Developer-Specified Explanations for 10S
Permission Requests: Adoption and User Effect

Heidi Negron-Arroyo*, Khanh Nguyen®, Joshua Tan?, Michael Theodorides?, David Wagner®
*University of Puerto Rico, Mayagiiez TUniversity of California, Riverside
!North Dakota State University $University of California, Berkeley

Abstract—In i0OS 6, users are prompted by apps for access
to a protected resource such as location, contacts, or photos.
When a user is using an app feature that requires a protected
resource for the first time, the user will be prompted with a
permission request that the user can choose to allow or deny. We
examine how app developers are using this mechanism through
an Internet survey and iPhone app testing. In addition, we
examine whether permission requests are helpful to smartphone
users in making proactive decisions regarding their privacy.
We conducted a usability study with an Internet survey of 807
smartphone users. Our results reveal when users become more
engaged in decisions regarding their mobile data privacy. Finally,
we present recommendations for how this mechanism could be
improved.

Index Terms—iOS, smartphones, mobile phones, security,
smartphone permissions, mobile data privacy

1. INTRODUCTION

In September 2012, Apple released its current mobile oper-
ating system iOS 6. This version of iOS instated new privacy
requirements where users are explicitly asked for access to a
protected resource IEI The protected resources in i0S 6 are
Photos & Videos, Contacts, Location, Calendars, Reminders,
and Bluetooth. In previous versions of iOS,only the location
resource was protected. Prior versions of iOS allowed app
developers to specify a custom purpose string, a message
explaining to the user why permission to the protected resource
should be granted. iOS 6 extends the custom purpose string
feature by allowing developers to add a purpose string to the
permission request for any protected resource.

When a user is prompted with a permission request, she has
the option to allow the request or deny the request and continue
using the app, albeit with limited functionality. Some apps
heavily rely on access to protected resources and may block
further use until the user grants permission. We performed
manual testing on 140 iPhone apps to identify how developers
are using permission requests and custom purpose strings.
Then, we applied statis analysis to a corpus of 4,400 apps
to gather similar detail on a larger scale.

Our manual testing and binary analysis revealed several
common types of purpose strings. We used an Internet survey
to determine which types of purpose strings users find most
helpful in making an effective decision about their mobile
privacy. The user survey was designed to help us understand
the effect of purpose strings on users’ behavior. In addition
to the user study, we surveyed iOS developers to learn why

developers are or are not using custom purpose strings in their
apps.

Static analysis revealed that approximately one fifth of all
permission requests contain a purpose string. Our findings
also show that smartphone users are responsive to purpose
strings. Only 23% of developers surveyed reported using a
purpose string. From our results, we recommend that devel-
opers include a purpose string with their permission requests.
To encourage the use of purpose strings, we propose creating
a set of predefined strings from which developers can choose.

[I. BACKGROUND AND RELATED WORK
A. i0S 6 Permissions

To protect the privacy of iPhone users, iOS 6 apps are
required to obtain explicit permission from the user before
accessing a protected resource EIII These resources include
Location, Contacts, Photos and Videos, Calendars, Reminders,
and Bluetooth. Once the user allows an app to access a certain
resource, that app will continue to have access to that resource,
unless the user makes changes to the privacy options in the
device settings. When asked to grant an app a permission,
users see a screen similar to that in Figurem

“Simply North” Would Like to
Use Your Current Location

Don’t Allow (o)

Fig. 1. A location permission request for the Simply North app that does not
include a developer-specified purpose string.

In previous versions of i0S, developers could add a custom
message to requests for access to location. In iOS 6, developers
can add a custom purpose string to requests for any protected
resource. Purpose strings offer developers the opportunity to
explain or convince users why the app needs access to a
particular resource. Developers can explain to smartphone
users how the information will be used or what benefit the
user would gain from granting the app’s permission request.
Figureshows a permission request dialog with a developer-
specified purpose string.

“Scout” Would Like to Access
Your Calendar

Let Scout check for entries with
location info to help you get to

appointments on time.

]

Don’t Allow OK

Fig. 2. A calendar permission request for the Scout GPS app that includes a
developer-specified purpose string.

To include a custom purpose string, iOS developers can
specify it in the either the Info.plist or InfoStrings.plist files
of the app. Property list (plist) files are files that iOS uses to
store serialized objects such as user or app settings.

For the contacts, calendars, reminders, photos and videos,
and bluetooth sharing permissions these plist files are the only
way to specify a custom purpose string. However, for the
location permission developers have the option to use a depre-
cated method for specifiy a purpose string by programatically
invoking an API from previous versions of 10S.

