Minimal Assumptions for

 Cryptographic Tasks and
Provable Security in Realistic Models

Dana Dachman-Soled Microsoft Research New England

Joint Work with Yael Tauman Kalai, Yehuda Lindell, Tal Malkin, Mohammad Mahmoody

Cryptography

- Public Key Encryption

> RSA Laboratories RSA

- Digital Signatures

Q Secuirity Innovation THEAPLICATION SECURITY COMPANY NTRUSIG

- Secure Multiparty Computation

Trading Sugar Beet Quotas - Secure Multiparty Computation in Practice

Provable Secur

polynomial time or polynomial sized

- Ideal: Prove that a cryptog circuit cannot be broken by any efficient attacker.
- Actually: Our proofs require assumptions. -"Factoring is hard": $p \cdot q=n$
- "If an attacker succeeds in breaking PKE the attacker can be used to break factoring ."
- This is called a reduction.

Computational Assumptions

- Specific hardness assumptions
- Factoring is "hard": $n=p \cdot q$; find p, q - Discrete log is "hard": $a \in G . a^{x}$. find x
- Generic hardness a includes factoring, discrete log, others - OWF exist: fanctions crat air easy to compute but hard to invert.
- Constructions based on generic OWF must work when OWF is instantiated with any particular candidate OWF.

Roadmap

- Foundational Questions
- Limits of Provable Security: Minimal Assumptions
- OWF vs. Optimally Fair Coin-Tossing
- New directions
- Towards More Realistic Models
- Cryptography against Physical Attacks
- Tamper Resilient Circuits
- New directions

Roadmap

- Foundational Questions
- Limits of Provable Security: Minimal Assumptions
- OWF vs. Optimally Fair Coin-Tossing
- New directions
- Towards More Realistic Models
- Cryptography against Physical Attacks
- Tamper Resilient Circuits
- New directions

Minimal Assumptions

- What can be constructed assuming only oneway functions (OWF)?
- What requires stronger assumptions?
- Why should we care?
 MPC

Optimally Fair Coin Tossing
Pseudorandom Generators
Pseudorandom Functions
Digitiel Signatures
UOWHF

- Despite much effort, no known reduction from PKE to OWF.
- Can we prove that it is impossible?

Proving Impossibility Results

- Prove: "There is no construct OWF"
- How to formalize?
- First attempt: Prove $O W F \nrightarrow P K E$
- Problem:
- Hard to prove OWF exists (implies $P \neq N P$)
- We believe that PKE exists!
- Instead, we prove "hardness of proving".
- Show that "standard approaches" of proving OWF \rightarrow PKE will fail!

1. Black-Box Construction: PKE scheme \boldsymbol{E} from OWF f

PKE scheme E gets "black-box" access to the OWF f.

2. Black-Box Analysis: Reduce Security of E to Security of f

Present a reduction R such that:

If there is an adversary Eve that breaks security of E

Then R, given oracle access to Eve and f, breaks security of f.

Note: Reduction must work even if f, Eve are inefficient!

Roadmap

- Foundational Questions
- Limits of Provable Security: Minimal Assumptions
- OWF vs. Optimally Fair Coin-Tossing
- New directions
- Towards More Realistic Models
- Cryptography against Physical Attacks
- Tamper Resilient Circuits
- New directions

Our Focus: Coin Tossing

- Is there a black-box reduction from Optimally Fair Coin Tossing to OWF.
- Coin Tossing:
- The output of an honest party is 0 or 1 with probability $1 / 2$ (= "Fair coin toss", "bias = 0 ")
- If both parties follow the protocol, they have the same output.
- Basic Primitive
- Used frequently in MPC protocols.
*Joint work with Yehuda Lindell, Tal Malkin, Mohammad Mahmoody

Preliminaries: Commitment

- Digital analogue of a lockbox Commit to value V

Decommit to value V
Hiding: Bob
doesn't know what's in the box

Blum’s Coin-Tossing Protocol ("Over the Telephone")

Fairness? If execution completes, Alice cannot bias coin due to binding of commitment. Bob cannot bias coin due to hiding.

Blum’s Coin-Tossing Protocol ("Over the Telephone")

In this case, Alice can impose bias of $1 / 4$.
Note: Black-Box construction from OWF

What is known

- [Cleve86] showed Blum's protocol can be extended to get bias $O(1 / \sqrt{r})$ in r rounds from OWF
- [Cleve86] lower bound tells us bias is always at least $\Omega(1 / r)$ in r rounds
- Define "optimally-fair coin tossing": coin tossing with bias $O(1 / r)$.
- Until recently, not known if it was possible to achieve bias $O(1 / r)$
- [MNS09] based on work of [GHKLO8] constructed protocol that achieves $\mathrm{O}(1 / \mathrm{r})$ bias.
- Protocol uses generic MPC, and thus relies on stronger assumptions.

