,l ≤ Tσ

i,j ; (6)
∀σi,j ∈ S, k, l, ti,j,k,lT

σ
i,j ≤ Tµ

k,l. (7)

Equation (4) guarantees that σi,j is packed into exactly one
message from εk, if its source ECU is εk and its target ECU
is not εk. Equation (5) guarantees that vk,l = 1 if there exists a
signal packed into µk,l. Equations (6) and (7) guarantee that the
period of a signal is equal to the period of the message in which
the signal is packed into (T σ

i,j = Tµ
k,l if ti,j,k,l = 1).

∀i, k, l,m, ∀τj , τj′ ∈ T <
i,m, ti,j,k,l = ti,j′,k,l; (8)

∀i, k, l,m,∀τj ∈ T <
i,m, ti,j,k,l =

∑
τj′∈T <

i,m

ui,j′,k,l. (9)

Equation (8) guarantees that each branch of a multicast signal
is mapped to the same message. Equation (9) guarantees that
exactly one branch of a multicast signal adds its length to the
message.

2) Security Constraints:

∀σi,j ∈ S, k′, k, l, aj,k′ + ti,j,k,l − 1 ≤ wk′,k,l; (10)

∀k′, k, l,
∑
g

xk′,k,l,g = wk′,k,l; (11)

∀k′, k, l, g, xk′,k,l,g ≤ yk,l,g. (12)

Equation (10) guarantees that εk′ is a receiver of µk,l if there
exists a signal σi,j such that τj is mapped to εk′ and σi,j is
mapped to µk,l. Equation (11) guarantees that each receiver is

2In some cases, a task τi can only be allocated to a specific ECU εk . Then,
ai,k should be assigned to 1 directly, and ai,k′ is assigned to 0 if k′ ̸= k.

TABLE II. The notations of constant parameters, binary variables (their
values are 1 if the conditions are true), and real variables.

T τ
i the period of τi.

Tσ
i,j the period of σi,j .

Tµ
k,l the period of µk,l.
A the transmission rate of the CAN bus.

Bk,l the blocking time of µk,l.
Ci,k the computation time of τi on εk .
Dh the deadline of πh.
Ri,j the maximum allowed security risk of σi,j .

Ri,j,k′,k′′ the security risk if εk′ and εk′′ share the corresponding
secret key of σi,j .

Li,j the data length of σi,j .
Lk,l,g the reserved MAC length of Γk,l,g .
L′
i,j,k the required MAC length of σi,j if σi,j is received by εk .
M a large constant for linearization.
H total length of non-payload part of a message
P maximum length of payload part of a message
ai,k τi is mapped to εk .
si,j τi and τj are mapped to the same ECU.

ti,j,k,l σi,j is mapped to µk,l.
ui,j,k,l σi,j adds its length to µk,l.
vk,l µi,j is non-empty.

wk′,k,l εk′ is a receiver of µk,l.
xk′,k,l,g εk′ ∈ Γk,l,g .
yk,l,g Γk,l,g is non-empty.

zk′,k′′,k,l εk′ and εk′′ are in the same receiving group of µk,l.
pi,j τi has a higher priority than τj .

pk,l,k′,l′ µk,l has a higher priority than µk′,l′ .
rτi the response time of τi.
rµk,l the response time of µk,l.
rσi,j the response time of σi,j .
bk,l the total length of µk,l.
ck,l the computation time of µk,l.

in exactly one receiving group. Equation (12) guarantees that
yk,l,g = 1 if there exists a signal mapped to µk,l and the signal
is in the receiving group Γk,l,g.

∀k′, k′′, k, l, g, xk′,k,l,g + xk′′,k,l,g + zk′,k′′,k,l ̸= 2. (13)

Equation (13) guarantees that zk′,k′′,k,l = 1 if and only if
there exists g such that xk′,k,l,g = xk′′,k,l,g = 1, satisfying the
definition of zk′,k′′,k,l.

