
Towards Robustness in Query Auditing

Shubha U. Nabar1 Bhaskara Marthi2 Krishnaram Kenthapadi1 Nina Mishra3

Rajeev Motwani1

1{sunabar, kngk, rajeev}@cs.stanford.edu 2bhaskara@cs.berkeley.edu 3nmishra@cs.virginia.edu

ABSTRACT
We consider the online query auditing problem for statisti-
cal databases. Given a stream of aggregate queries posed
over sensitive data, when should queries be denied in order
to protect the privacy of individuals? We construct efficient
auditors for max queries and bags of max and min queries in
both the partial and full disclosure settings. Our algorithm
for the partial disclosure setting involves a novel application
of probabilistic inference techniques that may be of indepen-
dent interest. We also study for the first time, a particular
dimension of the utility of an auditing scheme and obtain
initial results for the utility of sum auditing when guard-
ing against full disclosure. The result is positive for large
databases, indicating that answers to queries will not be
riddled with denials.

1. INTRODUCTION
A statistical database (SDB) is a database that allows its
users to retrieve only aggregate statistics (such as mean or
count) over subsets of its data. An example is the database
maintained by the U.S. Census Bureau. Such databases gen-
erally contain sensitive information about individuals and
there is often a need to enable the computation of useful
statistics from such data while protecting the privacy of in-
dividuals. Consider for example, a company database con-
taining salaries of its employees or a hospital database con-
taining medical records of its patients. A statistician may
want to determine the average salary of all the female em-
ployees in a company or the number of occurrences of a dis-
ease in a particular county. He cannot, however, be allowed
to glean the salary of any one female employee in particular
or the disease of any one individual.

Common approaches to tackling this problem include per-
turbing either the data itself [26, 3, 15, 4, 7, 23] or the results
supplied to the user [10, 14, 6, 13, 12]. After much discus-
sion with statisticians [18] however, we found that they are
averse to potential biases introduced by adding noise. One
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commonly stated reason is that the data collection process
is already prone to biases and imperfections due to factors
such as too few respondents, the cost of gathering data, and
inaccurate answers provided by respondents. Since impor-
tant decisions are made based on this data, they prefer to
recieve answers without additional noise. It is in this context
that query restriction techniques become relevant.

In this paper, we consider an SDB with one sensitive at-
tribute and several public attributes. A user can specify
a subset of records in the database via predicates on the
public attribute values and aggregates are taken over the
corresponding sensitive attribute values. In the case of the
company database an example query would be

SELECT sum(Salary)

FROM CompanyTable

WHERE ZipCode = 94305

Consider an SDB containing n records. LetX = {x1, . . . , xn}
be the multiset of sensitive attribute values in the database.
Each xi is the sensitive value of the ith individual. In our
scenario the xis are taken to be real-valued from a bounded
or unbounded range. A statistical query q = (Q, f) speci-
fies a subset of the records Q ⊆ {1, . . . , n} and a function f
(such as sum, max or median). The result, f(Q), is f applied
to the subset {xi | i ∈ Q}. We call Q the query set of q.

The online query auditing problem is defined as follows: Given
a sequence of queries q1, . . . , qt−1 that have already been
posed, answers a1, . . . , at−1 to these queries that have al-
ready been supplied and a new query qt, should qt be an-
swered or should it be denied to prevent a privacy breach.
Here each of the previous answers ai, is either an exact
answer, fi(Qi), or a denial. In this paper, we attempt to
enhance the robustness of the notion of online auditing by
exploring algorithms for auditing new kinds of queries under
different notions of compromise and examining the hereto-
fore unexamined dimension of utility.

The auditing problem may be viewed as a game between
the auditor and an attacker. The auditor monitors queries
posed by the attacker and denies queries whenever answers
to these and previous queries may be stitched together to
cause compromise. It is the policy of the system as set by
the DBA (database administrator) that determines the cri-
terion for compromise. In most previous work, compromise
corresponds to the notion of full disclosure and occurs when



the private data of any individual can be exactly determined.
We call this classical compromise. In [21], the authors intro-
duce probabilistic compromise for bounded range data where
a significant change in the attacker’s confidence about the
range of a data point constitutes a privacy breach. This cor-
responds to the notion of partial disclosure. The question of
auditing many different kinds of queries under probabilistic
compromise remains wide open and in this paper, we in-
troduce new algorithms for auditing max queries and bags
of max and min queries under this definition. In the case
of classical compromise, algorithms are known for auditing
sum, avg, min and max queries separately, but combinations
of these queries are hard to audit. We present an auditor
for bags of max and min queries in the case of classical com-
promise. The authors in [21] show how even such simple
types of queries can be used against a naive auditor to reveal
considerable amounts of private data and building a robust
auditor for such queries is thus important.

A naive solution to the general online auditing problem is to
deny all queries. This is not a very satisfying solution as it
does not provide much utility to the user. To the best of our
knowledge, no previous work has attempted to quantify the
utility of an auditing scheme. In this paper, we consider a
particular dimension of utility and obtain initial results for
the auditing algorithm for sum queries described in [9, 21].
The result pertains to classical compromise and is a positive
result for large databases.

For smaller databases, users may be able to derive more util-
ity because databases are frequently updated. Intuitively,
this is because past information gathered by the user be-
comes irrelevant and more queries can now be posed. Histor-
ically, all research in auditing has focused on static databases
and known algorithms for auditing do not work in the pres-
ence of updates. Simple modifications to the algorithms are
however sufficient and we conduct experiments to demon-
strate how utility improves with updates. In summary,

• In Section 3 we introduce new algorithms for auditing
max queries and bags of max and min queries to prevent
partial disclosure. Working within the framework for
probabilistic auditors introduced in [21], we show an
interesting link to the problem of sampling graph col-
orings from a distribution.

• In Section 4 we introduce a new algorithm for auditing
bags of max and min queries to prevent full disclosure.

• In Section 5 we provide initial utility results for sum
auditing to prevent full disclosure.

• In Section 6 we present experiments on the utility of
schemes for auditing sum and max queries.

While the kinds of queries we examine may seem simplis-
tic, the auditing problem in all its generality is hard, and
considering a restricted set of queries helps build our under-
standing of the problem. Note that useful information can
already be derived via simple queries. For example, when
releasing contingency tables, sum queries are the only type
of queries that are answered. Moreover, as shown in [21],
with very simple queries we can already illustrate signifi-
cant privacy breaches.

We discuss related work and preliminaries in Section 2. A
more general overview can be found in [1, 7]. We conclude
with future work in Section 7.

2. BACKGROUND

2.1 Related Work
Online auditing was first studied in [11] and [25]. The au-
thors look at sum queries in particular and protect privacy by
restricting sizes and pairwise overlaps of allowable queries.
In this scheme, if each query set is restricted to be of size at
least k and if each pair of query sets is allowed to overlap
in at most r elements, then (2k− (l+ 1))/r distinct queries
can be answered where l is the number of xis known to the
attacker beforehand. So if k = n/c for some constant c and
r = 1, then after only a constant number of distinct queries,
the auditor would have to deny all further queries since there
are only about c queries where no two overlap in more than
one element. This motivates a search for auditing schemes
that could provide greater utility.