Open questions

- Can we get bias of $O(1 / r)$ in r rounds from just OWF?
- Are stronger assumptions necessary for bias of O(1/r)?
In our work, we focus on the question:
Is there a black-box construction of optimallyfair coin-tossing from OWF?

Main Result:

Theorem (informal): Any black-box construction of Optimally Fair Coin-Tossing from OWF will require at least $\Omega(n / \log n)$ rounds.

- Regular coin-tossing requires only 1 round.
- Optimally fair coin-tossing for any number of rounds can be constructing using stronger assumptions.

Proof Intuition

Consider: Random Oracle Model

Goal:
Given any BB construction, show strategies for either Alice or Bob to impose bias $\Omega\left(\frac{1}{\sqrt{r}}\right)$.

Note: Alice and Bob may be computationally unbounded, but must make "few" queries to oracle f.

Cleve, Impagliazzo 93 Result

[CI93]: For every r-round coin-tossing protocol, there is a strategy for either Alice or Bob to impose bias $\Omega\left(\frac{1}{\sqrt{r}}\right)$.

Alice and Bob are assumed to be Computationally Unbounded

Strategies for A, B involve computing expected value of coin toss conditioned on current transcript at each pass.

Expected value of outcome given M_{1}, M_{2}, M_{3}

Proof Intuition

Goal:

Given any BB construction, show strategies for either Alice or Bob to impose bias $\Omega\left(\frac{1}{\sqrt{r}}\right)$.
\qquad

Idea: Use [CI93] result in the Random Oracle Model

- Issue: Recall [CI93] strategies involve computing expected values

Computing these values must involve making "many" queries since it may involve inverting f.

- Solution: Instead of taking expectations over a fixed oracle, we include the randomness of the oracle in the expectation.

Proof Intuition

Goal:

Given any BB construction, show strategies for either Alice or Bob to impose bias $\Omega\left(\frac{1}{\sqrt{r}}\right)$.

Idea: Use [CI93] result in the Random Oracle Model

- Issue: [CI93] result critically relies on the fact that the views of A and B are independent conditioned on the current transcript.

This is not true in the presence of a random oracle.

- Solution: Idea—add queries to transcript to ensure that the views of A and B are (nearly) independent conditioned on the current transcript.

Summary

- We prove that any black-box construction of optimally-fair coin-tossing from OWF will require at least $\Omega(n / \log n)$ rounds.
- This is in contrast to (unfair) coin-tossing which can be constructed from OWF in 1 round.
- Our techniques extend to rule out constructions for a general class of 2-party protocols with $o(n / \log n)$ rounds.

More Impossibility Results

- OWF / KA [IR89], [BM09]
- OWF / CRHF [Simon98]
- PKE / OT [GMRVOO]
- PKE / TDF [GMR01]
- OWF / stat. commitment with $o(n / \log n)$ rounds [HHRS07]
- TDP / IBE [BPRVW08]
- TDF / correlated products [Vahlis10]
- Simulatable PKE / Deniable PKE [D12]

Roadmap

- Foundational Questions
- Limits of Provable Security: Minimal Assumptions
- OWF vs. Optimally Fair Coin-Tossing
- New directions
- Towards More Realistic Models
- Cryptography against Physical Attacks
- Tamper Resilient Circuits
- New directions

New Directions-Turing Reductions

 1. Arbitrary Construction: PKE scheme \boldsymbol{E} from OWF f

$$
\begin{aligned}
& \text { OWF: f }
\end{aligned}
$$

PKE scheme E gets access to the code of the OWF f.

2. Semi BB Analysis: Reduce Security of E to Security of f

Note: Reduction must work even if Eve is inefficient.

New Directions-Turing Reductions

- [Pass, Tseng, Venkit., 11] showed that under very strong assumptions can rule out Turing reductions between some primitives.
- Rule out Turing reductions from OWP to OWF
- Rule out Turing reductions from CRHF to OWF
- Note: In this setting assumptions are necessary
- Minimally, must assume OWF exists.
- [PTV11] assume existence of OWF with specific strong properties.