B. Previous Work in iOS Developer-Specified Purpose String
Adoption

Previous research regarding iOS developer-specified pur-
pose strings has been done by Christopher Thompson and
Serge Egelman at the University of California at Berkeley in
a position paper. In their position paper Serge Egelman and
Christopher Thompson report that out of a corpus of 4,395
apps compiled of the top 200 free apps from all categories
of the iTunes app store, they found that only 100 apps, or
2.3%, specified any purpose string at all. They estimate the
number of apps that request resource permissions by assuming
that certain categories of apps require certain resources. For
example they assume that all apps in the navigation category
request access to location. In our paper we wish to expand
on the number of apps that request resource permissions
by developing a static analysis technique that can better
estimate the number of apps that request certain resources
and complementing the static analysis with a manual testing
of apps, in which we individually test apps to see whether
a runtime permission asks for permission to access a certain
resource.

III. METHODOLOGY

We analyze the propery list (plist) files of 4,400 apps from
the iTunes store to extract developer-specified purpose strings.
We decrypted these apps and then analyzed their binaries with
a form of static analysis, to search for iOS API methods that
trigger resource requests. We also manually tested 140 of these
apps to record the same information and we compare these

results with those obtained by our static binary analysis. In
addition, we conducted two Internet surveys: one administered
to i0S developers and the other smartphone users.

A. Purpose String Extraction

In order to quantify the level of developer adoption of
purpose strings, we analyzed 4,400 apps, chosen from the top
200 free apps in each category on the iTunes App store, and
extracted the plist-specified purpose strings they contained.
The location of these strings within an app was predictable,
allowing us to automate this task with a Python script. This
script recursively searched the unencrypted directories of
the app, searching for filenames matching Info.plist or
InfoPlist.strings. Once one of these files was found,
it was searched for the existence of one or more usage de-
scription keys, such as NSContactsUsageDescription
I]Z]. The values corresponding to these keys are the developer-
specified purpose strings for resource requests. Each discov-
ered purpose string was added to a database, along with
information on the resource it explained and the app in which
it was found. This process only finds purpose strings specified
using the plist method, but not those using the older deprecated
method.

We manually examined purpose strings for the 140 apps that
we manually tested and performed a sorting exercise to cluster
them into similar types. We found nine distinct categories of
purpose strings:

1) Specific benefit/purpose: the purpose string describes

a specific benefit to the user that would result form
allowing the app access to a particular resource

2) Generic purpose: the purpose string describes broadly

why the user should allow the app access to a protected
resource

3) Sharing: the purpose string describes how the informa-

tion may be uploaded and who the information will or
will not be shared with

4) Local use: the purpose string describes how the data

access will not be uploaded or shared

5) Emotion: the usage string appeals to emotion or the

qualitative benefit from allowing resource access in a
non-specific way

6) Security: the purpose string describes how the informa-

tion will be secured or protected against unauthorized
use

7) Appropriate use of resource: the purpose string promises

that the data access will not be misused

8) Data storage: the purpose string describes how the data

access will or will not be stored

9) Developer confusion: the purpose string demonstrates

the developer’s confusion about how to use the purpose
string

B. Static Binary Analysis

We use static analysis of the app binaries to find use of the
deprecated purpose string specificiation method, and to find
which resouces each app uses - i.e which permission request

will trigger. Purpose string extraction by itself would not allow
us to measure the developer adoption of purpose strings. Not
all apps request protected resources, and for those that do, not
every resource is requested. We then use this information to
calculate the rate at which developers are taking advantage of
the purpose string mechanism.

We use a very simple form of static analysis, where we
dissasemble the app code and search for specific strings in the
disassembly output. iOS binaries are stored in the Mach-O file
format and contain the information necessary for the Objective
C runtime to execute the app. When the compiler compiles
Objective-C code, all method invocations are compiled by
including the method name as a constant string (the selector)
in the compiled binary [l We search the binary for these
strings. Initially, we used otool to search for these selectors
in the __objc_methname section of the __ TEXT Mach-O
segment. However, limiting the search to this section proved
insufficient; at times, selectors were found in other parts of the
binary, including the __ _DATA segment. To solve this issue,
we instead used the Unix tool strings, which enabled us
to retrieve printable strings from all parts of the app binary.

iOS apps store their binaries in encrypted form. To enable
our analysis, we decrypted the binaries using a tool called
Rasticrac on a jailbroken iPhone @ Due to the lack of a
jailbreak method for the current iOS version (v6.1.4) at that
time, we used i0S version v6.0.2. Any apps that were incom-
patible with iiOS v6.0.2, or that failed to decrypt properly,
were replaced with by other apps from the top 200 Once
the apps had been decrypted, we searched through the strings
dump looking for any matches with our search string list. If
a match was found, then the resource corresponding to that
string was flagged as requested.