In [8], the authors consider the offline auditing problem for
sum, max, max-and-min and sum-and-max queries. In the of-
fline version of the problem, we are given a sequence of
queries q1, . . . , qt that have already been posed and truth-
fully answered and are required to determine whether com-
promise has already occurred. The sum-and-max auditing
problem was shown to be NP-hard while efficient algorithms
were derived for all the others.

In [20], the authors consider sum auditing for subcube queries
where queries are specified as strings of 0s, 1s and *s (don’t
cares). The elements to be summed up are those whose
public attribute values match the query string pattern. The
authors in [22] consider the boolean auditing problem for
sum queries where the private attribute values are boolean.
They also provide a max auditor for real-valued data. These
results pertain to the offline auditing problem. In [2] the
authors provide an offline auditing framework for determin-
ing whether a database system adheres to its data disclosure
policies. The auditor detects queries that accessed sensitive
data by formulating an audit expression that declaratively
specifies sensitive table cells.

The authors in [5] look at the online auditing problem in
a logic-oriented model of information systems and devise a
hybrid approach of modifying query answers and denying
queries in order to enforce security policies. In [21], the on-
line auditing problem is looked at again. The authors illus-
trate how denials that depend on the answer to the current
query can leak information and introduce the notion of sim-
ulatability to tackle this problem. They provide simulatable
algorithms for auditing sum queries and max queries under
classical compromise. In addition, they introduce a proba-
bilistic notion of compromise and provide an algorithm for
auditing sum queries over real-valued data drawn uniformly
from a bounded range under this notion.

2.2 Preliminaries
We first define the different notions of compromise that we
consider and then give a brief overview of tools that are used
in our solutions.



Classical Compromise/Full Disclosure: Under this def-
inition, a compromise occurs if any one private data point
can be uniquely determined, i.e., in all datasets X with an-
swers a1, . . . , at, to queries q1, . . . , qt, some data point xi
would be the same. The drawback of this definition is ob-
vious — even though a private value may not be uniquely
determined, it may still be deduced to lie in a tiny interval
or in a large interval with a skewed distribution, and some
may consider this to be sufficient compromise. Neverthe-
less, we study this case as it is conceptually clean and has
an appealing combinatorial structure.

Probabilistic Compromise/Partial Disclosure: This
notion of privacy defined in [21] aims to mitigate the prob-
lems with the classical definition of compromise by modeling
the change in the attacker’s confidence about the values of
data points. It bounds the ratio of the posterior to prior
probabilities that an xi lies in an interval I

1. The dataset,
X = {x1, . . . , xn}, is assumed to be drawn according to a
distribution D from [α, β]n. We assume that the distribu-
tion D is public, and in particular is known to the attacker.
This is a reasonable assumption since, in practice, data such
as age or salary have known probability distributions. Given
queries q1, . . . , qt, corresponding answers a1, . . . , at and pre-
defined security parameters, λ and γ, we define

Sλ,i,I(q1, . . . , qt, a1, . . . , at) =
{

1 if (1− λ) ≤ Pr(xi∈I|q1...qt,a1...at)
Pr(xi∈I) ≤ 1/(1− λ)

0 otherwise

Let I be the set of intervals [α+ (j−1)(β−α)
γ

, α+ j(β−α)
γ

] for
j = 1, . . . , γ.

Sλ(q1, . . . , qt, a1, . . . , at) =
∧

i∈[n],I∈I
Sλ,i,I(q1, . . . , qt, a1, . . . , at) .

Sλ(q1, . . . , qt, a1, . . . , at) thus evaluates to 1 if every single
data point, xi is “safe” with respect to every single interval,
I ∈ I. The attacker poses a query, qt in each round, t for up
to T rounds. The auditor can choose to deny a query and
the attacker wins if Sλ(q1, . . . , qt, a1, . . . , at) = 0 in some
round. This is the (λ, γ, T )-privacy game and an auditor is
(λ, δ, γ, T )-private if for any attacker, A:

Pr[A wins the (λ, γ, T )-privacy game] ≤ δ

Simulatable Auditing: The notion of simulatable audit-
ing was introduced in [21]. The need for simulatability arose
out of the authors’ discovery that denials based on the an-
swer to the current query can leak considerable information.

Example: Suppose an attacker asks for q1 = max{xa, xb, xc}
and is returned the answer 9. Later the attacker asks for
q2 = max{xa, xb}. If the answer to q2 is less than 9, then
the attacker can determine that xc must be 9 and q2 should
be denied. If however, the answer is exactly 9, answering q2
would not leak information under the classical definition of
compromise. In this situation, if the auditor does look at
the answer to q2 when choosing to deny, a denial would im-
mediately imply that xc must be 9 and privacy is breached.

1This is similar to the definition used to prove that the one-
time pad is secure [17] and is related to the γ-amplification
definition of privacy suggested in [15].

The auditor should not therefore look at the true answer
to the current query when making a decision. In fact, the
attacker should be able to “simulate” the auditor and pre-
dict on his own when queries will be denied. This would
ensure that privacy is never breached. The algorithms we
look for in this paper should thus be online and simulat-
able. In the case of classical compromise, it suffices that
the auditor determine if there is any possible answer to the
current query that is consistent with past queries that could
cause compromise. In the case of probabilistic compromise,
it suffices that the auditor determine if compromise would
occur in a large fraction of datasets drawn from the original
distribution D conditioned on past query answers.

We now introduce a tool that is used in Sections 3 and 4 to
maintain query logs.

Synopsis Computing Blackbox B: This blackbox is in-
troduced in [8] for the offline auditing of max queries over
duplicate-free real-valued data. It takes as input a set of max
queries and corresponding answers and converts them to a
synopsis Bmax containing predicates of the form [max(Si)] =
Mi] and [max(Sj) < Mj ]. Because there are no duplicates,
B can ensure that query sets of predicates in the synopsis
are pairwise disjoint, thereby ensuring that the size of the
synopsis is O(n).

Example: Consider the queries q1 = max{xa, xb, xc} = 9
and q2 = max{xa, xb} = 9. Since there are no duplicates, the
intersection of the two query sets must contain the max value
of 9. The queries would thus be converted to predicates
[max{xa, xb} = 9] and [max{xc} < 9] in the synopsis.

The authors show that it suffices to consider just these pred-
icates generated by B in detecting compromise instead of the
entire sequence of past queries. B can similarly be given a set
of min queries with answers and it returns a synopsis Bmin

of predicates of the form [min(Si) = mi] and [min(Sj) > mj ]
where Si and Sj are disjoint subsets of X. The advantage
of B is that we can compress a potentially long audit trail
to one of size O(n) where n is the number of elements in the
dataset. The synopses can be incrementally maintained —
when a new query qt arrives, the old synopsis together with
qt is combined in to a new synopsis in O(|Qt|) time.

3. AUDITING TO PREVENT PARTIAL DIS-
CLOSURE

The authors in [21] provide an algorithm for auditing sum

queries over data points taken uniformly from the range
[α, β] under probabilistic compromise (see Section 2.2), leav-
ing open the problem of auditing other types of queries for
data taken from other distributions. They also show how
max queries, when posed against naive auditors, can be used
to reveal large fractions of the private data. Building a ro-
bust auditor for such queries is thus essential. In this part of
the paper, we show how max queries and bags of max and min
queries can be audited under probabilistic compromise. Our
algorithms use the general framework for probabilistic au-
ditors introduced in [21], however they also use techniques
that are interesting in their own right for the non-trivial
problem of inferring posterior distributions of data values.
Since the case of max queries is simpler, we start with this.



