What is Big Data and what can we do with it?
An applications and higher education policy view

Women’s Institute for Summer Enrichment
Cornell University, June 18, 2014

Amy Apon, Ph.D., Professor and Chair
Computer Science Division, School of Computing
Clemson University
Main Ideas of Talk

• There are a lot of data out there
• Solutions to many problems important to society can be advanced with Big Data
• University researcher’s use of Big Computing is correlated with higher research productivity
• Work is needed in the development of curricula and course materials for Big Data
First Takeaway: There are a lot of data out there.
An Early Big Data System
Social Media
Historical trends in storage prices versus DNA sequencing costs

http://genomebiology.com/2010/11/5/207
Big Automotive Data

• Data in every car!
 – On-board diagnostic data
 – Up to 85 electronic Control Units (ECSs)
 – Up to 1,500 individual selection options make practically each car electrically unique
 – Up to 25GB software,
 – About 2,000 customer functions
 – Up to 13,000 diagnostic readouts

• Data about the car starts
 in the assembly plant or earlier!
Tremendous Volume
Extreme Velocity
“Endless” Variety

Data in the car
Data from the car
Data between cars
What can we do with more data?

• Predictions using simple techniques and large data can outperform predictions using complex techniques and fewer data
 – “The unreasonable effectiveness of data,” [Havely 2009]

Everyone has questions and ideas

– What research can we accomplish?
– Do we understand the question?
– Is our data accurate? If not, how can I use that information?
– Can I use what I have?
Second Takeaway:
Solutions to many problems that are important to society can be advanced with Big Data
Intelligent Transportation and Automotive Systems
Find the trends and anomalies in warranty and assembly data

Predict failures *before* they become widespread problems.

Goal is to fuse data from several sources to build a model of anomalies and trends.
Mining Customer Satisfaction

JD Powers measures new vehicle quality:
- 83,000 questionnaires in total
- 4,636 questionnaires for BMW GROUP vehicles

Defines two types of issues:
- Defects and Malfunctions
- Design

New technologies and usability causes more problems: in average 2013 vehicle report 20% more problems.

But, can we get Big Social Data to find these answers more quickly?
What is needed to make effective use of Big Data?

- Access to computing resources as a starting point
- Tools for data infrastructure and analysis
- Education and training
Apple Data Center in Maiden, NC

http://appleinsider.com/articles/12/09/14/aerial_photos_show_apples_massive_nc_solar_farm_near_completion
Big Data systems and technologies
Google’s Mayes County, Oklahoma data center
What are the effects of HPC resources on research productivity?

- Are departments with local access to HPC instrumentation more efficient at producing research than those without local access?

- We used Big Data to study Big Data 😊

- Data sources include:
 - Data from the National Research Council – counts of faculty, publications
 - Top 500 listing
 - Award data from the National Science Foundation
What are the effects of HPC resources on research productivity?

• Statistical methods
 – Data envelopment analysis
 – Inputs: count of faculty, GRE scores of new graduate students
 – Output: count of graduates and publications

• Results show that departments in universities that have local access to Top 500 HPC resources are more efficient for Chemistry, Physics, and Civil Engineering. This is not true for Computer Science.
Third Takeaway:
Use of Big Computing at universities is correlated with higher research productivity
Typical Large-Data Approach

• Iterate over a large number of records
• Extract data of interest from each record
• Shuffle and sort intermediate results
• Aggregate intermediate results
• Generate final output

But, there is more to it than this.
Big Data technologies are complex today
Teradata Unified Data Architecture

- Engineers
- Data Scientists
- Quants
- Business Analysts

Java, C, Python, R, SAS, SQL, SQL-MapReduce, Excel, BI, Visualization, etc.

TERADATA.ASTER

Discovery Platform
- Aster MapReduce Portfolio
- SQL-H

TERADATA

Integrated Data Warehouse
- Teradata Analytics Portfolio

Capture, Store, Refine
- Hadoop

Audio/Video
- Images
- Text
- Web & Social
- Machine Logs
- CRM
- SCM
- ERP
HPCC Systems
http://hpccsystems.com/
Data-Enabled Engineering Reference Architecture for Research and Education

Consumption Layer

- Parallel Programming
- Network Analytics
- Statistical Analytics
- Visualization
- Machine Learning
- Optimization

Data Layer

- privacy, security, predefined multi-dimensional expressions,
- query languages, massive scale data tables, file systems, graph data,
- unstructured and semi-structure data elements, centralized data warehouse

Ingest Layer

- federated and distributed dynamic data storage, light-weight data caching and
 in-memory storage, streaming data feeds,
- sensor technologies, embedded programming, data encoding, signal
 conditioning, low power wireless communication

Major Research Efforts

- Maintenance Quality of Parts
- Age of Parts
- Social Media Vacation Trends
- Travel Frequency
- Manufacturing Assembly Design
- Traffic Average speed Flow
- Vehicle Tire Pressure Position

Interdisciplinary Education and Training Program

- non-credit seminars, academic classes
Fourth Takeaway:
Work is needed to educate faculty and students in the use of tools
And, in the development of curricula and courses in these areas
Summary

There are a lot of data out there
Solutions to many problems important to society can be advanced with Big Data
University researcher’s use of Big Computing is correlated with higher research productivity
Work is needed in the development of curricula and course materials for Big Data
Amy Apon

aapon@clemson.edu

THANK YOU