The particular strings we searched for in the binary corre-
spond to the selectors for API methods that trigger a resource
permission request. We compiled a list of search terms for each
of the six protected resources using the developer documenta-
tion provided by Apple for each type of resource. For example,
to request access to a user’s address book (and the underlying
iOS Contacts resource), a developer can use the function
ABAddressBookRequestAccessWithCompletion of
the ABAddressBook class. In addition to API functions used to
explicitly request resource access, we also added any functions
which seemed likely to directly interact with a protected
resource. setProperty:.

To detect when an app specifies a purpose string for location
using the deprecated API we also searched for the selector of
that deprecated API, namely,setPurpose:.

C. Manual Testing

We chose the top 10 free apps from 14 of the 22 categories
in the iTunes store to perform manual testing on. The 140
chosen apps were a subset of the ones we applied binary

LAt runtime, these selectors are passed as an argument to the method
objc_msgSend

2The iTunes top 200 app charts updated frequently and we were always
able to find a new replacement app within the top 200 when the need arose.

analysis to. The primary goal during manual testing was to
trigger and record all resources that an app might request
permission for. Unlike in Android, iOS permission dialogs for
accessing resources are triggered and requested at runtime,
namely, when an app attempts to access a resource for the
first time. Therefore, we tried to explore every menu option
and screen while performing manual testing.

A secondary goal of manual testing was to record purpose
strings for those not specified in plist files. Although our static
analysis predicts whether or not a Location purpose string
was specified using the deprecated method, it does not extract
the purpose string specified. We recorded screenshotsof the
dialogs during the manual testing process. We used the results
of manual testing to evaluate the static analysis, by comparing
the results of manual testing to the results of static analysis
on each of these 140 apps.

D. User Survey

We conducted a survey of 807 smartphone users to learn
more about how they view permission requests. We presented
them with different types of permission requests and asked
them how they would respond. We recruited participatns on
Amazon Mechanical Turk.

The survey consists of three scenarios. Each scenario
showed them the dsecription of an app, a screenshot of a
permission request from that app, and them asked them what
they’d do (approve or deny?) and asked them for their opinion
about eh scenario. One scenario used a real purpose string
screenshot is a screenshot of a real app’s permission request
that uses a custom purpose string. Another scenario used a
no purpose string screenshot: a real purpose string screenshot
that we altered to remove the custom purpose string element
from the permission request. Finally, the last scenario showed
a fake purpose string screenshot, namely, a screenshot of a
fake application, Party Planner, which uses a permission dialog
from a real purpose string screenshot.

From our manual app testing, we found cocllected 21 screen-
shots of custom purpose strings. Of these, 16 were selected to
be included in the survey as real purpose string screenshots.
The selected screenshots cover an array of resource requests
and purpose string types. To compare the effect of a custom
purpose string on a permission dialog’s usability, each of
the real purpose string screenshots have a no purpose string
counterpart.

To eliminate the possible effect of branding, we use the fake
purpose string screenshots. Each fake purpose string screen-
shot adapts an existing purpose string so a brand name app’s
name is removed. For example, Gmail’s purpose string “Let
Gmail use your contacts to autocomplete email addresses”
becomes “Let Party Planner use your contacts to autocomplete
email address,” where Party Planner is a generic fake app
name.

Not all of the Party Planner screenshots have a real purpose
string screenshot counterpart in the survey. Included in the 14
fake purpose string screenshot pool are real purpose strings
from apps not included in real purpose string screenshots and

real purpose string variants. An example is “Your contacts will
be used to find your friends,” which is a variant of Snapchat’s
“Your contacts will be transmitted to our servers and used to
find your friends.”

The survey shows the user one of each type of screenshot.
For each screenshot, the survey taker is first given a description
of the app from the iTunes store and then asked to identify
and classify the application. This is done as a quality assurance
measure to weed out any unqualified survey responses. Then
the user is shown a permission dialog screenshot correspond-
ing to that app and is asked to identify the resource the app is
trying to access and rate the usability of the permission dialog
with 12 Likert statements.

The first two screenshots the survey taker sees are the real
purpose string and no purpose string screenshots. The order of
the first two screenshots is randomized to avoid any bias from
seeing a screenshot with a purpose and then one without and
vice versa. Additional control logic in the order is implemented
so that a survey taker sees screenshots from three distinct apps
in order to avoid any priming. The control logic also prevents
survey respondents from seeing a repeat string in the Party
Planner screenshot.