3.1 Max Auditing
We would like to build a simulatable auditor for max queries
that is (λ, δ, γ, T )-private for any attacker, A. We assume
that the dataset X of sensitive values is taken uniformly
at random from the set of duplicate-free points in the unit
cube [0, 1]n. 2 While the uniform distribution assumption is
not usually a realistic assumption to make in practice, we
believe that our techniques can be extended to other more
practical distributions in the future.

Recall that under probabilistic compromise, a query is safe
to answer if doing so is not likely to cause a significant
change in the attacker’s confidence that an xi lies in a partic-
ular interval. Also, the decision to deny must be simulatable.
The basic idea used here and in the next section is to have
the auditor generate random datasets (of n sensitive values)
uniformly from all datasets consistent with answers to past
queries. The auditor then checks to see if answering the new
query on the random datasets causes a significant change in
the attacker’s confidence about any xi. If the answer is no
for a sizable fraction of the generated datasets, the query
is safe to answer. It turns out that generating a consistent
random dataset and determining posterior confidences in the
case of max queries can be done quite efficiently.

We first consider the problem of determining whether know-
ing max(Qt) causes a significant change in the attacker’s con-
fidence about a particular xi. For this we make use of the
blackbox B described in Section 2.2. Given queries q1, . . . , qt
and answers a1, . . . , at, B returns a synopsis, Bmax that rep-
resents all derivable information as predicates of the form
[max(S) = M ] or [max(S) < M ]. Recall that due to the ab-
sence of duplicates, each xi occurs in at most one such pred-
icate. For any xi and any interval I, we would thus like to
find Pr{xi ∈ I | Bmax}. The prior probability that an xi lies
in an interval I of length 1/γ is given by Pr{xi ∈ I} = 1/γ
as xi is initially uniformly distributed in [0, 1].

3

Posterior distribution of the xis: The posterior proba-
bility distribution of xi given Bmax is part continuous and
part discrete and the computations here require measure-
theoretic justifications that we omit. But it can be shown
that if xi ∈ S and [max(S) = M ] ∈ Bmax, then xi is uni-
formly distributed in [0,M) with probability 1 − 1/|S| and
xi =M with probability 1/|S|. On the other hand, if xi ∈ S
and [max(S) < M ] ∈ Bmax then xi is just uniformly dis-
tributed in [0,M) with probability 1. This is because, since
xi can occur in at most one predicate in Bmax, other predi-
cates do not affect xi, i.e.,
Pr{xi ∈ I | Bmax} = Pr{xi ∈ I | predicate containing xi}.

Example: If [max{xa, xb, xc} = 0.75] ∈ Bmax, then since
any one of the data points is equally likely to be the max
value, xa = 0.75 with probability 1/3 and with the remain-
ing 2/3 probability, it is uniformly distributed in [0, 0.75).

Thus for any interval in [0, 1] it is possible to determine

2The algorithm can easily be extended to other ranges.
3The prior distribution may not seem uniform since we are
restricting ourselves to datasets with no duplicates. How-
ever, the set of points in the n dimensional cube where
xi = xj for some i 6= j has measure 0.

the ratio of the posterior to prior probability that an xi
lies in it. This leads to Algorithm 1 that returns false if
Sλ(q1, . . . , qt, a1, . . . , at) = 0 and true otherwise. For each
xi, the algorithm considers three cases — either xi belongs
to an equality predicate, or it belongs to a predicate with
strict inequality, or it does not appear in any predicate at
all. Let M be the max value of the predicate to which xi
belongs. Then for each interval, Ij , the algorithm considers
three cases — Ij occurs to the left of the interval containing
M, or Ij contains M, or Ij occurs to the right of the interval
containing M. For each of these cases, we work out the math
to get the posterior probability that xi lies in Ij .

1: Input: Queries and answers ql and al for l = 1, . . . , t and
parameters λ, γ, n.

2: Let safe = true
3: For each xi and each interval Ij in I

// xi belongs to a predicate with equality
4: If xi ∈ S for S s.t. [max(S) =M ] ∈ Bmax

5: Let y =
1−1/|S|
Mγ

// Pr{xi ∈ Ij |Bmax} if M /∈ Ij
6: If j < dMγe // Ij is to the left of M

7: If γy /∈ [1− λ, 1
1−λ ]

8: Let safe = false
9: Else If j = dMγe // Ij contains M

10: If γ(y(Mγ − dMγe+ 1) + 1
|S| ) /∈ [1− λ, 1

1−λ ]

11: Let safe = false
12: Else // Ij is beyond M
13: Let safe = false

// xi belongs to a predicate with strict inequality
14: Else If xi ∈ S for S s.t. [max(S) < M ] ∈ Bmax
15: Let y = 1

Mγ
// Pr{xi ∈ Ij |Bmax} if M /∈ Ij

16: If j < dMγe // Ij is to the left of M

17: If γy /∈ [1− λ, 1
1−λ ]

18: Let safe = false
19: Else If j = dMγe // Ij contains M

20: If γy(Mγ − dMγe+ 1) /∈ [1− λ, 1
1−λ ]

21: Let safe = false
22: Else // Ij is beyond M
23: Let safe = false

24: Return safe.

Algorithm 1: Safe

Simulatable auditor: We now construct the simulatable
auditor by estimating the probability that answering qt would
breach privacy. The probability is taken over the distribu-
tion from which the dataset is drawn and is conditioned on
the past queries and their answers. To estimate this proba-
bility, we draw a random dataset X ′ that is consistent with
the answers already given, compute an answer a′t according
to X ′ and evaluate Algorithm 1 on q1, . . . , qt, a1, . . . , at−1, a

′
t

to see if this answer would cause a considerable change in
the attacker’s confidence about any one data point. The
sampling is then repeated to get a good estimate.

In order to sample X ′ uniformly from all datasets consistent
with the past answers, the auditor looks at each predicate
[max(S) = M ] or [max(S) < M ] in Bmax. If the predicate
has an equality, then it sets some xi ∈ S to M and assigns
to other xi’s in S a value drawn uniformly at random from
[0,M). If the predicate has a strict inequality it assigns
each xi ∈ S a value drawn uniformly at random from [0,M).
Every other xi not represented by a predicate is given a value
drawn uniformly at random from [0, 1]. In case xi = xj for
some i 6= j, the sample is thrown out and another is chosen.



But this event happens with probability zero. Algorithm 2
gives the details for the auditor.

1: Input: past queries q1, . . . , qt−1, answers a1, . . . , at−1, new
query qt, parameters λ, γ, n, δ, T .

2: For O(T
δ
log T

δ
) times

3: Sample a data set X ′ consistent with past answers
4: Evaluate Algorithm 1 on input q1, . . . , qt, a1, . . . , a′t and

parameters λ, γ, n
5: If the fraction of sampled data sets for which Algorithm 1

returned false is more than δ/2T
6: Return “denied”

7: Else return at = maxX(Qt)

Algorithm 2: Simulatable auditor for max queries

Theorem 1. Algorithm 2 is a (λ, δ, γ, T )-private simu-
latable auditor for max queries.

