
Yuan Xue

Vanderbilt University

WISE 2010

Assessing Security of Cyber-Physical
Systems

Outline

 Introduction

– What is CPS/Example systems

– Security Issues of CPS

 Tools/Experiment Environment for CPS Security Assessment

– Run-time: Integration of multiple tools/Environment

 Simulation, emulation, real testbed

– Modeling-time, rapid configuration/deployment

 Model integration

 Step I: Command and Control Wind Tunnel

– Heterogeneous simulation integration

 Step II, Integration of DeterLab and C2WT

– Simulation and emulation integration

 Step III – Future Directions

Cyber-Physical Systems

 CPS has extraordinary significance for the future of the U.S. industry and military

superiority.

– A 2007 report of the President’s Council of Advisors on Science and Technology

highlights CPS as the number one priority for federal investments in networking

and information technology.

 Application Domains

– Health-Care

– Automotive Systems

– Building and Process Controls

– Defense and Aviation Systems

– Critical Infrastructure

Cyber-physical systems (CPS) are tight integrations of

communications, computational and physical processes

Example: Electric Power Grid

 Current picture:

– Equipment protection devices trip
locally, reactively

– Cascading failure: August
(US/Canada) and October (Europe),
2003

 Better future?

– Real-time cooperative control of
protection devices

– Or -- self-healing -- (re-)aggregate
islands of stable bulk power
(protection, market motives)

– Ubiquitous green technologies

– Issue: standard operational control
concerns exhibit wide-area
characteristics (bulk power stability
and quality, flow control, fault
isolation)

– Technology vectors: FACTS, PMUs

– Context: market (timing?) behavior,
power routing transactions, regulation

IT Layer

Images thanks to William H. Sanders, Bruce Krogh, and Marija Ilic

CPS Briefing
NSF, May 10, 2007
Raj Rajkumar, Carnegie Mellon University

Example: Health Care and
Medicine

 National Health Information Network, Electronic
Patient Record initiative

– Medical records at any point of service

– Hospital, OR, ICU, …, EMT?

 Home care: monitoring and control

– Pulse oximeters (oxygen saturation), blood glucose
monitors, infusion pumps (insulin), accelerometers
(falling, immobility), wearable networks (gait analysis),
…

 Operating Room of the Future (Goldman)

– Closed loop monitoring and control; multiple treatment
stations, plug and play devices; robotic microsurgery
(remotely guided?)

– System coordination challenge

 Progress in bioinformatics: gene, protein expression;
systems biology; disease dynamics, control
mechanisms

Images thanks to Dr. Julian Goldman, Dr. Fred Pearce

CPS Briefing
NSF, May 10, 2007
Raj Rajkumar, Carnegie Mellon University

CPS Characteristics

 Cyber capability in physical component

 Size and power of computational elements

 Networked at multiple and extreme scales

 High degrees of automation, control loops must close at
all scales

 Enhance and leverage nature physical feedback at all
levels

– sensing technology

– actuation technology

 Human-System Interaction, human in the control loop

CPS Briefing
NSF, May 10, 2007
Raj Rajkumar, Carnegie Mellon University

Security Issues of CPS

 Trustworthiness of software and hardware for cyber‐physical

systems is an essential concern since such systems are routinely

employed in critical settings.

 Existing systems are built without sufficiently formalized and

analyzed properties and guarantees.

– many existing systems have built‐in vulnerabilities which,

once identified and exploited by attackers, can lead to

catastrophic consequences.

– Most current systems cannot perform any self‐diagnostics to

test whether they have been compromised.

– Even if attacks/intrusions are detected, existing systems

cannot automatically contain, or heal themselves from

consequences of, successful attacks.

7

Core CPS Programmatic Themes

 There is a pressing need to design and

evaluate both cyber- and physical systems

(CPS) together and holistically

– Scientific foundations for building verifiably correct

and safe cyber-physical systems

– Scalable infrastructure and components with which

cyber-physical systems can be deployed

– Tools and Experimental Testbed

– Education that encompasses both the cyber and

the physical domains

CPS Briefing
NSF, May 10, 2007
Raj Rajkumar, Carnegie Mellon University

Tools for Design & Implementation of CPS

Lyapunov functions,

eigenspace analysis, etc.
Analytical Tools

MATLAB, MatrixX,

VisSim, etc.,
Software Tools

Control Design:

Continuous State

differential equations,

transfer functions, etc.
Models

Boolean algebra, formal

logics, recursion, etc.