∀σi,j ∈ S, k, l,
∑
k′,k′′

ti,j,k,l × wk′,k,l × wk′′,k,l

×zk′,k′′,k,l ×Ri,j,k′,k′′ ≤ Ri,j ; (14)

∀σi,j ∈ S, k′, k, l, g, aj,k′ × ti,j,k,l

×xk′,k,l,g × L′
i,j,k′ ≤ Lk,l,g. (15)

Equation (14) guarantees that the security risk (cost) is not larger
than the maximum allowed security risk (cost). Equation (15)
guarantees that the required MAC length is not larger than the
reserved MAC length.

Note that the impact of ECUs being compromised is consid-
ered in risk parameters Ri,j,k′,k′′ . As mentioned before, Ri,j,k′,k′′

depends on how likely εk′ may be taken control by a malicious
attacker and how much the computation of εk′′ depends on σi,j .
Such relation can also be modeled explicitly by first introducing
parameters Rk as the possibility of εk being compromised and
then modeling Ri,j,k′,k′′ as a linear function of Rk and other
factors. In this work, we focus on addressing the masquerade and
replay attacks on security-critical messages and assume Ri,j,k′,k′′

are given.



3) End-to-End Latency Constraints: For end-to-end latency
constraints, we first model the priority assignment, and then
compute the task and message response times, and finally set
up the latency constraints on paths.

pi,j + pj,i = 1; (16)
pi,j + pj,j′ − 1 ≤ pi,j′ ; (17)
pk,l,k′,l′ + pk′,l′,k,l = 1; (18)
pk,l,k′,l′ + pk′,l′,k′′,l′′ − 1 ≤ pk,l,k′′,l′′ . (19)

Equations (16), (17), (18), and (19) guarantee that the priority
assignment is feasible.

∀i, rτi =
∑
k

ai,k × Ci,k

+
∑
j

∑
k

ai,k × aj,k × pj,i ×

⌈
rτi
T τ
j

⌉
× Cj,k. (20)

Equation (20) computes the task response time of τi.

bk,l = H +
∑

σi,j∈S

ui,j,k,lLi,j +
∑
g

yk,l,gLk,l,g; (21)

bk,l ≤ H + P ; (22)

ck,l =
bk,l
A

. (23)

Equation (21) computes the total length of µk,l, taking into
account of the data payload, the counter, and the MAC length.
Equation (22) guarantees that the total message length does not
exceed the limit. Equation (23) computes the computation time
of µk,l.

∀k, l, rµk,l = Bk,l + ck,l +
∑
k′,l′

vk′,l′

×pk′,l′,k,l ×

⌈
rµk,l − ck,l

Tµ
k′l′

⌉
× ck′,l′ . (24)

Equation (24) computes the message response time of µk,l.

∀σi,j ∈ S, k, l, rµk,l −M(1− ti,j,k,l) ≤ rσi,j ; (25)
∀σi,j ∈ S, k, l, rσi,j ≤ rµk,l +M(1− ti,j,k,l); (26)

∀σi,j ∈ S, rσi,j ≤ M(1− si,j). (27)

Equations (25), (26), and (27) compute the signal response time
of σi,j . If σi,j is mapped to µk,l, then rσi,j = rµk,l; otherwise, if it
is not mapped to any message (its source ECU and target ECU
are the same), rσi,j = 0.∑

τi∈πh

rτi +
∑

σi,j∈πh

(rσi,j + (1− si,j)(T
σ
i,j + T τ

j )) ≤ Dh. (28)

Equation (28) computes the path latency of πh and guarantees
that its deadline is satisfied.

4) Conversion to Linear Constraints: In above formulation
of the constraints, there are four cases where the formulation is
not linear. The first three cases can be converted into equivalent
linear formulations based on their specific representations. The
fourth case is more general and can be converted into equivalent
linear formulations by introducing a large constant M , similarly
as in [19]. The details of the conversions to linear constraints are
explained as follows.

Step 1

Step 2

Step 3

solution

design

specifications

and constrains

task allocation

task priority

task allocation

task priority

signal packing

message priority

signal packing

message priority

group assignment

group assignment

task allocation

task priority

signal packing

message priority

group assignment

Defined by

Assumptions

Decision

Variables

Given by

Previous Steps

solution

Fig. 3. The flow of three-step MILP-based algorithm, where “group assignment”
means “receiving group assignment.”