Proof. An attacker wins the game in round t if he poses
a query qt for which Sλ(q1, . . . , qt, a1, . . . , ft(Qt)) = 0 and
the auditor does not deny qt. The probability that the at-
tacker wins in round t given the answers to previous queries
is given by:
pt = Pr{Sλ(q1, . . . , qt, a1, . . . , at−1, maxX′(Qt)) = 0 |

q1, . . . , qt−1, a1, . . . , at−1}
where X ′ is a dataset drawn uniformly from all datasets
consistent with the previous answers. Thus Algorithm 2 es-
sentially estimates pt via multiple draws of random data sets
X ′. When pt > δ/T , by the Chernoff bound, the fraction
of sampled data sets for which Algorithm 1 returns false is
larger than δ/2T with probability at least 1 − δ/T . Hence
if pt > δ/T the attacker wins with probability at most δ/T .
When pt < δ/T , the attacker wins only if the query is an-
swered and even then with probability pt. In both cases the
attacker wins with probability at most δ/T . Thus the prob-
ability that the attacker wins in any of the T rounds is less
than δ by the union bound.

This concludes our construction of the max auditor. Note
that this auditor is decidedly more efficient than the proba-
bilistic sum auditor of [21] which needs to estimate volumes
of convex polytopes in making decisions. Indeed, the run-
ning time is O(T

δ
γn log T

δ
). The critical insight is that each

xi is uniformly distributed between 0 and its upper bound
as determined by answers to past queries, with a point mass
at this max value. In case of bags of max and min queries
the posterior distribution is not as easy to obtain.

3.2 Max-and-Min Auditing
Once again we assume that the dataset is taken uniformly
from points in the unit cube [0, 1]n that do not have xi =
xj for any i 6= j. We consider the problem of building a
(λ, δ, γ, T )-private simulatable auditor for bags of max and
min queries. Due to space constraints we give just a sketch
of the main ideas involved in constructing the auditor.

As before, we would like to determine if answering the cur-
rent query would lead to a significant change in the at-
tacker’s confidence about the value of any data point. We
first consider the problem of determining whether knowing
the answer at to qt causes a significant change in the at-
tacker’s knowledge. We make use of the blackbox B de-
scribed in Section 2.2. Given queries q1, . . . , qt and cor-
responding answers a1, . . . , at, B returns a synopsis B =

(Bmax, Bmin). Bmax represents all derivable information from
the max queries as predicates of the form [max(S) = M ] or
[max(S) < M ] where every data point can occur in at most
one such predicate. And Bmin represents all derivable in-
formation from the min queries as predicates of the form
[min(S) = m] or [min(S) > m] where every data point can
occur in at most one such predicate. We further modify the
predicates as follows: if any max predicate and min predi-
cate have the same value, M , then the corresponding query
sets, S1 and S2, must have exactly one element, xj , in com-
mon due to the assumption of no duplicates. We remove
the two predicates and replace them with the predicates
[max(xj) =M ], [max(S1−xj) < M ] and [min(S2−xj) > M ].
At the end of this process no two max and min predicates
will have the same answer and each xi can be determined
to lie in a range Ri. Let `i be 1/|Ri|.

Posterior distribution of the xis: The prior probability
that an xi lies in an interval I of length 1/γ is Pr{xi ∈
I} = 1/γ as xi is initially uniformly distributed in [0, 1]. We
would like to find the posterior probability Pr{xi ∈ I | B}.

Example: Consider two predicates of the form [max{xa, xb,
xc} = 1] and [min{xa, xb} = 0.2]. We know that xa and xb
must lie in the range [0.2, 1] and xc must lie in the range
[0, 1]. Moreover, one of xa or xb must be exactly 0.2, and
one of xa, xb or xc must be exactly 1. Now if xa = 1, then
xb must be 0.2 and xc can lie anywhere in the range [0, 1).
This determines a line segment of (one-dimensional) volume
1. Enumerating over the other three possible cases, we find
that the volume covered by all possible points that satisfy
the two constraints is 3.6. Since the volume covered by
points that satisfy the two constraints and the condition that
xa = 1 is 1, it follows that Pr{xa = 1 | B} = 1/3.6 = 5/18.

Equivalent graph coloring problem: The above proce-
dure can be generalized, but the number of cases to sum over
may be exponential in the number of queries. So instead,
we approximate the required probability by sampling from
the joint distribution over the entire dataset X. As an inter-
mediate step, consider the following graph coloring problem.
Let V be the set of predicates in B with a strict equality and
let there be k such predicates. Recall that each xi can ap-
pear in at most one max predicate and at most one min pred-
icate in V. Moreover, no two predicates in V have the same
answer. We construct a graph G with a node corresponding
to each predicate in V. Let S(v) denote the query set of a
predicate v ∈ V and let A(v) denote the answer of the pred-
icate. G has an edge between v1 and v2 iff S(v1)∩S(v2) 6= ∅,
i.e., if the two query sets have some elements in common.
Each xi in the dataset corresponds to a color, and the set
of colors available at node v is just the query set S(v). A
valid coloring of G is a mapping c that assigns to each node
v a color c(v) ∈ S(v), such that if there is an edge between
v1 and v2, then c(v1) 6= c(v2). We define a probability dis-

tribution over valid colorings P̃ (c) = 1
Z

∏

v∈V `c(v), where Z

is a constant4 chosen to make P̃ sum to 1, and where again
li is 1 over the length of the interval Ri that defines the
legitimate range of xi.

The intuition is that the process of generating a dataset

4Note that our algorithm does not explicitly compute Z.



according to the posterior distribution can be split into two
parts. First, for each max or min query with equality, we
choose an item from its query set which will achieve the
bound. This is exactly the information contained in the
coloring. After doing this for every query, the values of the
remaining items may now be chosen uniformly at random
from their respective ranges. More formally,

Lemma 1. The following procedure generates a sample
from P (X | B):

1. Sample a coloring according to P̃ (c).

2. For each v, set xc(v) = A(v).

3. For each remaining unassigned item xi, sample a value
uniformly at random from its range Ri.

Proof. Given a dataset X that satisfies the queries, we
can associate to it a unique coloring c as follows: for each
predicate v with strict equality, there must be exactly one
item xi in S(v) such that xi = A(v). Set c(v) = xi. Con-
versely, a coloring c specifies the values of a subset of the
variables as described in step 2 above, and the remaining
ones can take any value in their range. We can therefore
write P (X | B) = P (c | B)P (X | c, B). Now, given B
and c, the remaining unassigned variables are independent
and uniformly distributed over the ranges determined by B.
Thus, step 3 above generates samples from P (X | c, B).

It remains to be shown that step 1 above generates samples
from P (c | B). To see this, we examine the geometry more
closely. Suppose there are n items in the dataset, and k pred-
icates with equality. Which datasets are compatible with the
evidence? Once we choose a coloring, this determines the
values of k items, and the remaining items may vary across
their ranges. The posterior is thus uniform over a union of
rectangles of dimension n − k. Each rectangle corresponds
to a coloring c, and P (c | B) is therefore proportional to the
volume of this rectangle, which is the product of 1/`i for
those xi that are not set by c. Equivalently, the probability
is proportional to the product of `i for those xi that are set
by c, which is exactly the definition of P̃ .

We now describe a Markov chain M over valid colorings,
which is a slightly modified version of ones found in the
Markov Chain Monte Carlo literature (e.g. [16]). The Markov
chain is initialized by looking at the actual state of the
database and constructing the corresponding coloring. At
each successive step, given a valid c, the chain generates c′

as follows:

• Pick v uniformly from V.