Statemate, NS-2,

OMNeT++, etc.

Control

Implementation:

Discrete State/Events

automata, Petri nets,

statecharts, etc.

Need for Security Assessment Tool
and Experiment Environment

 Evaluation of CPS security requires a sophisticated

modeling and simulation, experiment infrastructure

that allows for the concurrent modeling, simulation

and evaluation of

– the CPS system architecture (advanced system-of-systems

modeling)

– running environment (scenario modeling and generation)

– attack scenario (threat modeling and generation).

 This requires the integration at two levels

– Run-time: Integration of multiple tools/Environment

 Simulation, emulation, real testbed so that they can

interact in a coordinated way.

– Modeling-time: Model integration

 rapid configuration/deployment

10

Our Approach

 Step I: Command and Control Wind Tunnel
– Heterogeneous simulation integration

 Step II, Integration of DeterLab and C2WT
– Simulation and emulation integration

 Step III – Future Directions

C2 Wind Tunnel

 Integration of multiple simulation tools
– Matlab/Simulink, OMNeT++, DEVSJAVA, Delta3D, CPN, etc.

 Follow HLA standard
– Coordinate execution of distributed simulations via RTI

Run-Time Infrastructure (RTI)

C2 Wind Tunnel Integration Framework

Passive Federates

-Data loggers

-Monitors

-Analysis

-Prognostics

-Projections

Live components

-UAVs

-Command &

Control

-Live deployment

feedback

Simulation Tools

-Simulink

-Omnet

-DEVSJAVA

-OGRE

-CPN Tools

-Java/C/C++

-etc.

C2 Wind Tunnel

 Model-integrated approach

– Develop an overarching modeling environment based on GME

– Integrate different platform-specific simulation models

Introducing Network Emulation Into C2WT

 Motivation to Introduce Network Emulation

 Design Consideration and Challenges

 Our Approach and Solution
– Communication architecture

– Time synchronization

In collaboration with Timothy Busch (AFRL/RISB)

From Simulation to Emulation

 Network components and policies are essential aspects of CPS

 The impact of network on CPS system need to be accurately

characterized

– Think about the network attacks…

 Limit of network simulator

– Protocol implementation details are missing

– Poor scalability

Network simulation is insufficient in providing the level of accuracy

required by the evaluation of CPS.

From Simulation to Emulation

 Benefit of network emulation

– Greater realism and accuracy with truthful protocol

implementation and real network traffic delivery

– Providing a computing platform where prototypes of

software components can be deployed

 Network emulation platform

– Emulab

– DETERNet

 Large number of tools available for emulate network attacks

Design Consideration

 Communication between simulated objects and

real network objects

 Time synchronization between simulated objects

and real network objects

Challenge in Data Communication

 Key Issue

– There is potentially large volume of data communicated between the

simulation and the emulation environment

– Tradeoff between realism and performance

– How to control the communication overhead

 Approaches

– Identify the communication platform (e.g., RTI, pub/sub service, socket,

etc.)

– Control the application-level messages

– Design efficient transport-level protocols (e.g., reliable multicast)

Challenge in Data Communication

 Observation -- Different types of data

– Command/Signal notification (E.g., Start to send, stop to send, change

sending rate)

– Application Data/Payload (E.g., Images, videos)

 Our approach

– Identify the appropriate communication platform for different types of

data

– Define the appropriate granularity of communication data depending on

the application semantics

– Characterize the communication semantics in the modeling phase

 Model integration

Challenge in Time Synchronization

 Key Issue

– Simulated objects run in simulation time which is coordinated by RTI

time management

– Network objects run in the user space of real operating systems and

follow system time (usually real time)

– How to reconcile these two time models

 Design consideration

– Identify the appropriate time models for the integrated system

– Design the time synchronization algorithms

Difference From Existing Works

 Similarity

– Combining real network elements with simulated ones, each

modeling different portions of a networked distributed system

 Fundamental Difference

– In the existing work, the network is simulated, the application is

real.

