
Hector Codes - SoNIC Steganography
Hector A. Tosado Jimenez

August 7, 2011

1 Introduction
asdIn our world we tend to rely too much on a variety of networks in order
to have a functional society. May it be railroads, highways, financial networks,
telecomm networks, businesses, school systems or the internet; we just simply
depend too much on their functionality.

Different networks interact with and build on each other. Social networks are
built upon information networks which are built upon communication networks
which in turn are built on physical networks. It’s because of all these types of
networks that there is a need to optimize and look for other uses that can be
achieved with them.

Steganography is the art and science of writing hidden messages in such a
way that no one, apart from the sender and intended recipient, suspects the ex-
istence of the message, a form of security through obscurity[1]. When compared
to normal cryptography, where a encrypted message would arouse suspicion
in some way, steganography depends on complete secrecy on the message being
sent. Most of contemporary, widely available implementations of steganographic
systems are dedicated to the multimedia applications hidden data is distributed
in sound files, images and movies. More specifically, and for our purposes there
is a type of steganography referred to as Network Steganography, where instead
of using digitalize media, like the ones mentioned above, it uses communication
protocols’ control elements and their basic intrinsic functions. It is further de-
scribed as a type of steganography where "the concealment occurs within data
whose inherent ephemerality makes the hidden payload nearly impossible to
detect, let alone thwart". An example is Voice Over IP(VoIP) where data is
transferred through an going internet conversation. The longer the communi-
cators talk, the longer the secret message they can send [2].

The design of this project is to enable the sending of a covert message be-
tween 2 communication devices utilizing steganographic techniques. These will
allow a message to be sent without a higher level application or a router knowing.
This type of network steganography will be achieved using Hector Codes, which
the author implemented during a summer internship program, and SoNIC.

1

2 Background
2.1 Network Stack
In order to be able to send a covert message a good understanding of how
computers communicate over a network is needed. The Open Systems Inter-
connection (OSI) model, is the sub-division of a communication network into
7 layers as seen in Figure 1. These layers provides services to the layers above
and requests services from the layers below. The physical layer (PHY) is the
lowest, or first layer of the OSI model. This layer generates and detects signal so
as to transmit and receive data over a network medium. The second layer, the
Data Link Layer, provides reliable, efficient communication between end hosts
connected by a single communication channel. This layer has a sublevel called
Media Access Control (MAC) that determines how data on a network meant for
a specific computer reaches it and how a computer can transmit data. The third
layer is the Network layer that provides the means of communicating between
hosts that are in different nodes. The fourth layer is the Transport layer that
is in charge of detecting loss of packets, bit duplication and the transparent
transfer of data between end systems. The fifth, sixth and seventh layer are in
charge of terminating existing data connections, interpreting data to be used in
the application layer and representing the data to the end-user, respectively.

The PHY layer is in charge of how a message is generated and sent but it
consists of 3 more sub layers that work more specifically with the managing of
the data as illustrated in Figure 1. The Physical Coding Sublayer (PCS), PMA
(Physical Medium Attachment), and PMD (Physical Medium Dependent), the
PCS is in charge of encoding every 64-bit block into a 66-bit block when trans-
mitting, by adding a two bit sync header and scrambling the 64-bit data. After
that is done a 66-bit block is transmitted over a physical medium and received
again using the PMA to recover the bits from electrical signals and having the
PCS decode 66-bit blocks. This type of encoding is done after a packet is re-
ceived from the IP or Network layer and sent across the MAC layer into the
PHY layer. The MAC layer is then in charge of adding Ethernet header and
computing a 32 bit CRC (Cyclic Redundancy Check) value over the entire re-
ceived Ethernet Frame. A minimum of 12 idle character are sent between frames
by the MAC which are needed for correct analysis of the bitstreams. There is
a Reconciliation Layer between the MAC and the PHY layers that continuosly
generate idle packets if there is no data character to send The PCS is also in
charge of then retrieving the 66-bit block sent, descramble and decode the data
that was encoded and scrambled. After this is done the data is then sent to the
top layers that may need it.