E. Developer Survey

A survey targeting developers was designed to study the
usage of purpose strings from the developers perspective.
This survey gives us insight to their general developer un-
derstanding of privacy controls in i0S 6. The three main
goals of this survey are:to determine whether developers are
aware of the purpose strings feature, to learn why or why
not they are using these custom messages and test whether
they can effectively communicate with the user. To qualify
for the survey a developer must have at least one application
approved by the iTunes App Store. Since the responses are
anonymous, there may be responses that do not meet this
criterion. To reduce the number of unqualified responses, there
were questions to confirm that the survey taker had sufficient
knowledge of app development. Since it is harder to reach
developers, we published ads at i0OS app development forums,
namely Stack Overflow and iPhone Dev SDK. If the survey
was completed, developers were offered an opportunity to
enter a raffle to win a $100 Amazon Gift Card.

As part of the survey, developers were provided a screenshot
displaying the use of a purpose string and its definition. They
were asked whether they had heard of it and if they had
ever used it. Open-ended questions followed to get responses
about why they decided to use or not use purpose strings in
the apps they have developed. This would help us determine
if developers find this new feature in iOS 6 is helpful and
what information an efficient purpose string should consist of.
We study if there are resources that developers are currently
specifying more purpose strings compared to the others. Ad-
ditionally, we can learn from developers their thoughts on the
advantages and disadvantages of using purpose strings.

In this survey we also aim to understand the developers
thoughts on users privacy decisions. Likert scale questions

study how developers believe the users react when purpose
strings are shown in a permission request. If the purpose of
these strings is to help the user in making more conscious
decisions on how they control and their information, we hope
to understand what developers are doing to help it. Conse-
quently, we can study what kind of information developers
think is relevant to include in a purpose string.

To study what developers are including in their purpose
strings, screenshots from two applications were shown to the
developer taking the survey. The screenshots were displayed
a permission requesting access to contact information. Devel-
opers were asked to write a custom purpose string based on
the description provided for the application. The description
for each application included features and privacy information
from the iTunes app store and the privacy policies of each
app. Then, the custom message given by the developer is
categorized by the information it conveys using 9 categories
identified in our study.

IV. DEVELOPER ADOPTION
A. Comparison of Manual Testing and Binary Analysis

To gauge the effectiveness of the static binary analysis
in predicting resource requests accurately, we compared the
binary analysis results to our results from manual testing. No
false negatives were returned by the binary analysis; whenever
a resource request was found in manual testing, that request
was correctly predicted in the binary analysis. This fact allows
us to interpret the numbers returned by it as an upper bound.

Our binary analysis was less successful in avoiding false
positives. Table |I| shows the number of apps flagged as
requesting a resource requests when manual testing found
no such requests. Although our analysis had a high rate of
accurately detecting resource requests for calendar requests,
reminder requests, and the existence of binary-sourced location
purponse strings, our analysis overpredicts both address book
and photos and vidoes requests by a factor of two or more.

Although our binary analysis technique gives a high false
positive rate when compared with our manual testing, the
actual false positive rate may be lower. In many cases, we
repeated manual testing for an app based on reports from the
binary analysis and discovered that in our initial manual testing
we failed to detect a resource that the app requested. Most of
these failures to detect resource requests during initial manual
testing resulted because apps only request access to certain
resources in rare circumstances that do not arise in basic app
use. For example, in the Booking.com 10S app, users are only
asked for permission to acces their contacts and reminders
once a hotel reservation has been paid for and reserved.

On the other hand, it is also possible that many of the
reported false positives are real. Some of the reasons for these
results might include the following:

« Incorrect selector. The functions specified by the selec-
tors in our search terms may not necessarily lead to a
resource request.

« Correct selector, wrong target object. Although we may
have correctly identified the selector for a function that

Resource

Location Photo/Video Contacts Calendars Reminders Location Purpose (Deprecated)
Apps Flagged 40 55 27 22 5 19
Apps Not Flagged 40 35 80 112 134 114
9 Agreement 50.0 38.9 74.8 83.6 96.4 85.7
TABLE 1

BINARY ANALYSIS RESULTS FOR CASES WHERE MANUAL TESTING FOUND NO POSITIVES.

Apps With
Purpose S. Rate

Resource Purpose Strings Resource Requests (%)
Location 605 2359 238
Reminders 5 82 7.3
Contacts 64 1200 5.3
Calendars 11 508 2.1
Photo & Video 35 2631 1.3
Any 660 3486 18.9

TABLE II

USAGE STRINGS AND RESOURCE REQUESTS BY RESOURCE TYPE

trigger a resource request, in another class there may be
an identically-named function that shares the appearance
of the first selector, but does not request a resource. Since
our approach does not consider function parameters, we
cannot use it to determine the target object, in order to
differentiate betweeen these cases.

» Dead code. Although the executable for an app may
contain a function that necessarily requests permission
to access a resource and/or include a purpose string for
the request, there may be no actual program execution
path that invokes this function.