– In our work, the network is real, the application is simulated.

– Both require time synchronization. In our case, the network

communication (e.g., packets in fly) can not be controlled.

 Need new design for simulation-emulation communication

 and time synchronization

Architecture

Run-Time Infrastructure (RTI)

Model Integration Layer

 Experiment Specification

Network

Models

Controller

Models

Organization

Models

Environment

Models

Fusion

Models

Emulation

Federate

Simulink

Federate

CPN

Federate

Delta3D

Federate

DEVS

Federate

Simulation Platform

Simulation-

Emulation Tunnel

Model

Run-time

Network

Applications

Emulation

Platform

Emulab

Data communication Layer (TCP/IP)

Pros and Cons

 Pros

– Limit the traffic load of RTI

 The communication between simulated objects and real

objects does not go through RTI

– Few code changes to simulators

 Cons:

– The node that hosts the Emulation Gateway Federate may be

comes a bottleneck

 All traffic goes through Emulation Gateway Federate

 We may use multiple instances of Emulation Gateway

Federate and perform parallel simulation to solve this

bottleneck issue

Meta-Model and Models

 Network Topology Model

 Network Application Process Deployment and

Communication Model

 Network Interaction Model

Meta-Model for Network Topology

UAV1

UAV2

Access

Point

Control

Station

11M bps wireless link

11M bps wireless link

10M bps

Topology Model

Bandwidth: 10Mbps

Delay: 10ms

Loss: 0.02

Capacity: 11Mbps

Propagation Model:

Free space

MAC: IEEE 802.11

Bandwidth: 2Mbps

Loss: 0.2

Delay: 20ms

Bandwidth: 11Mbps

Loss: 0.01

Delay: 20ms

Deployment MetaModel

Deployment Model Example

UAV1

SendImage

RecvCommand
ControlStation

RecvImage

SendCommand

UAV2

SendImage

RecvCommand

UDP

UDP

TCP

TCP

Deployment Model Example

Network Interaction MetaModel

Network Interaction Model
Example

 Connection-oriented UDP

– Message driven no fixed packet size, interval, starting time

 Command: String

 Image: URL/real data

SendCommandToNetwork

NodeName: TBD (ControalStation)

ProcName: SendCommand

Timestamp:TBD

Parameter: Command (String)

RecvCommandFromNetwork

NodeName: TBD (UAV1)

ProcName: RecvCommand

Timestamp: TBD

PeerNodeName: TBD (ControlStation)

PeerProcPort: TBD

Parameter: Command (String)

SendImageToNetwork

NodeName: TBD (UAV1)

ProcName: SendImage

Timestamp: TBD

Parameter: ImageURL (String):

RecvImageFromNetwork

NodeName: TBD (ControlStation)

ProcName: RecvImage

Timestamp: TBD

PeerNodeName: TBD (UAV 1)

PeerProcPort:TBD

Parameter: PacketDelay(double)

Network Interaction Model
More Examples

 Case II -- Connection-oriented UDP

– Parameterized UDP

 Parameter: frame size, frame interval

 Case III – Connectionless UDP

SendImageToNetwork

NodeName: (to be filled by UAVFed)

ProcName: SendImage

Timestamp: TBD

Parameter: FrameInterval (double)

Parameter: FrameSize (int)

RecvImageFromNetwork

NodeName: TBD (ControlStation)

ProcName: RecvImage

Timestamp: TBD

PeerProcPort: TBD

PeerNodeName: TBD (UAV 1)

Parameter: PacketDelay(double)

SendImageToNetwork

NodeName: TBD (UAV1)

ProcName: SendImage

Timestamp: TBD

PeerProcPort: 7890

PeerNodeName: TBD

(ControlStation)

Parameter: FrameInterval (double)

Parameter: FrameSize (int)

RecvImageFromNetwork

NodeName: TBD (ControlStation)

ProcName: RecvImage

Timestamp: TBD

PeerProcPort: TBD

PeerNodeName: TBD (UAV 1)

Parameter: PacketDelay(double)

Time Synchronization Overview

 Time Synchronization

– Simulated objects run in simulation time which is coordinated by RTI

time management

– Network objects run in the user space of real operating systems and

follow system time (usually real time)