Inequalities of summations of three binary variables in
Equations (3) and (13): if α, β, and γ are binary variables, then
we replace the constraint α + β + γ ̸= 2 by three constraints:
α+ β − γ ≤ 1, α− β + γ ≤ 1, and −α+ β + γ ≤ 1.

Ceiling functions in Equations (20) and (24): if α is a
function and ⌈α⌉ exists in a constraint, then we replace ⌈α⌉ by
an integer variable β and add one constraint: 0 ≤ β − α ≤ 1,
which is a linear constraint if α is a linear function.

Multiplications of two binary variables in Equations (4),
(14), (15), (20), and (24): if α and β are binary variables and
α× β exists in a constraint, then we replace α× β by a binary
variable γ in the constraint and add one constraint: α × β = γ.
Next, α × β = γ can be replaced by equivalent constraints:
α+ β − 1 ≤ γ, γ ≤ α, and γ ≤ β. In fact, if 1 ≤ i ≤ n, αi is a
binary variable, and

∏
1≤i≤n αi exists in a constraint, then we can

replace
∏

1≤i≤n αi by a binary variable γ in the constraint and
add one constraint:

∏
1≤i≤n αi = γ. Next,

∏
1≤i≤n αi = γ can

be replaced by equivalent constraints:
∑

1≤i≤n αi− (n− 1) ≤ γ
and ∀i, γ ≤ αi.

Multiplications of one binary variable and one non-integer
variable in Equations (20) and (24): if α is a binary variable, β
is a non-integer variable, and α×β exists in a constraint, then we
replace α×β by a non-integer variable γ in the constraint and add
one constraint: α× β = γ. Next, α× β = γ can be replaced by
equivalent constraints: 0 ≤ γ ≤ β and β−M(1−α) ≤ γ ≤ Mα.

C. Objective Function
The objective function can be defined to minimize the sum-

mation of the end-to-end latencies of selected paths:

lπh
=

∑
τi∈πh

rτi +
∑

σi,j∈πh

(rσi,j + (1− si,j)(T
σ
i,j + T τ

j ));

min
∑
πh∈P

lπh
, (29)

where lπh
is the path latency of πh and P is the set of selected

paths. The objective function can also be defined to minimize
the total security risk with minor modifications.

D. MILP-Based Algorithm
The MILP formulation introduced in Section III provides an

optimal solution but has high complexity. To address complex
industrial-size problems, we propose a three-step algorithm,



where each step solves part of the mapping problem in a
simplified MILP formulation (derived from the original optimal
MILP). The flow of the algorithm is shown in Figure 3.

In Step 1, we assume that (1) each message is only reserved
for one signal, (2) a MAC with maximum required length for
the signal is included in each message, and (3) the priorities of
the messages are assigned by the Rate Monotonic policy, i.e.,
messages with smaller periods have higher priorities. Based on
these assumptions, we simplify the MILP formulation introduced
above and optimize the task allocation and the task priority.

In Step 2, having the task allocation and the task priority from
Step 1, we optimize the signal packing and the message priority
in a simplified MILP formulation, with the assumption that a
MAC with maximum required length for the signal is included
in each message.

In Step 3, having the task allocation, the signal packing,
and the task and message priorities from previous two steps,
we optimize the receiving group assignment. For each message,
its length is minimized, and its receiving group assignment
satisfies the constraints of security risks (from the perspective
of protecting against a direct attack) and required MAC lengths
(from the perspective of protecting against an indirect attack).

The formulation of Step 1 is motivated by the observation that
task allocation and priority typically have the most significant im-
pact on path latencies and resolving them significantly simplifies
the problem for the following steps. The division of Step 2 and
Step 3 further reduces the complexity. In addition, if designers
are given an existing mapped system and wants to improve the
security level by exploring different key sharing strategies, the
MILP formulation in Step 3 can be directly applied.