B. Developer Adoption of Purpose Strings

Using our automated script, we analyzed our entire corpus
of 4,400 apps for both purpose strings and resource requests.
The results of the analysis are summarized in Table@

The number of apps that provided purpose strings for the
location resource alone was 5 times greater than the number
of apps that provided a purpose string for all of the other
resources combined. The predicted number of permission
requests for the photo & video resource was greater than
the the number predicted for the location resource. However,
we must evaluate this number in the context of its perceived
accuracy. We can use this perceived accuracy to generate
probable numbers for each type of resource. Table mshows
that the actual value for the number photo & video resource
requests likely falls between 1023 and 2631.

Developer adoption of purpose strings was strongest for the
location resource, followed by the reminders and contacts re-
sources. Overall, 18.9% of developers specify purpose strings
for resource requests. This is significantly different from the
percentage reported by Thompson and Egelman in their own

Resource # Apps Requesting Resource Requst Rate (%)
Location 1269-2539 20.6-47.7
Reminders 79-82 7.3-7.6
Contacts 897-1200 5.3-7.1
Calendars 424-508 2.1-2.6
Photo/Video 1023-2631 1.3-3.4

TABLE 111

RANGES FOR NUMBER OF RESOURCE REQUESTS AND ADOPTION RATE

analysis of purpose string adoption [4], in which a lower bound
of 2.3% was reported. However, the study they performed
only considered the purpose strings specified in app’s plist
files, and did not incorporate purpose strings specified using
the deprecated CLLocationManager method, as we do. If we
include only plist-specified purpose strings for calculating the
developer adoption rate, the adoption rate decreases to 3.6%.
However, we choose to include this deprecated method in our
calculations, since users are subjected to the same experience,
regardless of which of these two methods is used.

C. Developer Consistency for Explaining Resource Requests

Number of Apps

Number of Resource Requests Explained

Fig. 3. Resource request explanations for apps that request 4 resources

In addition to determining the overall adoption rate of
developers for specifying resource request purpose strings, we
also examine the level of developer consistency for explaining
these requests for all requested resources within an app.
Figureshows distribution for the number of resource requests
that are explained for those apps that request access to four
resources. From this, we can see that most apps do not provide
purpose strings for all four of their resource requests. About
half of this number provide an explanation for one resource
request, with the number sharply falling for explaining two or
more requests. Of the 61 apps that explained only one request,
all but one was for the location resource. Furthermore, 57
of these 60 location purpose strings were specified using the
deprecated method, instead of using plist files. This pattern
was also found in the numbers for apps that request two, three,
and five 1'f:sourcexE-]

D. Manual Testing - Results

Through our manual testing of 140 apps for resource
requests and usage string use, we found that the plist method
of including a purpose string for permission requests dialogs is
not as widely used by iPhone apps as the deprecated method of
including a location purpose string in the encrypted binary. We
found that 9.78% of resource requests used the plist method
to include a purpose string, while 17.39% of resource requests
used either the deprecated binary method or the plist method.
Through our manual testing, we also found that the location
resource has a significantly higher adoption rate than any of
the other resources. Of all location resource requests made by
the 140 apps that we manually tested, 20% included a purpose
string for the request dialog.

E. Issues with Bluetooth Permission Testing

Of the 140 apps that we selected for manual testing, none re-
quested permission to access the bluetooth sharing feature. To
further explore the bluetooth permission request we installed
the first 10 apps from the search result list when searching
the iTunes App Store for the keyword "bluetooth”. Despite
our efforts to trigger a bluetooth permission request from
one of the 10 apps, we were unable to trigger the bluetooth
sharing permission request dialog. The 10 apps required either
special external bluetooth equipment or the use of another
iPhone to pair with. We were unable to test apps that required
special external equipment. However, even for the apps that
only required a second iPhone, we were also unsuccessful at
triggering a bluetooth permission request dialog. Our inability
to trigger a bluetooth permission request dialog leaves us with
no direct method of checking the validitiy of our automated
testing for the bluetooth permission resouce request, for which
we searched the binary for the methods of the iOS core
bluetooth framework.

3Zero apps were found to request six resources, since no Bluetooth
permission requests were recorded.

F. Developer Results

In the Internet survey focusing on developers, we received
39 responses. Due to inconsistencies in the answers, only 30
were considered in this study. Such inconsistencies included
not answering basic questions regarding app development and
non-serious responses in the open-ended questions. Most of
the developers taking the survey have 1-5 apps published in
i0S, making up 56% of survey takers.

From the adoption rates we confirm that developers are not
using purpose strings very often. We found that 40% of the
developers surveyed have not heard of the purpose strings
feature before. Of those that know about this feature in iOS,
only 41% have specified a purpose string in an app they have
developed. This means that 77% of the developers that took
the survey do not use purpose strings. In this paper, we attempt
to clarify why the adoption of purpose strings is not significant
in comparison to the number of apps requesting access to
resources.

