
Generating Attack Traffic using DETERLab in an
Emulation-Simulation Environment

John Mela
Computer Science

Youngstown State University
jnmela@my.ysu.edu

Graduate Mentor: Wei Yan
Faculty Mentor: Dr. Yuan Xue

July 31, 2011

TRUST Research Experiences for Undergraduates (TRUST-REU)
in Cyber Security and Trustworthy Systems 2011

Department of Electrical Engineering and Computer Sciences
College of Engineering
Vanderbilt University

jnmela@my.ysu.edu


Generating Attack Traffic using DETERLab in an
Emulation-Simulation Environment

John Mela

1 Introduction

The inclusion of attack traffic into the Command and Control Wind Tunnel (C2WT) tool suite with
network emulation capability was achieved by integration with the back-end of the Security Experimen-
tation Environment (SEER) workbench. “SEER integrates various tools for configuring and executing
experiments and provides a user-friendly interface for experimenters to use the tools[2].” We wrap a Java
application around an executable used by SEER to create attack traffic in the emulation. The addition
of this application allows us to generate attacks at varying intensities. We can produce traffic at types of
flat rate, ramp up, ramp down and ramp pulse. The existing Java code used to coordinate communica-
tion between entities in the simulation and emulation is tied together by Run-Time Infrastructure (RTI)
implemented on a Publish/Subscribe system. RTI is an extension of High Level Architecture (HLA) and
is responsible for time synchronization between the emulation and simulation environments[4]. Time
synchronization is required due to the in-congruent passage of time between these environments. Al-
though the in depth analysis and solution to the time synchronization problem is beyond the scope of
this paper, resources exist for further explanation[1]. We extend the C2WT code to communicate attack
commands to the emulated network. Extending the existing code allows for the future possibility of sim-
ulated attackers. In order to test our implementation, we create a simple application which instructs the
emulation to perform four attacks of each type listed above. We monitor traffic using SEER to confirm
that the application is doing what it should be.

2. C2WT Integration with DETERLab

The communication between simulated environments over an emulated network is achieved by ex-
panding the functionality of C2WT to communicate through the Cyber-Defense Technology Experi-
mental Research Laboratory (DETERLab) testbed. “The DETERLab cybersecurity testbed[3] is a ded-
icated network testbed facility customized for cybersecurity research.” DETER provides the emulation
environment for communication between simulated entities. Each simulated entity is paired with one
physical node in DETER. In our experiment, we simulate a Controller and an unmanned aerial vehi-
cle(UAV). The Controller sends commands to the UAV. The UAV in turn, sends images back to the
Controller.

Each simulation must send and receive messages to its corresponding DETER node in order to com-
municate with the federation. The simulations and nodes are disjointed entities which must be bridged
together. An Emulation Gateway was introduced to pass messages between each simulation and its re-
spective node. The Emulation Gateway is a DETER node consisting of a Java federate, the RTI, and
Matlab simulations. The simulation environment lives entirely within DETER to alleviate long response



times of communicating externally. Each federate/simulation subscribes and publishes to an appropriate
interaction type with the RTI. The interactions define what kind of information can be sent or received.
The Controller federate subscribes to a Control In interaction and publishes to a Control Out interaction.
The UAV federate subscribes to a Plant In interaction and publishes to a Plant Out interaction. The
Emulation Gateway federate subscribes to both Plant Out and Control Out interactions and publishes to
Plant In and Control In interactions. These interactions allow for plant/controller communication.

Communication over the emulated network is achieved by the use of several Tap Clients and a Tap
Server. The Tap Server exists on the Emulation Gateway. Both the Controller and UAV contain a Tap
Client which establishes a socket connection to the Tap Server. The Emulation Gateway, UAV, and
Controller all contain a Task Buffer which is used to enqueue incoming tasks to be performed. The
Controller node contains a SendCommand application which sends commands to the ReceiveCommand
application on the UAV node. Likewise, the UAV node contains a SendImage application to send an
image to the ReceiveImage application on the Controller node. Refer to Fig. 1 for clarification.

3. Attack Generation

3.1 SEER

The SEER workbench contains a packet flooder module which allows the user to manually introduce
attack traffic into a running experiment. This can be achieved by configuring attacks through the SEER
graphical front-end. This is fine for manually testing specific types of attacks, but is unnecessarily time
consuming. We may want to automate attacks at experiment swap-in or develop an attacker simulation.
Integrating SEER’s attack generation capability with our system is a means to this end. Inspection of the
SEER back-end reveals a flooder utility coded in C. Experiments configured to use the SEER workbench
are swapped in with a compiled binary of this utility. Further inspection shows that when a packet flooder
agent is started on the SEER GUI, this utility is launched on the source node with various command-line
parameters specifying the type of attack. All nodes in the experiment simply need implement the SEER
workbench to make use of this utility.

3.2 Flooder Utility

The flooder is a unix utility which accepts command line parameters. Based on the parameters, it
sends traffic on an interface using libnet. The various parameters are listed below and described.