2.2 SoNIC
One of the biggest limitations of the PHY layer is that its implementation is
normally done in hardware which limits the amount of analysis that could be

Figure 1: 10G Network Stack

done to the 10G data bitstream. This is where the Software Network Interface
Card (SoNIC) comes in, SoNIC is an effort to build a real-time network adaptor
that gives a user precise control over the entire 10G network stack [3]. It divides
what is sent in software and how it’s sent in hardware, more specifically allows
the PCS and all the top layers to be implemented in software and the rest of
the PHY layer in hardware. This manipulation in software allows the user to
visualize and study the PHY layer more closely because of being able to alter
the information that is being stored inside the data packets. It provides the
developer with a simple yet powerful programming interface to the PHY and
MAC layers.

2.3 10G Ethernet Standard
In order to be able to use SoNIC and the Hector Codes the 10G Ethernet
Standard plays a big part on understanding where to actually insert the hidden
message character bits in the bitstream. When sending data across an ethernet
cable, the packets of information that are sent need to follow a specific format.
Whenever an ethernet frame is received,the PCS layer encodes every 64 bit
data of the Ethernet frame into a 66 bit block. Each block has to be correctly
configured with the correct block Type to be able to identify it as the beginning
or end of a frame or as a data only block. The data block consists of the ’01’
sync header and 64-bit scrambled data. The mixed data/control block has the
’10’ sync header, 8-bit Type field and 56-bit payload, example of these Types
are the /S/ (Start of an Ethernet frame), /T/ (End of an Ethernet frame) and
/E/ (Idle frame) for simplicity. Similarly the standard defines many control
characters, although we only need /I/ (=0x00) for this design which is used as
an idle character between packets. A control character is 7-bit long, and a data
character is 8-bit long [4].

Figure 2: 10G Ethernet Standard - Block Format

In 10G network when two end hosts are connected with an ethernet cable,
both ends will continously generate a continous bitstream regardless of the exis-
tence of packets. This means, that both of them will insert idle characters into
the bitstream until a packet containing data arrives. The IEEE 802.3 standard
states that a valid ethernet bitstream will have twelve idle characters between
characters.

/S/ indicates the start of a new Ethernet frame in the 66b block. /S/
appears at the first octet(8-bit) and has two values depending on the position
of the first octet of an Ethernet frame. Similarly, /T/ indicates the end of an
Ethernet frame and has eight different values depending on the number of valid
data octets in the block. For invalid octets you can simply fill them with /I/s.
/E/ is filled with eight idle characters and is used for interpacket gap between
two Ethernet frames, as well as to comply with the 12 minimum idles characters
needed. These block Types and structure is shown in Figure 2.

3 Design
Before heading into more details a brief overview can be seen in Figure 5.
This figure shows how two end host computers or nodes are connected together
through an ethernet cable. The two computers have SoNIC installed and would
allow User Y to send a hidden message to User Z without any of the end hosts
knowing. This message would be send and interpreted using SoNIC.

Therefore, following the PCS manipulation that is allowed by the SoNIC,
work can be done to the encode and scramble as well as the decode and de-
scramble processes in order to insert a hidden message. The hidden message
will be formatted using the Hector’s Code in Table 1; each letter will match
with the corresponding ASCII character in order to have its correct 6-bit repre-
sentation, this is done by ignoring the 7th bit in the ASCII character. The way
our hidden message is going to be encoded is by utilizing the thin rectangles
spaces that appear in the /S/ 0x33 block type and in the /T/ block types in
Figure 4. These thin rectangles are expressed to be 0’s in Clause 49.2.4.3 of the

Figure 3: Visual of Hector Codes

IEEE STD 802.3-2008. The message is going to be introduced into the encoder
before it gets scrambled. In the same way, it will get descrambled before it is
decoded so the message would not be lost, this can be seen in the representa-
tion in Figure 3. We assume that we have constant communication between two
nodes, in other words the two end nodes are constantly sending data packets in
a continuous interval in order to be able to send a full hidden message through
the empty spaces (thin rectangles in Figure 4).