We found that the main reason for not specifying a purpose
string was because purpose strings were not considered neces-
sary. There were responses such as “because it is obvious™ and
“default description is good enough”. In other cases, the app
displayed a seperate dialog box explaining the purpose of the
request before triggering a permission request. A survey taker
stated that “Because we include an entire screen explaining the
purpose ahead of requesting it”, These results seem to suggest
that developers avoid giving unnecessary privacy information
to users.

On the other hand, for developers that have used purpose
strings, their main reasons to use them could be classified in
three categories:

1) Inform the user: “Users must be notified of information

begin collected.”

2) Increase the chance of the user enabling the feature:

“Make people comfortable.”

3) Good practice: “It is the right thing to do.”

These categories imply that developers use purpose strings
as an attempt to address users’ privacy concerns and to encour-
age users to grant access. The biggest advantage of displaying
a purpose string from a developer’s perspective is primarily
to inform the user. Some try to make users comfortable
by gaining their trust and communicate the purpose of the
request. This way they can make users grant access when it is
requested. In contrast the fear of scaring users and invoking
concern retrains some developers from using purpose strings.
Other reasons mentioned by developers included the misuse
of purpose strings and boring users with messages that are too
long.

We find developers specify purpose strings in permission
requests from certain resources more often than others. In
this study, out of the 30 responses, 86.7% have requested
permission to access the Location resource. Contacts, Photos
& Videos, Reminders and Bluetooth were 36.7%, 63.3%, 6.7%
and 10% respectively. From the developers that have specified
purpose strings, all of them indicated they have included pur-

pose strings when requesting access to Location. For the other
resources, 57.1% specified purpose strings in Contacts, 71.4%
for Photos &, 14.3% for Reminders and 0% for Bluetooth.
It is expected that for the most common used resources such
as Location, results in more developers specifying purpose
strings. However, when sensitive information such as contacts
and photos is being accessed without an obvious reason it may
become a custom to explain why it is accessing the resource.

When asked to write their own purpose string, based on
a brief description and the screenshot requesting access to
contacts, we got 29 responses that we classified in one or
more of the nine categories that we determined from the
manual testing of apps. For this question, they had to write
a purpose string for two apps, Vine and Scout. In both apps,
the most frequent type of purpose string provided was ppecific
benefit/purpose. In the case of Vine, it was very common to
also explain data storage information. In Scout, there were
more purpose strings that were categorized as Emotion. Since
the purpose of Scout using contacts can be considered less
obvious than the first case, due to being a navigation app,
it can be a reason why some developers try to convince the
user in accepting the permission request through words that
appeal to emotion such as: "We would need to access your
Contacts in order to find their addresses, which will result in
an extraordinary experience for you.”

The results of the 7-point Likert scale responses show that
in general, developers find purpose strings to be somewhat
helpful for users and willl make them feel more comfortable
when taking privacy decisions. For example, the average score
for "Purpose strings make it easier for users to decide on the
sharing of their information.” was 5.9. Furthermore developers
do not think that purpose strings will discourage the users and
significantly affect the granting of access to resources. The
average score for all Likert responses was 4.95.

The developers would also consider using purpose strings
more often if iOS privacy controls included a set of prede-
fined purpose strings that they can choose from. In previous
research, Thompson and Egelman concluded that most of the
purpose strings tend to vary little in policy semantics and
explain similar concepts [4]. Providing a list of purpose strings
with standard language could simplify the process, where
developers can easily choose a string and avoid confusing the
users.

V. USER BEHAVIOR

We recruited 820 people for our user study. In our data, we
removed 13 responses either because the survey taker was not
qualified (not a smartphone user) or because the answers were
nonsense or incomplete. We used the remaining 807 responses
for analysis and to draw our conclusions about the effects of
custom purpose strings on user behavior.

The main question our user survey asks is: do purpose
strings help users make more effective decisions regarding
their privacy? We examine this question two-fold: by com-
paring reported Likert scores and by comparing the effect of

whether or not a screenshot with or without a purpose string
was shown first to the survey taker.

Using a Wilcoxon signed-rank test for the Likert statement
“It helps me make a more effective decision about the sharing
of my information,” our study shows that there is a significant
difference between user ratings for screenshots with a purpose
string and for screenshots without a purpose string (p <0.01).
Furthermore, the Likert data shows that priming users with
the expectation of a purpose string did not affect the way they
scored purpose strings versus non-pupose strings.