– How to reconcile these two time models

 Roadmap

– Review basic concepts

– Identify the appropriate time models for the integrated system

 Real time

 As fast as possible

– Design the time synchronization algorithms

Let’s first review the basics…

Slides are adapted from Dr. Fujimoto’s lecture notes

Time Models in Simulation

 Continuous time simulation

– State changes occur continuously across time

– Typically, behavior described by differential
equations

 Discrete time simulation

– State changes only occur at discrete time
instants

– Time stepped: time advances by fixed time
increments

– Event stepped: time advances occur with
irregular increments

computer

simulation

discrete

models

continuous

models

event

driven

time-

stepped

s
ta

te
 v

a
ri
a
b
le

s

simulation time

event driven execution

s
ta

te
 v

a
ri
a
b
le

s

simulation time

time stepped execution

c2w

Real system

Modes of Execution

 As-fast-as-possible execution (unpaced): no fixed relationship

necessarily exists between advances in simulation time and

advances in wallclock time

 Real-time execution (paced): each advance in simulation time is

paced to occur in synchrony with an equivalent advance in wallclock

time

 Scaled real-time execution (paced): each advance in simulation time

is paced to occur in synchrony with S * an equivalent advance in

wallclock time

Simulation Time = W2S(W) = T0 + S * (W - W0)

W = wallclock time; S = scale factor

W0 (T0) = wallclock (simulation) time at start of simulation

Simulation Application

models system behavior

• compute event and its time stamp

• event can modify state variables or

schedule new events

Simulation Executive

processes events in time stamp order

• manage event list

• manage advances in simulation time

calls to

schedule

events

calls to

event

handlers

Discrete Event
Simulation System

 independent of the system model

Discrete event simulation:

- computer model for a system

where changes in the state of the

system occur at discrete points in

simulation time.

Fundamental concepts:

• system state (state variables)

• state transitions (events)

 dependent on the system model

Parallel/Distributed Discrete
Event Simulation

 Encapsulate each simulator in a logical process (LP)

 LP is capable of concurrent execution

 Logical processes can schedule events for other logical processes

– Interactions via message passing

– No shared state variables

 logical

process
ORD

SFO JFK

arrival

10:00

time stamped event

(message)

Example: model a network of airports

Time Synchronization

 Synchronization Problem
– ensure each LP processes

events in time stamp order

 Observation
– Adherence to the local

causality constraint is
sufficient to ensure that the
parallel simulation will
produce exactly the same
results as a sequential
execution where all events
across all LPs are processed
in time stamp order.

Simulation Application

Simulation Executive

Each can only process events locally

How to ensure that the events are

processed in time stamp order

globally? -> Many algorithms

Synchronization
 Implementation

Simulation Application

Simulation Executive

•Implement the time

synchronization algorithm.

•Support the event

scheduling/process advancing

Two models

• Event oriented views

• Process oriented views

Event vs. Process Oriented Views

1 InTheAir := InTheAir + 1;

2 WaitUntil (RunwayFree); /* circle */

3 RunwayFree := FALSE; /* land */

4 AdvanceTime(R);

5 RunwayFree := TRUE;

 /* simulate aircraft on the ground */

6 InTheAir := InTheAir - 1;

7 OnTheGround := OnTheGround + 1;

8 AdvanceTime(G);

 /* simulate aircraft departure */

9 OnTheGround := OnTheGround – 1;

State variables

Integer: InTheAir;

Integer: OnTheGround;

Boolean: RunwayFree;

Event oriented view

Entities modeled by event handlers

State variables

Integer: InTheAir;

Integer: OnTheGround;

Boolean: RunwayFree;

Process oriented view

Entities modeled by processes

In C2 Wind Tunnel
Event oriented view

Process oriented view

Simulation Application

Simulation Executive

HLA

OMNeT++

Simulation Application: C2W federates

Simulation Executive: Portico RTI

OMNeT++ becomes a federate

OMNeT++ scheduler communicates with RTI

Time Management in C2 Wind Tunnel

Simulation Application: C2W federates

Simulation Executive: Portico RTI

Two Modes:

• real time

• as fast as possible

In Federation Manager:

sleep_time = time_diff

if (sleep_time >0)

 sleep(sleep_time);

next_time = time.getTime() + 0.1;

timeAdvanceRequest (next_time);

HLA Time management

•Time AdvanceRequest

(time-stepped mechanism)

•NextEvent Request

•(event-driven federate)

•AdvanceGrant

Get back to our problem

 Time synchronization issue in the distributed

simulation should be handled by simulation

executive.