3.1 Code for PCS
This part describes the variables and the changes that are going to be done to
encode and decode.

1. Variables for encode():

• uint64_t h_bits: has the 6 bits of the Hector Code character that is
currently being embedded in encode().

• uint64_t th_bits: temporary h_bits variable that contains the bits
that are currently being embeded into the encode process in the avail-
able rectangle spaces.

• int h_counter: counter for how many bits have already been sent of
a particular character. 0 ≤ h_counter ≤ 6.

• int h_length: maintains the amount of bits that have been sent from
h_code.

• char h_input[4096]: char array that stores hidden message thats
input by the user.

• unsigned char* h_code: complete data bits of encrypted message
with start and end of message bits included.

• static int h_total_bits: size of the hidden message that is going to
be sent.

Figure 4: /S/ and /T/ block format with rectangle spaces

Figure 5: /S/ and /T/ block format with rectangle spaces

2. Variables for decode():

• unsigned char h_hector: hidden message is stored here as is it being
extracted from the decoding. This message is still 1’s and 0’s.

• static int h_message: 1 or 0, true or false. Flags if a message is being
received in decode().

• char h_buffer[4096], *h_pointer: maintain the message being re-
ceived in decode(). h_buffer is filled up with all the bits being re-
trieved from decode(), saving in each byte size 6 bits that correspond
to a specific hector code. h_pointer always keeps pointing to the
current 6 bits being introduced to h_buffer, it’s used to check for the
END_HiddenMessage character.

• int h_count: maintains the counts for the decode() on the amount of
bits of a character that has been already received.

• int h_length: in decode() works as a counter for everytime that
h_length%6 == 0, checks if the bit sequence received is the END_HiddenMessage.

• uint64_t h_bits: handles the descrambled output and adjusts the
bitstream as to retrieve the bits that are hidden.

• uint64_t h_code: maintains the bits that are currently being re-
ceived, will be added to h_buffer after 6 bits of a character is com-
pleted.

3. encode(...) One thing to note about this design is that the original code
from SoNIC is not touched. The implementation relies on code built in
on already existing code that will, give an input message from user, start
encoding the hidden message into the packets. When an input message
is received the corresponding variables are set and initialized in order to
continue with inserting the hidden message into the stream.

printf("Message? : ");

fgets(h_input, 4096, stdin);

if(strlen(h_input) != 0)
{

h_code = h_encode(h_input);
h_total_bits = strlen((char *) h_code) * 6;
h_counter = 0;
h_bits = *(uint64_t*)h_code;//Casts the first 8 bits on the h_code to h_bits.
h_bits <<= 58;//Clears the 7 and 8th bits.
h_bits >>= 58;
h_length = 0;

}

After this is done, and if a message is received, bit manipulation is done to
th_bits allowing the correct amount of bits to be inserted into the amount
of rectangular spaces that are available. The bit manipulation done de-
pends on how many bits are left of a character of the hidden message
to be sent and how many available spaces there are in the to embed the
hector code bits in the block type. For example, the following code adds
the character bits into the 0x33 block type. This part uses conditional
statements on the h_counter to know how the 4 rectangular spaces that
are available in the block type are going to be fitted. If h_counter < 2
4 bits of a hidden message characters are embeded into the payload, or
if the h_counter ≥ 2, then your going to embed the left over bits of one
character and then look for the following character in h_code.

if(h_counter < 2 && h_counter >= 0 && h_length < h_total_bits)
{
temph_bits = h_bits;
temph_bits <<= 56 + 4 - h_counter;
temph_bits >>= 56 + 4 - h_counter + h_counter;
cur <<= 4;
cur = cur|temph_bits;
‘h_counter += 4;
h_length += 4;
}

else
if(h_counter < 6 && h_counter >= 2 && h_length < h_total_bits)