IV. HEURISTIC ALGORITHM

Algorithm 1 Heuristic for security-aware mapping
1: For each pair (τi, τj), Si,j = {σk|σk ∈ S ∧ srcσk = τi ∧ dstσk = τj}

2: For each pair (τi, τj), wτi,τj =
∑

σk∈Si,j

Wl

(
Tσk

+Tτj

)
TM

+
WsL

MAC
σi

LMAC
M

3: Set a priority queue Qw that consists of all wτi,τj
4: while Qw ̸= ∅ do
5: wτi,τj = extract max(Qw)
6: if mergeable tasks(τi, τj) then
7: Assign τi, τj to the same ECU
8: for all τi that has not been assigned an ECU do
9: Assign τi to the feasible ECU εk that provides smallest Cτi,εk

10: Assign each signal into its own message
11: while ∃ message mi and mj s.t. mergeable msgs(mi,mj) do
12: Merge mi and mj

13: Assign priorities to tasks and messages using Rate Monotonic policy
14: Calculate the response times for each task and message
15: Calculate the end-to-end latency for each path
16: Calculate the design objective

For comparison with the MILP-based algorithm, we also
propose a greedy heuristic algorithm, as shown in Algorithm 1.
First, we calculate a weight between each task pair (τi, τj) that
represents an estimation of how much benefit we can gain by
making the signals between the two tasks local signals (i.e.,
mapping the two tasks onto the same ECU). This estimation
depends on the potential gain from reducing the path latency
and the potential gain on security (local signals are not at risk of
masquerade and replay attacks), as shown in line 2. Wl and Ws

are weights that can be tuned to give more emphasis to either

latency or security. TM is the largest period of all tasks and
signals, and LMAC

M is the largest required MAC length of all
signals. LMAC

σi
is the required MAC length for signal σi.

Following the descending order of wτi,τj , we will try to
cluster the tasks and assign them onto the same ECU (lines 3–
7). In the mergeable tasks function, we check whether we can
assign two tasks onto the same ECU without violating utilization
constraints (if the two tasks are already assigned to different
ECUs, we check whether we can assign all the tasks from these
two ECUs onto one ECU). Once task allocation is decided,
we pack the signals into messages (lines 10–12) in a greedy
fashion, i.e., we will merge two messages as long as the combined
message satisfies size constraints and we merge MACs as long
as the security constraints permit. Finally, we assign priorities
based on the Rate Monotonic policy.

V. EXPERIMENTAL RESULTS

We obtained the test case that is used in [19]. The test case
supports advanced distributed functions with end-to-end compu-
tations collecting data from 360-degree sensors to the actuators,
consisting of the throttle, brake and steering subsystems and
of advanced Human-Machine Interface devices. The architecture
platform consists of 9 ECUs connected through a single CAN [1]
or CAN-FD [2] bus with the speed 500kb/s. The functional model
consists of 41 tasks and 83 signals. For the safety requirements,
171 paths are selected with deadlines 300ms or 100ms. For
the security requirements, 50 signals are selected with required
MAC lengths ranging from 30 bits to 10 bits for CAN and from
128 bits to 64 bits for CAN-FD (with longer message length,
CAN-FD is able to provide more MAC bits and therefore more
secure communications). The maximum allowed security risk of
each signal is simplified so that no more than 2 ECUs can be
assigned to the same receiving group, i.e., 2 ≤ Ri,j

Ri,j,k′,k′′
< 3 in

Equation (14). The program is implemented in C/C++. CPLEX
12.5 is used as the MILP solver. The experiments were run on
a 2.5-GHz processor with 4GB RAM. We compare our MILP-
based algorithm with the heuristic algorithm in Section IV and
non-integrated approaches applying the pair-wise key distribution
in [11] and the one-key-for-all key distribution.

A. Comparison with the Greedy Heuristic Algorithm
The results are listed in Table III. For the basic CAN protocol,

our MILP-based algorithm can find a solution satisfying all the
design constraints. In Step 1, within 3,600 seconds, the objective
of the best solution found by the solver is 11,070.61ms. The
largest latencies among the paths with deadlines 300ms and
100ms are 127.92ms and 90.72ms, respectively. In Step 2, the
program ends in 600 seconds, and the objective is 11,069.88ms.
The largest latencies among the paths with deadlines 300ms and
100ms are 127.82ms and 90.62ms, respectively. In Step 3, the
program ends in few seconds, and the objective is 11,069.62ms.
The largest latencies among the paths with deadlines 300ms and
100ms are 127.79ms and 90.59ms, respectively. There is little
improvement on the latency objective at Steps 2 and 3 because
the message response times are much smaller compared to the
task and message periods that contribute to the path latencies in
our model. However, Steps 2 and 3 can significantly reduce the
bus load from 76.92kb/s to 45.57kb/s and 31.52kb/s, respectively.