• For each v′ 6= v, set c′(v′) = c(v′).

• Pick a color xi from S(v) with probability proportional
to `i.

• Set c′(v) = xi if this results in a valid coloring, and set
it to c(v) otherwise.

We now show the following lemma.

Lemma 2. If for every v ∈ V, |S(v)| ≥ dv + 2, then the

unique stationary distribution of M is P̃ . Here dv is the
degree of node v.

Proof. If for every v ∈ V, |S(v)| ≥ dv +2, thenM has a
unique stationary distribution as shown in [16]. It remains

to be shown that the stationary distribution is actually P̃ .
LetMv denote the transition distribution in the case when
we pick v in the first step above, i.e., each entry Mv[c1c2]
of the matrix denotes the probability of transitioning from
coloring c1 to coloring c2 if v is chosen in the first step.
SinceM is a convex combination of theMvs, it suffices to
show that eachMv preserves P̃ , i.e., sampling from P̃ and
then applying one step of Mv results in a coloring whose
distribution is also P̃ .

Let c1 be a coloring sampled from P̃ and let c2 be the re-
sulting coloring after transitioning according to Mv. Let c
be any fixed coloring. We would like to show that Pr{c2 =
c} = P̃ (c). Let p be the total probability of colorings that

agree with c on V\v in P̃ . Assume without loss of generality
that c(v) = 1, the other valid colors for v given the rest of c
are 2, . . . , r, and the remaining colors in S(v) are r+1, . . . , s.
To get c after one step of Mv, either we must have begun
with c and chosen c(v) or an invalid color, or we must have
begun with a coloring that differed from c only on v, and
then chosen the color c(v). Use the notation `a:b to denote
`a + `a+1 + . . .+ `b. The total probability of these events is

p
`1
`1:r

`1 + `r+1:s

`1:s
+ p

`2:r
`1:r

`1
`1:s

= p
`1
`1:r
(1− `2:r

`1:s
) + p

`2:r
`1:r

`1
`1:s

= p
`1
`1:r

= P̃ (c)

We can also show the following:

Lemma 3. Let ∆ be the maximum degree of G, and pmax

and pmin be, respectively, the maximum and minimum con-
ditional probabilities for the color of some v given a color-
ing of the rest of the graph. Let m be the minimum over
all nodes of the number of colors allowed for that node. If
m > ∆(1 + 2 pmax

pmin
), then M has mixing time O(k log(k)),

where k is the number of equality predicates in B or equiva-
lently the number of nodes in the graph.

The (omitted) proof is an adaption of that given, e.g., in [16],
the main difference being that in our case the distribution
over colorings is non-uniform — each color can not be as-
signed to each vertex and the limiting distribution is P̃ . To-
gether, these lemmas show that by starting with any valid
coloring and runningM for O(k log(k)) steps, we can gener-

ate a sample from a distribution that is close to P̃ , provided
the synopsis graph satisfies the condition in Lemma 2 (we
will show how the auditor can enforce this condition after
giving an overview of how the simulatable auditor functions
if this condition is satisfied). We may thus answer probabil-
ity questions up to accuracy ε by generating a set of such
samples and forming a Monte Carlo estimate. In particu-
lar, for any xi and interval I, we can get arbitrarily close
estimates of Pr{xi ∈ I | B}.



In our application, m is the minimum size of a query set
and ∆ is the maximum, over all predicates v, of the number
of other predicates v′ whose query set intersects that of v.
The condition on m in Lemma 3 thus states that the more
overlap there is between queries, the larger the query sets
have to be to ensure mixing. If the condition fails to hold, it
is also possible to convert the problem to one of inference in
probabilistic graphical models, and use one of several stan-
dard techniques for approximate inference [19]. We omit the
details for lack of space.

Simulatable auditor: As in the case of the max auditor,
before answering qt, the auditor generates random datasets
consistent with answers to past queries by generating col-
orings according to distribution P̃ as described above. For
each such dataset, X ′, he checks whether answering qt in
X ′ is likely to cause a privacy breach. This is done by gen-
erating random datasets consistent with all past answers as
well as the answer to qt in X

′ and estimating the posterior
probability that each xi lies in each interval. A significant
difference in the posterior and prior probabilities that any
xi lies in any interval implies that qt is not safe to answer in
the dataset X ′. If for a large fraction of sampled datasets,
qt is deemed unsafe, the query is rejected. If we ignore the
ε error of the Monte Carlo estimates, we can show, just as
in Theorem 1, that the above auditor is (λ, δ, γ, T )-private.

Now in order to be able to generate datasets according to P̃ ,
we need to ensure that the graph generated from the synop-
sis B satisfies the condition in Lemma 2, i.e., the number of
colors available at each node (equivalently the size of each
predicate) should be at least two more than the degree of
the node (equivalently the number of other predicates that
intersect this predicate). Note that the size of each predi-
cate is trivially at least as large as the number of predicates
that intersect it since every element can occur in at most one
max query and at most one min query. Lemma 2 however,
imposes a slightly stricter condition and we can ensure that
it holds by denying, outright, queries that could possibly
cause the condition to be violated. Since new queries affect
the synopsis in different ways depending on their answers,
and since we would like to avoid looking at the answer to
a query for simulatability reasons, we deny a query if there
is any answer to this query, consistent with the past syn-
opsis that would cause the updated synopsis to violate the
condition of Lemma 2. We can do this efficiently by look-
ing at only a finite number of possibly consistent answers.
The general idea is similar to one that we will see in Sec-
tion 4 but we omit the details for lack of space. Note that
these outright denials do not affect the probability of an at-
tacker winning the privacy game and putting all these ideas
together we get the following theorem.

Theorem 2. There exists a (λ, δ, γ, T )-private simulat-
able auditor for combinations of max and min queries when
the dataset is drawn uniformly at random from the set of
duplicate-free points in the cube [α, β]n.

This concludes our study of probabilistic auditors. In some
cases, exact disclosure may be all that the DBA wishes to
guard against. In such a scenario auditing can be made
more efficient. We therefore turn to the problem of auditing

the same queries under classical compromise next. Note
that algorithms for classical compromise are not in general
implied by algorithms for probabilistic compromise.

4. AUDITING TO PREVENT FULL DISCLO-
SURE

Prior to this work, no algorithm was known for auditing
bags of max and min queries in an online fashion even for
the basic case of full disclosure. In this section, we make
the assumption that the database does not contain any du-
plicates and provide a simulatable auditor for the problem.
Auditing in the presence of duplicates still remains open.

Given a set of previously posed max and min queries, q1, . . . ,
qt−1 with answers, a1, . . . , at−1, we would like to check if
there is any possible answer to a new query qt that is consis-
tent with past answers and would cause an xi to be uniquely
determined. Checking all possible answers at in (−∞,+∞)
would be impossible but we show that it is sufficient to check
only a finite number of points. Let Q′

1, . . . , Q
′
l be the query

sets of previous queries that intersect with Qt, ordered ac-
cording to their corresponding answers, a′1 ≤ . . . ≤ a′l. Let
a′lb = a′1 − 1 and a′ub = a′l + 1 be the bounding values. Our
algorithm only checks 2l + 1 points — the bounding val-
ues, the above l answers and the mid-points of the intervals
determined by them 5. Algorithm 3 gives the details.