 C2W system follows the HLA standard (process-

oriented view), where RTI handles the time

synchronization. The “simulation application” calls

the time management primitives.

 We do not deal with the time sync issue directly in

C2W. Do we need to worry about it once the

emulated network brings in?

Get back to our problem

 Questions to answer

– What mode

 Real time mode -- each synchronizes to real-time

 As fast as possible mode – see next question

– Who is handles the time synchronization

In emulated systems, its system clock (not just the network object) needs

to be synchronized.

 RTI does the job, each emulated system becomes a federate.

Time Synchronization
Real Time Mode

 The simulation (ts) and operation system (to) time are synchronized with real time (tr) : ts=to=tr

 Currently available in C2 Wind Tunnel

 Synchronization is done separately by simulation/real system – no need for coordination

 Issue (see the example below)

– The propagation delay between the simulation/emulation environment introduces errors

into the measurement

– Such error will accumulate

0 physical time (tr)

OS time (to)

Simulation time (ts) t1

UDP_sent

t2= t1+d1

UDP_sent

t3= t2+t

UDP_recv

t4= t3+d2

UDP_recv

d2 t d1

Synchronize To Real Time
-- Challenge

 Since simulation will receive events from emulation, simulation time

should lag behind or equal to emulation time so that the events from

emulation will not arrive at simulation in its past time

 Since emulation will receive events from simulation, simulation time

should lead or equal to emulation, so that the events from simulation will

not arrive at emulation in its past time

 Without delay, simulation and emulation should be synchronized to the

same time

 With delay in both directions, this is a non-trial issue.

Synchronize To Real Time
Basic Idea

 Synchronize only OS time with real time (to=tr)

 Separate simulation time from real time
 The simulation environment should have at least a lag of (L >= d2) from real time to accommodate the

communication delay emulation to simulation environment, if any incoming traffic is expected. (ts = tr- L)

 Simulation clock advances at the same pace as real physical clock

 All the outgoing traffic event with time stamp t will be actually scheduled/tunneled to emulation environment at

simulation time t - d1- L to compensate the delay from simulation to emulation and the lag between simulation

and emulation so that it could arrive at emulation at real time t.

 For incoming traffic with time stamp (t+t), it will arrive at the simulation at simulation time ts = t-L+t+d2. Since L

 d2, the event can be scheduled at ts = t+t

0 Real time (tr)

OS time (to)

Simulation time (ts) ts =t-d1-L

UDP_sent

to =t

UDP_sent

to = t+t

UDP_recv

ts= t+t

UDP_recv

d2 t d1 L

0

ts = t-L+t+d2

Synchronize To Real Time
Limitation and Application

 The packet does not arrive at the emulated network on its timestamp

time (t), only the measured delay information (t) from the emulation

environment is correctly .

– Can not be used if the packet interacts with other existing traffic this is a

serious constraint.

 If the simulation is slower than real time, then there is no easy fix.

So it seems that synchronizing to real time has limited

usage…

Not really. Depending on the value of L (d), the system may

tolerate some inaccuracy.

• Using a model-based approach, the simulator could adjust its time

management strategy based on the communication context

Time Synchronization
As Fast As Possible Mode

 The simulation (ts) and operation system (to) time

are synchronized using a virtual clock(tv) : ts=to=tv

 Currently in C2 Wind Tunnel simulation AFAP

mode runs in virtual time

 Challenge-- Reconcile two time models
– Real time, which flows naturally (not forced by a progression of

events)

– Virtual time is adjusted by the progression of discrete events in the

simulation system

Synchronize To Virtual Time
System Virtualization

 Need virtualization of the real systems/networks to control over their run-

time behavior

– The execution of a virtual system/network needs to be stalled until

the virtual clock proceeds

– As the system execution is interrupted due to the synchronization

process, the internal clocks need to be manipulated to provide the

virtual system/network a consistent and continuous time.