In comparison, the objective of the greedy heuristic is
23,114.50ms, while satisfying all the design constraints. Its



TABLE III. The objective (the latencies summation of selected paths), maximum latencies, load, and runtime of each step of the MILP-based algorithm, where
“Max L300” and “Max L100” are the largest latencies among the paths with deadlines 300ms and 100ms, respectively.

Results after Step X
Protocol Step X Objective (ms) Max L300 (ms) Max L100 (ms) Bus Load (kb/s) Runtime (s)

1 11,070.61 127.92 90.72 76.92 3, 600
CAN 2 11,069.88 127.82 90.62 45.57 < 600

3 11,069.62 127.79 90.59 31.52 < 10
1 11,075.08 128.56 91.22 211.74 3, 600

CAN-FD 2 11,073.67 128.39 91.05 176.47 < 600
3 11,071.69 128.14 90.80 98.33 < 10

runtime is 1.4 seconds, but the value of the objective is much
worse than the one obtained with the MILP formulation. This
is because the exploration is stuck at a local minimum, which
is a common problem for heuristic algorithms (we set different
weights Wl and Ws for latency and security in Algorithm 1 but
the results do not change significantly).

For the CAN-FD protocol, we can also find a solution
satisfying all the design constraints. The objectives, the largest
latencies, and the bus loads are increased because the required
MAC lengths are much longer (128 bits to 64 bits). Similarly,
Steps 2 and 3 reduce the bus load from 211.74kb/s to 176.47kb/s
and 98.33kb/s, respectively, showing the effectiveness of signal
packing and our flexible key distribution scheme. On the other
hand, the greedy heuristic cannot find a feasible solution in this
case (with bus speed at 500kb/s) due to the much longer required
MAC lengths. In fact, we find that the heuristic can only find a
feasible solution when we increase the bus speed to 4Mb/s.

B. Comparison with Non-Integrated Approaches
We also tried two experiments in which we do not consider

security constraints explicitly at Steps 1 and 2 (i.e., solving a
traditional mapping problem with only timing constraints), and
then explore the addition of MAC bits and the key distribution
at Step 3. In the first experiment, at Steps 1 and 2, we constrain
that all messages should have at most 32 bits used for data while
packing signals, i.e., leaving 32 bits available for MAC bits.
Then, at Step 3, we find that there is no feasible solution for
either the pair-wise key distribution in [11] or the one-key-for-all
key distribution. The reason is that the pair-wise key distribution
requires more than 32 MAC bits for certain messages, while the
one-key-for-all key distribution leads to too high security risks
for some messages. In the second experiment, at Steps 1 and 2,
we do not set any constraint on the number of bits for data, i.e.,
they may use as many as all 64 bits in the payload. Then, at
Step 3, we find that there is no feasible solution for the pair-
wise key distribution, the one-key-for-all key distribution, or our
flexible key distribution scheme. This is because some messages
use almost all 64 bits, so no MAC can be added to those message.
The results from these two experiments demonstrate that it is
necessary to consider security together with other metrics during
mapping; otherwise, it may be difficult or even impossible to add
security measurement later.

VI. CONCLUSION

In this paper, we proposed an approach to address both
the security and the safety in the design space exploration of
automotive electronic systems. We presented an MILP formula-
tion that explores task allocation, signal packing, MAC sharing,
and priority assignment while meeting both security and safety
constraints. Experimental results of an industrial case study

showed that our approach can effectively explore the design space
to meet the system security and safety requirements.

ACKNOWLEDGMENT

This work was supported in part by the TerraSwarm Research
Center, one of six centers supported by the STARnet phase of the
Focus Center Research Program (FCRP), a Semiconductor Re-
search Corporation program sponsored by MARCO and DARPA.
This work was supported in part by the Industrial Cyber-Physical
Systems Center (iCyPhy).