1: For at ∈ {a′lb, a
′
1,

a′1+a′2
2

, a′2, . . . , a
′
l−1,

a′
l−1

+a′
l

2
, a′l, a

′
ub}

2: If at is consistent with a1, . . . at−1 AND if ∃1 ≤ j ≤ n
such that xj is uniquely determined

3: Output “Deny” and return

4: Output f(Qt) and return

Algorithm 3: Simulatable auditor for max-and-min queries

We next address the questions of checking whether a value is
uniquely determined and whether an answer at is consistent
with answers to previous queries.

Checking if a value is uniquely determined: The idea
here is to determine the set of extreme elements for every
single query posed by the attacker. The extreme elements of
a query set, Qi, are the xjs whose values could potentially
be the answer ai to the query qi. For each query set, we
would like to eliminate those xjs that could certainly not be
extreme elements and in the end if a query set has only one
extreme element xj , we know that xj must take on the max
value for that query set and privacy has been breached. If
a query set has only one extreme element, then the element
is said to be strictly extreme for the query set. This idea is
similar in spirit to ideas in [21, 22] for auditing max queries,
however the process of determining extreme elements has to
be modified since additional inferences can be made due to
the presence of min queries. In addition, we do not in fact
need to examine all query sets posed by the user due to our
assumption of no duplicates. In what follows however, we
describe the algorithms as though all query sets were being
maintained for ease of exposition, and later show how the
size of the audit trail can be reduced.

5Note that since the total number of possible distinct an-
swers to queries is n, 2l + 1 is O(n).



Given a set of queries and answers, the upper bound µj of
an element xj is the minimum over the answers to the max
queries containing xj , i.e., µj = min{ak | j ∈ Qk and Qk is a
max query}. Similarly, the lower bound λj of an element xj
is defined as λj = max{ak | j ∈ Qk and Qk is a min query}.
We determine the extreme elements Ek for a query set Qk

as shown in Algorithm 4.

1: For k = 1 to t, Ek = ∅.
2: If Qk is a max query set, j ∈ Qk and µj = ak then Ek =

Ek ∪ {xj}. Similarly if Qk is a min query set, if j ∈ Qk and
λj = ak then Ek = Ek ∪ {xj}.

3: For a max query Qk look at all other max query sets with
answer ak and look at the largest set of extreme elements
E common to all the query sets. Set Ek = E. This follows
because there are no duplicates in the database. For all other
xj that were previously in Ek, we know that xj < µj =
ak, i.e., ak is a strict upper bound for xj . The analogous
procedure is applied for min query sets.

4: If any extreme element, xj , of a max query set, QM , is strictly

extreme for some min query set, Qm and aM 6= am then

xj < aM and EM = EM − {xj} (and similarly for extreme

elements of a min query set).

Algorithm 4: Determining extreme elements

The last step in this procedure could spark a trickle effect
and computing the final set of extreme elements for each
query set takes O(t2Σti=1|Qi|) time. Once extreme elements
have been computed in this way, we can show the following
theorem (proved in the full paper [24]).

Theorem 3. Given a set of queries, q1, . . . , qt and cor-
responding answers a1, . . . , at, the database is secure if and
only if every max or min query set has more than one extreme
element and there does not exist any max query, qi and min

query, qj such that ai = aj .

One direction of the theorem is simple enough to prove —
if any one of the conditions in the theorem is violated, then
clearly some element is uniquely determined. For the other
direction, we show that if both conditions are satisfied, then
for each element, xi, we can construct two different datasets
consistent with answers to the queries such that xi takes on
a different value in the two datasets.

Checking for consistency: Checking for consistency can
also be done in polynomial time.

Theorem 4. Given a set of queries q1, . . . , qt, responses
a1, . . . , at are consistent if and only if a) every max and min
query set has at least one extreme element b) for every ele-
ment xi, µi > λi if either the upper or lower bound for xi is
a strict inequality and µi ≥ λi otherwise and c) if ai = aj
for some min query qi and some max query qj , then Qi and
Qj should have only one extreme element in common.

This theorem is proved in the full paper — once again, if any
one of these conditions is violated, it is easy to see that the
answer to the query cannot be consistent with past answers.
On the other hand, if all conditions are satisfied, we provide
an algorithm to construct a consistent dataset. We now
make the following claim also proved in the full paper.

Theorem 5. For 1 ≤ j ≤ n, xj is uniquely determined
for some value of at in (a

′
s, a

′
s+1) if and only if xj is uniquely

determined when at =
a′

s
+a′

s+1

2
. Furthermore, the values of

at in (a
′
s, a

′
s+1) are either all consistent or inconsistent.

This completes our proof of correctness. Since we run through
the for loop in Algorithm 3 2l + 1 times, the running time
of the algorithm is O(t3Σti=1|Qi|). We now briefly outline
how the running time can be further reduced due to the
no-duplicates assumption.

The “no duplicates” assumption: Note that the as-
sumption of no duplicates can be achieved by perturbing a
dataset by negligible amounts if it does contain duplicates.
This, however, may lead to a conservative auditor.

Example: Consider a scenario where a user asks for
max{xa, xb, xc} and later for max{xa, xd, xe}. Due to the
restriction that there be no duplicates in the dataset, the
second query will be denied since if both queries were to
have the same answer, the value of xa would be revealed.
If duplicates are allowed however, both queries can be an-
swered. This indicates that the kinds of queries that will
be allowed with the no duplicates restriction, will be those
with either no overlap or lots of overlap.

Although the “no duplicates” assumption thus reduces the
utility delivered to the user, it does have an advantage. The
size of the audit trail can be significantly reduced using
blackbox B (see Section 2.2). B can be used to maintain sep-
arate synopses Bmax and Bmin for past queries q1, . . . , qt−1

and answers a1, . . . , at−1. When a new query is asked, the
new query along with a possible answer can be submitted
to B to obtained updated synopses B′

max and B
′
min. Since

B′
max captures all information contained in the max queries
and their answers and B′

min captures all information con-
tained in the min queries and their answers, we only need to
consider these query sets in determining extreme elements
as in Algorithm 4. We thus no longer need to maintain the
entire sequence of queries that have been posed and an audit
trail of size O(n) suffices. This was not possible in the max
auditing algorithm in [21] where duplicates were allowed.

That said, the question of auditing combinations of max and
min queries in the presence of duplicates is an interesting
one and remains an open problem. To see why duplicates
make the problem harder, consider the following predicates:
max{xa, xb} = 9 and max{xc, xd} = 9. Now if it is revealed
that min{xb, xd} = 1, then in addition to the previous infor-
mation, we also know that max{xa, xc} must be 9 since one
of xb or xd has to be 1. So in addition to examining extreme
elements for query sets that have actually been posed, the
auditor needs to examine extreme elements for such inferred
query sets as well, and there can be a blow up in the num-
ber of query sets that need to be maintained. This could
not happen in the absence of duplicates since the first two
queries could never have the same answer. Finding an effi-
cient algorithm that works in the presence of duplicates is
an interesting avenue for future work.

We conclude our study of auditors for new kinds of queries
for the different notions of compromise. We now move on
to quantifying utility.



5. UTILITY
As a case study we examine the utility of the existing algo-
rithm for auditing sum queries over real-valued data. Later
in Section 6 we provide experimental results on the utility
of sum auditing and max auditing for real-valued data under
classical compromise.