In contrast, user permission approval behavior demonstrates
that priming does matter. We characterize user permission
approval behavior as whether or not a user chooses to accept or
deny a permission request given a screenshot. Using Fisher’s
Exact Test on the data in Table we found there to be
a significant difference in the permission request approval
distribution of screenshots with a purpose string compared
to those that did not have a purpose string when the user
was primed by seeing a screenshot with a purpose string first
(reject, p <0.01). In contrast, Fisher’s Exact Test on Table
showed there to be no significant difference between the
with purpose and purposeless screenshot approval distributions
when users are not primed (do not reject, p = 0.1348). When
users are not primed to expect a custom purpose string, they
are equally likely to allow or deny a permission request. The
results of these tests suggest that user awareness of purpose
strings affects their mobile privacy decision making.

User Decision

Request Type Allow Deny Total by Type
Purpose String 320 106 426
No Purpose String 268 157 425

Total by Decision 588 263 851

TABLE IV
SCREENSHOT WITH PURPOSE STRING SHOWN FIRST

User Decision
Request Type Allow Deny Total by Type
Purpose String 281 105 380
No Purpose String 261 125 3860
Total by Decision 542 230 772
TABLE V

SCREENSHOT WITH PURPOSE STRING SHOWN SECOND

The user survey is also used to try to pinpoint successful
elements of an effective purpose string. We used the fake
purpose string Party Planner screenshots to identify which
purpose string type is most effective in helping smartphone
users make decisions about their mobile data privacy.

The Party Planner screenshots covered all categories of
purpose strings, except for developer confusion. Using the
Likert scores of each Party Planner screenshot, we investigated

whether or not particular types of purpose strings are preferred
by users more than others. Three different Likert scores were
used for analysis: the average score of the statement “It helps
me make a more effective decision about the sharing of my
information,” the average score of the statement “It addresses
my concerns over the sharing of my information,” and the
average of all Likert statements.

No clear best purpose string type could be determined from
the data. However, across all three Likert measurements, one
purpose string type was consistently ranked at the bottom.
The generic purpose string was the weakest performer of
the Party Planner screenshots earning an overall Likert score
of 4.67. This result is not surprising, since generic purpose
strings typically state something that is obvious or offer little
information to the user. For example, the MapQuest location
request adapted for Party Planner reads, “Contact access is
required for this app to work properly.” This purpose string
offers little information to the user as to why the application
requires contact access or how that sensitive information will
be used.

In addition to examining the Likert scores by purpose string
type, we analyzed the Likert score trends of the variants in
the Party Planner screenshot pool. One surprising result from
the variant study is performance of the adapted Instagram
string “In order to find your friends, we need to send address
book information to Party Planner’s servers using a secure
connection” and its variant which removes the phrase “using
a secure connection” from the string. We expected the variant
to do worse than the adapted Instagram string since it does not
address a user’s possible security concerns. However, on all
three Likert scores, the variant does better than the original.
This seems to indicate that less information is preferred by
users.

This same trend where less is more is seen with the adapted
Snapchat string (“Your contacts will be transmitted to our
servers and used to find your friends.”) and its two variants
(variant 1: “Your contacts will be used to find your friends.
They won’t leave your phone,” variant 2: “Your contacts will
be used to find your friends.”) In the overall Likert score
and “effective decision” measure, the second variant earns the
highest score from users.

VI. DISCUSSION
A. The Impact of Expectations

In our user survey, the decisions made by users on whether
to allow or deny permission request lacking explanation dif-
fered based on which version of the request they were first
exposed to. This suggests that users form expectations for
the level of information they require in making decisions that
might place their privacy at risk. Our survey also suggests
that users find resource requests containing purpose strings to
be more helpful than those without explanations, regardless
of whether the unexplained request is shown before or after
the explained request. These two results combined allow us to
infer the following: even if a user is not completely satisfied
with the explanation of a resource request, as long as this user

is unaware or unaccustomed to receiving more information,
the end results of this user’s decision-making process will be
the same. The lack of alternatives may be all that is needed
to compel users to make decisions that could negatively affect
their privacy.

Users are not always given enough information to make
informed and effective decisions concerning their privacy. This
is evident by adoption rates in which less than one out of
five resource requests is actually explained. Furthermore, the
majority of purpose strings provided by developers pertain
only to location resource requests. Responses from the devel-
oper survey suggest that developers avoid explaining resource
largely because they find it to be an unnecessary task. Since
the goals of most developers are accomplished when their
customers are satisfied, the best way to solve this issue may
be to find a way for users to increase the level of their
expectations for privacy security.

B. Predefined Strings

The results from the user survey highly suggest that if
users are more aware of permission requests with purpose
strings, they will be more proactive in their mobile data privacy
decision making. We believe that one way to increase user
awareness of purpose strings, is to make them more common
place. The challenge here is getting developers to use purpose
strings with their permission requests.