{
temph_bits = h_bits;
temph_bits >>= h_counter;
cur <<= 4;
cur = cur | temph_bits;
h_length += 6 - h_counter;

if(h_length < h_total_bits)
{
h_code += 1;
h_bits = *(uint64_t*)h_code;
h_bits <<= 58;
h_bits >>= 58;
temph_bits = h_bits;
temph_bits <<= 56 + (6 - h_counter) + 4;
temph_bits >>= 56 + (6 - h_counter) + 4 - (6 - h_counter);

cur = cur | temph_bits;
h_counter = h_counter - 2;
h_length += h_counter;
}
}
}
if(h_message == 1)
cur <<= 36;
else
cur <<=40;

4. decode(...)
In this section the descrambled variable is received as it normally would.
However, in order to be able to check whether a hidden message is included
in the blocks payload, a test is done to the a block types corresponding
rectangular spaces. A checkis done to find out whether the spaces con-
tain the start of the START_HiddenMessage character. This would flag
h_message as 1 and start the retrieving of the hidden message across the
whole decoding process.

if(h_message == 0 && h_complete == 0)
{

h_bits = descrambled << 24;
h_bits = h_bits >> 60;

if(h_bits == 0xe)
{
h_message = 1;
h_count = 4;
h_code = h_bits;
h_length = 4;
}
...

To continue with the past example, on how the encoding of a hidden
message worked in the 0x33 block type, lets see how its done in the decode.
After h_message is changed to 1, conditional statements are used to verify
the amount of h_count (It is worth mentioning that h_count, in contrast
to h_counter, maintains the amount of bits that have been received of a
specific hidden message character). If h_count < 2, then descrambled is
shifted to point to the 4 rectangular spaces of the 0x33 block type and

added into h_code. The variable h_code is in charge of receiving the
hidden message character bits until 6 are received. If h_count ≥ 2 then
the bits remaining of the character that is currently being received are
added to h_code, h_code is then added to a char array that will contain
all the retrieved characters that are retrieved from the decode process and
the remaining bits that werent used to finish the previous character are
added to a new h_code. In this part a test is done in order to check if a
END_HiddenMessage character was the last character received from the
decoding process. If true, h_message is set to 0 and h_complete set to
1 finishing all hidden message retrieving algorithms, allowing for the rest
of the decode to run as normal. The function h_decode is then called
printing out the hidden message.

if(h_message == 1)
{
if(h_count < 2)
{
h_bits = descrambled << 24;
h_bits >>= 60 - h_count;
h_code = h_bits|h_code;
h_ length += 4;
h_count += 4;
}
else
{
if(h_count >= 2)
{
h_bits = descrambled << (24 + (h_count - 2));
h_bits = h_bits >> (60 + (h_count -2) - h_count);
h_code = h_bits | h_code;
h_length += (6 - h_count);
* h_pointer ++= h_code;

if(h_length % 6 == 0)
{
if(h_code == 0x3f)
{
h_message = 0;
h_length = 0;
h_complete = 1;
printf("Detected message is : %s\n", h_decode(h_buffer));
}

}
if(h_message == 1)
{

h_bits = descrambled << 24;
h_bits = h_bits >> (60 + (6 - h_count));
h_code = h_bits;
if(h_count == 2)
h_code = 0x0;
h_count = (h_count - 2);
h_length += h_count;

}
}

}
}

3.2 Implemented code for Hector Codes
1. h_encode(): Function called after receiving hidden message input. In-

terprets the string character by character adding into another string the
Hector Code representation. This string is returned.

unsigned char* h_encode(char *input)
{
char * h = malloc(4096);
char c;

strcat(h, "~");

while ((c = *input++) != ’\0’) {
switch (c)
{

case ’A’:
strcat(h, "@");
break;

...