While there are several dimensions along which utility could
be measured (and we discuss these later), the dimension that
we consider is the number of queries posed by a user that
are actually answered. In particular we would like to mea-
sure the expected number of queries that will be answered
in a sequence of random queries 6 posed by the user. The
larger this number, the greater the utility. We show a sur-
prisingly positive result for large databases - the number of
queries that can be answered is at least a constant fraction
of the size of the database. In practice, it is not likely that
queries would be drawn from a uniform distribution. We
believe, however, that our techniques could be extended to
investigate more practical distributions in the future.

The simulatable sum auditing algorithm can be found in [9,
21]. Each query is expressed as a row in a matrix with a 1
for every record that is accessed by the query and a 0 for
every record that is left out. The columns of the matrix
thus correspond to the records and the rows to the queries.
The row corresponding to a query is called its “query vec-
tor”. Gaussian elimination on this matrix can be used to
determine if an xi can be solved for. For the sake of effi-
ciency, the matrix is maintained in upper triangular form
through a series of elementary row-space-preserving row op-
erations and column changes. If the upper triangular form
of the matrix contains a row with a 1 in only one column
and 0s in all others, then some element can be uniquely de-
termined. When a new query is posed, the auditor checks
to see if the new query vector is already in the vector space
spanned by the rows of the matrix in O(nm) time, where
m is the rank of the matrix. If it is, then the query is an-
swered (the new query vector is not added to the matrix). If
not, then adding the new query vector and rediagonalizing
the matrix also takes O(nm) steps. We consider a series of
random queries posed to such an auditor and compute the
expectation of the time to first denial, Tdenial.

Theorem 6. E[Tdenial] ≥ n
4
(1− o(1))

Proof.

E[Tdenial] =

∞
∑

m=1

mPr{Tdenial = m}

=
∞
∑

m=0

Pr{Tdenial > m}

= 1 +
∞
∑

m=1

Pr{Tdenial > m}

= 1 +
∞
∑

m=1

Pr{No denial in q1, . . . , qm}

6A random query is a query drawn independently and uni-
formly at random from the set of all sum queries that could
be formulated over the data.

We would thus like to get a lower bound on the probability
that there is no denial in the first m of a sequence of ran-
dom queries. Let the query vectors of the posed queries be
v1, . . . , vm and let A be the matrix of query vectors. Note
that v1, . . . , vm are random 0-1 vectors. Compromise occurs
if we can find any real-valued λis such that Σiλivi gives us
an axis-parallel vector (a vector with only one 1 and n − 1
0s). Let AT be the transpose of the matrix A. AT is thus
an n ×m matrix of 0s and 1s. Now if we could find some
m-dimensional vector w such that ATw gives us an axis-
parallel vector, then the elements of w would correspond to
the λis that give rise to the privacy breach. w must thus
be perpendicular to all the rows in AT except for the one
row which gives rise to the 1 in the axis-parallel vector. We
can now state that there is no denial amongst the first m
queries if and only if there is no m-dimensional vector that
is perpendicular to all but one of the rows in AT . We thus
need to lower bound the probability that there is no such
m-dimensional vector.

Note that if we could divide the rows of AT in to two dis-
joint sets, each of which forms a basis for R

m, then there
could be no such vector. This is because there can be no
m-dimensional vector that is perpendicular to all the vec-
tors that form the basis of R

m. So if we take any row in the
matrix and claim that there is some vector w perpendicular
to all other rows but this, we know that this is not possible
since a subset of the remaining rows must form a basis for
R
m. We thus need to lower bound the probability that AT

contains such a double basis. For this we consider the rows
of AT one after the other and calculate the probability that
both the first n/2 and the last n/2 rows span R

m separately.
The following lemma (proved in the full paper) is useful in
finding this probability:

Lemma 4. A hyperplane H in R
m can intersect Bm in

at most 2d(H) points where d(H) is the dimension of the
hyperplane.

Here B is the set {0, 1} and Bm is the boolean hypercube in
m dimensions. Note that the rows of AT correspond to ver-
tices of Bm. Let Y denote the rank of the matrix formed by
the first n/2 rows of AT . Let X denote the number of heads
obtained in n/2 independent tosses of an unbiased coin. We
will show that the random variable, Y , stochastically dom-
inates the random variable, X, until its value reaches m,
i.e., Pr{Y < t} ≤ Pr{X < t} ∀t ≤ m. As we consider the
rows of AT in order, we would like to find the probability
that a new row raises the rank of the matrix, assuming that
the rows so far together have rank < m. Suppose i rows
have been considered thus far and the rank of the matrix
formed by them is l < m. Then they span a hyperplane
of dimension l. From our lemma, this can intersect Bm

in at most 2l points. Thus there are at most 2l points in
Bm that are linearly dependent on the i rows and at least
2m − 2l points that are linearly independent. So the prob-
ability that the (i + 1)st row raises the rank of the matrix
is ≥ 1 − 2l/2m ≥ 1/2. Thus, until its value reaches m, Y
stochastically dominates X. Hence, the probability that the
first n/2 rows of AT span R

m is given by

Pr{Y = m} = Pr{Y ≥ m} ≥ Pr{X ≥ m} ≥ 1− 1

n2



The last inequality follows from Chernoff bound for m ≤
n/4−

√
n lnn. Similarly, the remaining n/2 rows also span

R
m with high probability. Thus

E[Tdenial] ≥ 1 +

n/4−
√
n lnn

∑

m=1

Pr{No denial in q1, . . . , qm}

≥ 1 +

n/4−
√
n lnn

∑

m=1

(

1− 1

n2

)2

=
n

4
(1− o(1))

So the first denial occurs after Ω(n) queries. We next show
that it is expected to occur within O(n) queries.

Theorem 7. E[Tdenial] ≤ n+ lgn+ 1

Proof.

E[Tdenial] =
∞
∑

m=0

Pr{Tdenial > m}

For values of m below m∗ = n+ lg(n ln 2), we upper-bound
Pr{Tdenial > m} by 1. This gives us

E[Tdenial] ≤ n+ lg(n ln 2) +
∞
∑

m=m∗

Pr{Tdenial > m}

= n+ lg(n ln 2) +
∞
∑

m=m∗

Pr{No denial in q1, . . . , qm}

Once again we consider the n×m matrix AT and the prob-
ability that there is no vector perpendicular to all but one
of its rows. Note that if the n rows were linearly indepen-
dent, there would always be such a vector. So we would like
to upper-bound the probability that the n random 0-1 rows
of the matrix are not linearly independent. If we call this
probability Pn,m, we can show that Pn,m ≤ n/2m−n+1. So

E[Tdenial] ≤ n+ lg(n ln 2) +

∞
∑

m=m∗

n

2m−n+1

= n+ lg(n ln 2) +
n

2m∗−n

= n+ lg(n ln 2) +
1

ln 2
≤ n+ lg n+ 1

Thus we can expect the first denial to occur in Θ(n) queries.
Note that our lower bound on Tdenial is a high probability
result — with high probability (1 − 1

n2 )
2, there will be no

denial in the first n
4
(1−o(1)) queries posed to the database.

This is a positive result for very large datasets — since n
is large, many queries will be answered before even the first
denial occurs. Our experiments in Section 6 attest to this.