Our developer survey shows that developers would be more
willing to include purpose strings if a set of predefined purpose
strings were available for them to use. We suggest that a set
of predefined strings can be determined from seven of our
nine purpose string categories (we exclude Generic purpose
and Developer confusion because they would be unhelpful
to users). The issue with this is that there is a broad range
of Specific benefit/purpose type strings. Creating a pool of
predefined strings will be difficult because it ideally should be
accessible to all developers, but not so wide where it becomes
cumbersome to find the right predefined string to accompany
their permission requests.

Other issues that need to be addressed are warning fatigue
and user comprehension. The current run-time permission
prompt system implemented in iOS 6 is conducive to users
developing warning fatigue. If users experience warning fa-
tigue, they will be unlikely to read the purpose string the same
way many users do not read End-user license agreements.
Additionally, in the case that smartphone users do read the
purpose string without fatigue, it would be meaningless for
them to be proactive in their privacy decisions if they do not
comprehend the purpose strings or understand the impact of
their actions. For purpose strings to be effective in the future,
users will need to learn the fundamentals of the iOS permission
granting system and message developers are trying to convey
through their custom purpose strings.

C. Verfying Accuracy of Purpose Strings

Although purpose strings can help users make better de-
cisions on their privacy and security, some developers may

use these strings as a way to manipulate users into making
decisions that ultimately cause harm to them. To prevent these
types of situations, it will be important to have a means
of verify the accuracy and truthfulness of different types of
purpose strings. This task may be easier to manage if the
different types of purposes strings are constrained to specific
set of predefined strings.

Our research also shows that when not given enough guid-
ance users do not always make the privacy decisions that are
most beneficial to them. In our user survey we found a trend
in which purpose strings that contained less information had
a higher “effective decisions” likert score than purpose strings
that addressed the security of user data. Pre-defined strings
can be guide users in making better privacy decisions and aid
users in understanding what is best for their privacy.

VII. CONCLUSION AND FUTURE WORK

Our research indicates that smartphone users care about
their privacy and make decisions to protect their privacy.

A set of pre-defined strings might encourage broader devel-
oper adoption of purose strings while providing users with
the information that they need to make effective decisions
concerning the sharing of their data. However, further re-
search must be conducted to determine the correct level
of information that pre-defined strings should provide. This
further research should not only use subjective measures, but
should also incorporate objective measures of purpose string
comprehension. Further work in needed in the accuracy of
purpose strings. Research should explore whether developers
abide by what they mention in the purpose strings and whether
developers are requesting access to excessive resources that
they do not need.

ACKNOWLEDGMENT

This work was supported in part by TRUST (Team for
Research in Ubiquitous Secure Technology), which receives
support from the National Science Foundation (NSF award
number CCF-0424422), and by Intel through the ISTC for
Secure Computing. Thanks to Rebecca Pottenger, Serge Egel-
man, Christopher Thompson, Erika Chin, and Aimee Tabor
for their support and feedback.

REFERENCES
(1

Apple. (2013) ios sdk release notes for ios 6. [Online]. Available: http://

developer.apple.com/library/ios/#releasenotes/General/RN-iOSSDK-6_0/

(2012) Cocoa keys. [Online]. Avail-
able: https://developer.apple.com/library/mac/#documentation/General/
'Reference/InfoPlistKeyReference/Articles/CocoaKeys.html

[3] (2013) [release] rasticrac v3.0 epsilon 7, clutchpatched to be updated
for ios 6. [Online]. Available: http://iphonecake.com/bbs/viewthread.php?
1id=106330&extra=&page=1

[4] C. Thompson and S. Egelman, “[position paper] the effects of developer-

specified explanations for smartphone permission requests,” pre-print.

[21

APPENDIX

A. Binary Analysis and Manual Testing Resource Agreement

Static Anaylsis

Manual Testing Yes No

Static Analysis

Manual Testing Yes No

Yes 60 0 Yes 50 0

No 40 40 No 55 35
TABLE VI TABLE VII
LOCATION PHOTO/VIDEO

Static Analysis

Manual Testing Yes No

Static Analysis

Manual Testing Yes No

Yes 33 0 Yes 6 0
No 27 80 No 22 112
TABLE VIII TABLE IX

CONTACTS CALENDARS

Static Analysis
Manual Testing Yes No

Static Analysis

Manual Testing Yes No

Yes 1 0 Yes 0 0
No 5 134 No 0 140
TABLE X TABLE XI
REMINDERS BLUETOOTH

B. Binary Analysis and Manual Testing Deprecated Location

Usage String Agreement

Static Analysis

Manual Testing Yes No

Yes 7 0

No 19 114
TABLE XII

LocATION PURPOSE (DEPRECATED)