Open Questions

- Can we rule out Turing reductions of PKE to OWF?
- Can we rule out other general types of reductions that go beyond BB reductions?
- New proof techniques for both positive and negative results:
- Positive: New ways to leverage code of OWF or code of adversary?
- Negative: New results on obfuscation?

Roadmap

- Foundational Questions
- Limits of Provable Security: Minimal Assumptions
- OWF vs. Optimally Fair Coin-Tossing
- New directions
- Towards More Realistic Models
- Cryptography against Physical Attacks
- Tamper Resilient Circuits
- New directions

Roadmap

- Foundational Questions
- Limits of Provable Security: Minimal Assumptions
- OWF vs. Optimally Fair Coin-Tossing
- New directions
- Towards More Realistic Models
- Cryptography against Physical Attacks
- Tamper Resilient Circuits
- New directions

Protecting Circuits against Physical Attacks
 Traditional view of cryptography:

Attacker interacts with honest parties in a black-box manner.

Only get to observe
input-output behavior.

* Joint work with Yael Tauman Kalai.

Protecting Circuits against Physical Attacks

Traditional view of cryptography:
Attacker interacts with honest parties in a black-box manner.

Only get to observe
input-output behavior.

Towards more realistic models:

Attacker may have physical access to honest party.

Examples of Physical Attacks

- Leakage attacks--passively leak some function of the honest party's secret state:
- Timing attacks [Kocher96,...]
- Power attacks [Kocher-Jaffe-Jun99,...]

- Acoustic attacks [Shamir-Tromer04]

Remote RSA Timing Attacks Practical

Posted by CowboyNeal on Thursday March 132003, $908: 06 \mathrm{PH}$ from the all-in-the-timing dept.

Examples of Physical Attacks

- Tampering attacks—actively disrupt honest party’s computation while observing input/output behavior.
- Fault attacks [Boneh-DeMillo-Lipton97, Biham-Shamir98, ..]
- Radiation attacks

1024-bit RSA encryption cracked by carefully starving CPU of electricity

By Sean Hollister posted Mar 9th, 2010 at 2:47 AM

- Our main result focuses on protecting circuits against tampering.

Roadmap

- Foundational Questions
- Limits of Provable Security: Minimal Assumptions
- OWF vs. Optimally Fair Coin-Tossing
- New directions
- Towards More Realistic Models
- Cryptography against Physical Attacks
- Tamper Resilient Circuits
- New directions

Our Results

Need to define:

1. Tampering model
2. Security guarantee

Our Results

Need to define:

Compiler

1. Tampering model
2. Security guarantee

Our Model: Private Circuits

- Introduced by Ishai, Prabhakaran, Sahai, Wagner 2006
- Attack Model: i-th run of circuit C_{S}

Our Model: Private Circuits

- Introduced by Ishai, Prabhakaran, Sahai, Wagner 2006
- Attack Model: i-th run of circuit C_{S}

Our Model: Private Circuits

- Introduced by Ishai, Prabhakaran, Sahai, Wagner 2006
- Attack Model: i-th run of circuit C_{S}

Our Results

1. Tampering model
2. Security guarantee

- log bits of leakage?
- Previous work of [IPSW06]: No leakage, but tampering rate of $1 /|C|$.

Our Results

1. Resilient to constant tampering rate
2. Information theoretic

Overview of our Construction

Starting point [IPSW06]:

tamper-

resilient

Add tamper-detection component that erases memory if tampering is detected.

We show:
Tamper-detection component in $N C^{0}$

circuit of constant size

Tamper-Detection Component

Tool: PCP of Proximity—proof of correctness with

 special properties [Ben-Sasson, Goldreich, Harsha, Sudan, Vadhan, 06]

Tamper-Detection Component

Tool: PCP of Proximity

[Ben-Sasson, Goldreich, Harsha, Sudan, Vadhan 06]

Summary

Compiler

- Resilient to constant tampering rate.
- Information theoretic
- Extend to leakage + tampering (in the paper)

Roadmap

- Foundational Questions
- Limits of Provable Security: Minimal Assumptions
- OWF vs. Optimally Fair Coin-Tossing
- New directions
- Towards More Realistic Models
- Cryptography against Physical Attacks
- Tamper Resilient Circuits
- New directions

New Directions—Better Models

- Better theoretical models for leakage and tampering that capture actual attacks.
- Can we relax security requirements so that blowup in computational resources is reduced?
- Requires better knowledge of EE and actual chip design.

New Directions: Physical Attacks in MPC Setting

Can we give meaningful security guarantees in this setting? Privacy of inputs, correctness of computation, etc.
[BGJK12, BCH12]

Thank you!