The next question to ask is what happens after the first
denial. Note that once the rank of the query matrix reaches

n− 1, denials will occur with probability at least 1/2. This
is because at least half the points in Bm will be linearly
independent of the rows of the query matrix and if any of
these are answered, the rank of the query matrix becomes
n, enabling the attacker to solve the system of equations
for all points in the dataset. The question to answer is
thus, how quickly does the rank of the query matrix become
n− 1 after the first denial. It seems that this would happen
rapidly since we can show, using similar arguments, that
the expected time till n − 1 linearly independent queries
are posed is Θ(n). Not all these queries would be answered
however, and an exact analysis remains to be done. Thus a
problem arises when n is small.

Yet another issue that diminishes utility is that all users
would have to be considered as one in order to prevent col-
lusion attacks (note that this is a problem with perturba-
tion approaches as well). Thus the queries of all the users
would have to be pooled together and this may result in a
user receiving more than his fair share of denials. There are
two things that might help us out in this situation. The
first is that users are unlikely to be able to pose queries
over arbitrary subsets of the data and queries will more
likely come from non-uniform distributions. The second
is that databases such as hospital databases or the census
database frequently experience updates in the form of in-
sertions, deletions and modifications. For example, in the
company database containing salaries of its employees, new
employees may join the company, old ones may get fired,
and employees often receive raises. In this scenario, as old
information gathered by a user or by other users becomes
out of date, more queries can be answered. For example, if
a user asks for xa+xb+xc and xa is subsequently modified,
the user can now ask for xa+xb and get an answer whereas
without the update he would have been denied. The existing
algorithms for auditing sum, max or min queries do not work
as such in the presence of updates. However simple modifi-
cations, presented in the full version of the paper suffice. In
the next section we present experiments to verify our the-
oretical results and to measure the increase in utility with
updates and queries taken from non-uniform distributions.

6. EXPERIMENTS
We conducted experiments to measure the utility of sum au-
diting in various settings.

Time to first denial: The first experiment we performed
was to issue random sum queries to databases of varying
sizes and count the number of denials at regular intervals.
Averaging over many trials, we obtained the probability of
denial as more and more queries were posed. We found that
this probability was more or less a step function. There
would be no denials up to a point and then the probability
of denial would rapidly increase to 1. Figure 1 shows a plot
of the database size versus the threshold beyond which the
probability of denial increases. The graph confirms our the-
oretical results — the number of queries that were answered
before the first denial was in fact almost exactly equal to the
size of the databases in all cases. This is good news for large
databases. However, the utility of the databases rapidly de-
teriorated thereafter. Plot 1 of Figure 2 demonstrates how
essentially every query is denied after roughly n queries. We



therefore experimented with updates and non-uniform query
distributions to measure their impact on utility.
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Figure 1: Time to first denial for sum queries

Updates: This next experiment aimed at measuring the in-
crease in utility of the sum auditing scheme in the presence
of updates. We allowed updates in the form of modifica-
tions to be made to the database once in every 10 queries
and measured the probability of denial by averaging over
many trials once again. The queries themselves were taken
uniformly from the set of all possible sum queries that could
be posed over the data. A query would be denied if an-
swering it would enable the determination of any past or
present value of the sensitive attribute for some individual.
The algorithm is presented in the full version of the paper.
Figure 2 shows the probability of denial for a dataset con-
taining 500 elements as more and more queries were posed.
Plot 1 shows the probability of denial when no updates were
made to the system while Plot 2 shows the probability of de-
nial in the presence of updates. Note that not only did the
time to first denial shift to the right but also the long run
probability of denial remained below Plot 1 because of the
continuous updates. We consistently noted this impact on
utility across database sizes.
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Figure 2: Probability of denial for sum queries
Plot 1: Queries drawn uniformly at random
Plot 2: In the presence of updates
Plot 3: 1-dimensional range sum queries

Non-uniform query distribution: Next we measured
utility for SQL-like queries. We ordered the sensitive val-
ues in the dataset on a particular public attribute such as
“age” and allowed only range queries on age to be posed
over them. Moreover, each query was made to access some-
where between 50 and 100 elements in the dataset. Plot 3
in Figure 2 shows the probability of denial for queries taken
from such a distribution. Once again the probability of de-
nial never reached the worst case scenario that it did when
queries were chosen uniformly at random and this behaviour
was noted consistently over many trials on databases of vary-
ing sizes.

Max queries: We also experimented with the utility of
the max auditing algorithm presented in [21]. This algo-
rithm is similar to the algorithm for bags of max and min

queries presented in Section 4, the difference being in the
way that extreme elements are determined. Figure 3 de-
picts the probability of denial for random max queries posed
over a dataset of 500 elements. The first few queries were
never denied and then the probability of denial quickly rose
to around 0.68 and stayed in that region. One encouraging
observation is that the probability of denial never reaches
the worst case scenario as in sum queries. An exact analysis
of utility for max queries is an open problem.
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Figure 3: Probability of denial for max queries

The experiments confirm our theoretical results as well as
our conjecture on the effect of updates and SQL-like queries
on the utility of auditing schemes.

7. DISCUSSION AND FUTURE WORK
We view this paper as an early exploration of the online
auditing problem, laying theoretical foundations for an area
with potential practical promise. Many interesting direc-
tions lie ahead.

Perhaps the most obvious next step is to generalize the class
of queries with simulatable auditors to handle more complex
data computations. Alternatively, it may also be interest-
ing to specialize the queries that can be audited if it leads
to more realistic settings and/or more efficient auditors. For
example, while the boolean auditing problem is known to be
coNP-hard for arbitrary queries, if the queries are restricted
to a one-dimensional form, such as how many individuals
are between the ages of 15 and 25, then the auditing prob-
lem is known to have a linear-time solution [22]. Thus by



exploiting the fact that queries cannot range over arbitrary
subsets of points — which may be realistic in some settings
— we may be able to design efficient auditing algorithms
that were previously not possible.

The utility of auditing algorithms has many interesting com-
ponents including whether we deny too much, whether we
should deny more, and what utility actually means. Intu-
itively, it seems that the more an auditing scheme denies,
the less useful it is. Indeed, simulatability is conservative
and could deny more often than necessary. One could try
to analyze the price of simulatability — how many queries
were denied when they could have been safely answered be-
cause we did not look at the true answers when choosing to
deny. On the other hand, we could deny more often than
is necessary for simulatability and privacy in the hope that
doing so would enable more queries to be answered in the
future. Such an approach could potentially ward off denial
of service attacks where a malicious user poses queries in
such a way that would cause many innocuous queries to be
denied in the future. But a more fundamental question,
is how to even define utility. There may be some impor-
tant, fairly generic queries that the world would always like
to have answered, e.g., the total number of cancer patients
in a particular hospital. An auditing scheme that denies
such a query could be construed as providing weak utility.
In our schemes, we could add such important queries to
the pool of queries already answered, thereby ensuring that
these queries will always be answered in the future. But this
solution is just one practical way to overcome the problem.
The larger question here is: what is utility?

Finally, collusion is an interesting, important, open problem
present in most privacy results to date. Our scheme implic-
itly assumes that queries from all users are treated as coming
from one user. This strong assumption that all parties can
collude with each other is made in almost all perturbation
results that we are aware of. This means that we may deny
far more often than necessary. A thorough understanding
of the collusion problem would be a major advance.
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