Leader Selection for Performance and Control of Complex Networks

Professor Linda Bushnell Department of Electrical Engineering University of Washington, Seattle Email: <u>lb2@uw.edu</u>

WISE 2013 Women's Institute in Summer Enrichment San Jose State University June 25, 2013

Joint work with Andrew Clark and Radha Poovendran

Problem Formulation
• Selecting up to k leaders to minimize error due to link noise $\begin{array}{ll} \min inimize & R(S)\\ {\rm s.t.} & S \leq k \end{array}$
• Selecting the minimum-size leader set to achieve a bound α on error due to link noise minimize $ S $ s.t. $R(S) \leq \alpha$
 Our Approach: Prove supermodularity of R(S) as a function of S Leads to efficient algorithms for minimizing supermodular functions up to a provable bound
6/25/2013 University of Washington 14