Parameter: Default:
attack target none
destination hostmask 255.255.255.255
IP protocol 17(UDP)
TCP flag SYN
ICMP type Min: 8 Max: 8
ICMP code Min: 0 Max: 0
payload length Min: 0 Max: 0
source port Min: 0 Max: 65535
destination port Min: 0 Max: 65535
attack rate flatrate

2



-flat rate
-ramp up
-ramp down
-pulse
-ramp pulse

high rate 1(pps)
low rate 1
high time 0(ms)
low time 0
rise time 0(ms)
fall time 0
rise shape 1.0(linear)
fall shape 1.0

The attack target, along with a destination hostmask can be configured to target one specific host, or
broadened to allow randomization of traffic disbursement between several hosts. The IP protocol may
be specified or left to a default value of UDP. Selection of the TCP protocol uses a TCP flag of SYN
unless otherwise set. If ICMP is employed, a range may be specified for both ICMP type and ICMP
code. The payload length, source port, and destination port may also be assigned in ranges. By default,
the payload size is 0. Both source and destination ports will default to cover the entire port range(0 -
65535).

The final specifications involve the attack rate. A low rate and high rate may be set. The default rate
is one packet per second. Low time and high time dictate how long the flooder should perform at its
respective packet rates. Rise time and fall time set the amount of time the flooder sweeps between its
peak and trough in milliseconds. The rise shape and fall shape default to a linear change in rate, but
may be specified to a more aggressive or passive change in rate. These parameters are tied together by
choosing a type of attack. Without designation, the flooder will produce a flat rate of packets at the high
rate value. A ramp up attack uses the low rate, high rate, rise time, and rise shape values to increase the
packet rate from the low to high value. Ramp down does the opposite, using the low rate, high rate, fall
time, and fall shape. The pulse attack switches between the low and high rates using the low time and
high time. Ramp pulse uses low rate, low time, rise time, rise shape, high rate, high time, fall time, and
fall shape to form its attack.

3.3 Attack Node

Attack traffic is generated over the emulated network. We achieve this by developing an attacker
which sits on a DETER node. The Attack Node is modeled from the UAV and Controller nodes. It
contains a Tap Client and Task Buffer. Since the Attack Node does not communicate with other nodes,
it does not contain the image or command applications. It does contain a Flooder Application. The
Flooder Application wraps around the SEER flooder utility. It receives tasks originating from a federate
on the RTI.

The Attack Node establishes a socket connection with the Emulation Gateway as do both Controller
and UAV nodes. It is extended from the the same base code used for both Controller and UAV. This
being the case, the Attack Node must receive instruction from the federation. We developed a simple

3



attack federate to issue tasks to the Attack Node. The delivery of the tasks is facilitated by an attack
out interaction. This new interaction defines two values: target host and command line parameters.
The task delivers the attack target(s) and command line parameters needed to execute the attack. The
Flooder Application passes the target(s) and command line parameters to the operating system shell
which launches the flooder utility.

4 Implementation

The integration of network emulation with C2WT was achieved using Java. We implemented attack
traffic in the emulation with the addition of the following classes to the network emulation package:

c2w.NetworkEmuTest1.AttackHostWrapper
c2w.NetworkEmuTest1.FlooderApp
c2w.NetworkEmuTest1.test.AttackHostTestBase
c2w.NetworkEmuTest1.test.AttackHostTest

The attack out interaction was implemented with the following class:

c2w.NCS.AttackOut

The following classes were modified:

c2w.NetworkEmuTest1.EmuGatewayBase
c2w.NetworkEmuTest1.EmuGateway

5 Summary

Acknowledgements

First and foremost, thanks to Graciela Perera for all her support and encouragement. Wei Yan’s advice
and instruction in understanding the nuts and bolts of the code structure was indispensable. Thanks to
Yuan Xue for including me in her work and giving me the opportunity to learn at Vanderbilt University.

References

[1] J. G. B. W. W. J. S. G. K. Gyorgy Balogh Himanshu Neema, Graham Hemingway. Rapid synthesis
of hla-based heterogeneous simulation: A model-based integration approach. Technical report,
Institute for Software Integrated Systems Vanderbilt University, 2008.

[2] C. K. A. H. Stephen Schwab, Brett Wilson. Seer: A security experimentation environment for deter.
Technical report, SPARTA, Inc. El Segundo, CA.

[3] T. F. J. M. S. S. K. S. Terry Benzel, Bob Braden and J. Wroclawski. Current developments in deter
cybersecurity testbed technology. Technical report, USC Information Sciences Institute, Sparta, Inc.,
and MIT CSAIL, 2004.

4



[4] Y. Xue. A model-based integration of network emulation with hla-based heterogeneous simulation
environments. Technical report, Vanderbilt University, 2010.

5



RTI

UAV
Federate

Controller
Federate

EmuGateway
Federate

Interaction Handler

Task Buffer

Tap Server

UAV 
Node

Tap Client

Task Buffer

Send Image

Controller 
Node

Tap Client

Task Buffer

Receive Image

Receive Command Send Command

Figure 1. Emulation Gateway with DETER Nodes.
6