REFERENCES
[1] Bosch, CAN Specification, version 2.0, 1991.
[2] Bosch, CAN with Flexible Data-Rate White Paper, version 1.1, 2011.
[3] L. Carloni, F. D. Bernardinis, C. Pinello, A. Sangiovanni-Vincentelli, and M. Sgroi,

“Platform-based design for embedded systems,” Embedded Systems Handbook, CRC
Press, 2005.

[4] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K.
Koscher, A. Czeskis, F. Roesner, and T. Kohno, “Comprehensive experimental
analyses of automotive attack surfaces,” USENIX Conference on Security, 2011.

[5] B. Groza, S. Murvay, A. Van Herrewege, and I. Verbauwhede “LiBrA-CAN: a
lightweight broadcast authentication protocol for Controller Area Networks,” Inter-
national Conference on Cryptology and Network Security, pp. 185–200, 2012.

[6] T. Hoppe, S. Kiltz, and J. Dittmann, “Security threats to automotive CAN networks—
practical examples and selected short-term countermeasures,” International Confer-
ence on Computer Safety, Reliability, and Security, pp. 11–25, 2008.

[7] K. Keutzer, S. Malik, A. R. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli,
“System level design: orthogonolization of concerns and platform-based design,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 19, no. 12, pp. 1523–1543, 2000.

[8] P. Kleberger, T. Olovsson, and E. Jonsson, “Security aspects of the in-vehicle network
in the connected car,” IEEE Intelligent Vehicles Symposium, pp. 528–533, 2011.

[9] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy, B.
Kantor, D. Anderson, H. Shacham, and S. Savage, “Experimental security analysis
of a modern automobile,” IEEE Symposium on Security and Privacy, pp. 447–462,
2010.

[10] F. Koushanfar, A. Sadeghi, and H. Seudie, “EDA for secure and dependable cybercars:
challenges and opportunities,” ACM/IEEE Design Automation Conference, pp. 220–
228, 2012.

[11] C.-W. Lin and A. Sangiovanni-Vincentelli, “Cyber-security for the Controller Area
Network (CAN) communication protocol,” ASE International Conference on Cyber
Security, pp. 344–350, 2012.

[12] D. K. Nilsson, U. E. Larson, and E. Jonsson, “Efficient in-vehicle delayed data
authentication based on compound message authentication codes,” IEEE Vehicular
Technology Conference, pp. 1–5, 2008.

[13] OSEK/VDX, OS Specification, version 2.2.3, http://www.osek-vdx.org, 2006.
[14] I. Rouf, R. Miller, H. Mustafa, T. Taylor, S. Oh, W. Xu, M. Gruteser, W. Trappe,

and I. Seskar. “Security and privacy vulnerabilities of in-car wireless networks: a tire
pressure monitoring system case study,” USENIX Conference on Security, 2010.

[15] A. Sangiovanni-Vincentelli, “Quo vadis, SLD? Reasoning about the trends and
challenges of system level design,” Proceedings of the IEEE, vol. 95, no.3, pp. 467–
506, 2007.

[16] C. Szilagyi, “Low cost multicast network authentication for embedded control
systems”, Ph.D. thesis, Electrical and Computer Engineering Department, Carnegie
Mellon University, 2012.

[17] A. Van Herrewege, D. Singelee, and I. Verbauwhede, “CANAuth—a simple, back-
ward compatible broadcast authentication protocol for CAN bus,” Workshop on
Embedded Security in Cars, 2011.

[18] M. Wolf, A. Weimerskirch, and C. Paar, “Security in automotive bus systems,”
Workshop on Embedded Security in Cars, 2004.

[19] Q. Zhu, Y. Yang, M. Di Natale, E. Scholte, and A. Sangiovanni-Vincentelli,
“Optimizing the software architecture for extensibility in hard real-time distributed
systems,” IEEE Transactions on Industrial Informatics, vol. 6, no. 4, pp. 621–636,
2010.

[20] T. Ziermann, S. Wildermann, and J. Teich, “CAN+: a new backward-compatible
Controller Area Network (CAN) protocol with up to 16x higher data rates,”
ACM/IEEE Design Automation and Test in Europe, pp. 1088–1093, 2009.