 Use Xen Hypervisor

– Thin layer between system hardware and the operating system

– Facilitate the parallel execution

– Control the running behavior of OS on top of it

Synchronize To Virtual Time Using RTI

 Synchronization component is implemented in the privileged Xen Control domain as

a federate

 Use a conservative approach

– Define small slices to be target barrier of execution

– Request RTI to advance time towards the barrier

– Once granted, release the scheduler to process the jobs with time stamp

larger than the barrier

Xen

Hardware

Xen Control

Domain

R
T

I

Virtual

host

scheduler

Virtual

host

Network

Object

Network

Object

Sync

Compon

.

Size of the slice determines the

accuracy of the synchronization

If the arrival pattern of the

events/jobs

Is known, we can pick the time slice

based on the statistical requirement

of the experiment accuracy

Handling Packet in Transmission

• Key Issue: Packet can not be stopped in the middle of the transmission or

accelerated to meet the synchronized time

 A closer look of the problem – what does it mean by “in the middle”

– Packet queued at a router. In Emulab, the routers are emulated by

host. Queued packets are synchronized to virtual clock not a

problem

– Packet transmitted along the link .The link delay of a packet is

determined by its size and the bandwidth of the link this is a true

problem

 If arrive ahead of time, the real time propagation delay needs to be

converted to virtual time and the packet reception will be scheduled later

 need a time keeping mechanism

 If arrive behind the time, then there will be an issue. We need to adjust the

bandwidth of the link (in Emulab) to avoid this problem

Implementation Details

Topology Model

Network Interaction Model

Modeling Environment
Model

Interpreter
Run-Time Environment

TCL script

Configuration/Control Environment

Host

Assignment

Deterlab Emulation Environment

C2WT Simulation Environment

…

Tap

Client

EmuGateway

Federate

RTI

Simulink

Federate

Tap

Client

Tap

Client

Tap

Server

Federates

Involving

network

communication

…

Network File System

Network Application Code

Deployment Model

UAV

federate
ControlStation

federate

EmuGateway

federate

Tap Client Tap Client

Tap

Server

HostMap
NodeName: HostIP

SendImage RecvImage
UDP

Emulation Host for UAV1

Interaction Delivery Protocol

Emulation Host for ControlStation

RecvCommand SendCommand
TCP

Task

buffer

Task

buffer

LocalTask

buffer

Interaction Handler

Emulation Env

Simulation Env

Time

converter

RTI

Time

converter

HostMap HostMap

Interaction Delivery Protocol

 Initialization

– Tap client has the socket address of server (IP address + port)

– Tap client registers itself to server

 What is NodeName it emulates (UAV1)

– Tap server builds the HostMap table

 NodeName to HostIP

– Tap server provides the information to Tap cients which require the

HostMap, tap client will put it in /etc/hosts.

 Data communication

– message format

ProcName TimeStamp ParemeterName ParemeterLength ParemeterValue

repeat

…. END

SendImage 10s ImageURL 18 10.0.0.2/imagefile

END

Integration With DeterLab

Simulation Feds

DETERLab

Experiment Control Plane

Experiment Plane

Real time traffic generation

Data Loading & Collection Plane

Network Log

Data Logger

Attack traffic generation

Simulation-Emulation Gateway

Our Experiment Setup

100Mbps Switch

UAV Sim*
• Simulink

Physics
Simulation
• Delta3D

CAOC Sim.
• CPN Tools
• Pythia
• Caesars
• DEVS/Java

Operator Console
• Delta3D
• Simulink (UAV

Control Algo.)

Sensor
Simulator
•Delta3D

* Possibly one
machine per UAV

C2WindTunnel

Simulated

Applications

Emulab

Network

Object

Network

Object
Network

Object

Real

Network

Future Work

 Step II: Integration with DeterLab

– Enable system virtualization, migrate the virtual clock

into Xen Hypervisor

– Component allocation

– Time keeping at the emulated routers

 Step III: Integration with Experiment Testbed

– Evaluation of security policy on C2 systems

Summary

 Security of CPS is an essential concern

 Building a tool and environment for assessing the security impacts

on CPS is a critical step

 Three-step effort at Vanderbilt

– Simulation integration

– Emulation integration

– Real network integration