...

case ’^’:
strcat(h, "{");
break;

case ’!’:
strcat(h, "|");
break;
}

}
strcat(h, "?");//End of message bits
printf("The current hector code is: %s\n", h);
return (unsigned char*)h;
}

2. h_decode - Function that is called after hidden message is completely
received. Characters are interpreted as hexadecimal numbers and changed
to their corresponding Hector Code letter or number. These character are
added to another string and then returned.

char* h_decode(char hector[])//char * hector[4096]???
{
char* h = malloc(4096);
int i = 0;
uint64_t h_char = (uint64_t)hector[i];

while(h_char != 0x3f)
{

switch(h_char)
{

case 0x00:
strcat(h, "A");
break;

case 0x3c:
strcat(h, "!");
break;

case 0x3d:
strcat(h, "");
break;

}
i++;
h_char = (uint64_t)hector[i];
}
return h;
}

12

References
[1] Patrick Philippe Meier, "Steganography 2.0: Digital Resistance against

Repressive Regimes", 2009 http://irevolution.net/2009/06/05/
steganography-2-0-digital-resistance-against-repressive-regimes.

[2] Lubacz,Jozeph; Mazurczyk,Wojciech; Szczypiorski, Krysztof "Vice Over
IP: The VoIP Steganography Threat" 2010 http://spectrum.ieee.org/
telecom/internet/vice-over-ip-the-voip-steganography-threat/

[3] Ki Suh, Lee; Wang, Han; Weatherspoon, Hakim. "Real-time High Preci-
sion Network Analysis with SoNIC" Computer Science Department, Cornell
University. 2010.

[4] IEEE 802.3-2008-Section 4, "Physical Coding Sublayer (PCS)", p 262

A 6 Bits
During the design, the amount of bits that were going to be used to encrypt each
letter or symbol had to be chosen. Different amount of bits were tried, at first 4
bits, then 5 and ending up using 6 bit because it was the most efficient while still
not having to reach the 7 bits that ASCII code uses. When initially starting the
project one of the most important parts of sending a hidden or covert message
would be trying to keep the number of bits used as low as possible. 4 bits
were tested at the beginning to try and keep the message being sent to only
letters using a very similar representation to that of the Morse Code were the
”dots” and ”dashes” were 0 and 1, respectively. For letters that only had a dot
and dash combination that didn’t complete 4 bits, 0’s were added to fill the
spots. However, this only allowed for 16 unique characters having more than
6 letters that overlapped with each other, as would be expected. 5 bits had
a similar problem because, although it could fit all the letters, it wouldn’t be
able to fit numbers or symbol characters. Being able to use numbers and/or
symbol character in a hidden message would make it much more practical. This
was then the reason 6 bits were used, these bits allowed for numbers, the most
common used symbols and all the capitol letters to be represented in the 6 bits.
Some symbols that are not popularly used were removed and the minuscule
letters are not really needed to be able to understand a covert message. The
last four 6 bit representations were reserved for special cases and to be able
to flag the start and the end of a hidden message. These flags will notify the
program when to read the corresponding "empty" spaces for hidden message
bits and when to just continue running the algorithm normally.

13

Table 1: Complete Hector Codes
Binary Key Character Binary Key Character#1

000000 A 100000 6
000001 B 100001 7
000010 C 100010 8
000011 D 100011 9
000100 E 100100 SPACE
000101 F 100101 ?
000110 G 100110 _
000111 H 100111 #
001000 I 101000 $
001001 J 101001 %
001010 K 101010 ’
001011 L 101011 (
001100 M 101100)
001101 N 101101 *
001110 O 101110 +
001111 P 101111 ,
010000 Q 110000 -
010001 R 110001 .
010010 S 110010 /
010011 T 110011 :
010100 U 110100 ;
010101 V 110101 <
010110 W 110110 =
010111 X 110111 >
011000 Y 111000 @
011001 Z 111001 |
011010 0 111010
011011 1 111011 ˆ
011100 2 111100 !
011101 3 111101 RESERVED
011110 4 111110 START_HiddenMessage
011111 5 111111 END_HiddenMessage

14

