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Abstract— The detection of encrypted stepping-stone attack
is considered. Besides encryption and padding, the attacker is
capable of inserting chaff packets and perturbing packet timing
and transmission order. Based on the assumption that packet
arrivals form renewal processes, and a pair of such renewal
processes is also renewal, a nonparametric detector is proposed
to detect attacking traffic by testing the correlation between
interarrival times in the incoming process and the outgoing
process. The detector requires no knowledge of the interarrival
distributions, and it is shown to have exponentially decaying
detection error probabilities for all distributions. The error expo-
nents are characterized using the Vapnik-Chervonenkis Theory.
An efficient algorithm is proposed based on the detector structure
to detect renewal processes with linearly correlated interarrival
times. It is shown that the proposed algorithm is robust against an
amount of chaff arbitrarily close to the amount of chaff needed
to mimic independent processes.

Keywords:Intrusion detection, Stepping-stone attacks, Statisti-
cal Learning Theory, Nonparametric detection.

I. I NTRODUCTION

Stepping-stone attack is a common way of launching anony-
mous attacks [1]. In such an attack, the attacker routes attack-
ing packets to the victim through a chain of compromised
hosts called “stepping stones”. The victim only sees the last
stepping stone, and thus the attacker’s identity is concealed.
The difficulty in defending against such attacks lies in the trac-
ing of the attacking path, and the tracing can be decomposed
into detecting every pair of stepping-stone connections onthe
intrusion path.

A sophisticated attacker can modify the attacking traffic to
thwart detection. In particular, he can encrypt and pad the
packets so that no information is revealed by the bit patterns
or the lengths of packets; the only information available tothe
detector is the timing of the traffic. The timing, however, is
subject to changes introduced by the attacker such as random
delay and packet reshuffling. Furthermore, the attacker canmix
attacking traffic with chaff—dummy traffic generated purely
for the purpose of evading detection. Chaff traffic can be
generated arbitrarily, and it does not need to reach the victim.
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In this paper, we consider the problem of detecting en-
crypted stepping-stone connections in the presence of chaff.
We allow the attacker to use various evasion strategies includ-
ing encryption, padding, changing the packet order and timing,
and mixing attacking packets with chaff. Our goal is to develop
techniques that are robust against the presence of chaff, forcing
the attacker to spend a substantial amount of time transmitting
chaff. Such robust techniques coupled with constrains on rates
may be one way to minimize the effectiveness of the attacker.

A. Related Work

Ever since Staniford and Heberlein [1] first consider the
problem of detecting stepping-stone connections, there has
been a continuous evolution of detection techniques as well
as evasion strategies. Early content-based detection techniques
such as [1], [2] are easily defeated by encryption and padding.
Timing-based detection considered in [3]–[5] is not affected
by encryption or padding, but is vulnerable to active timing
perturbation introduced by the attacker.

Donoho et al. [6] first consider the randomly delayed
stepping-stone connections, and since then a number of ad-
vances have been made in detecting encrypted, transformed
stepping-stone connections; see [6]–[8]. The key assumption
of these methods is that there is a limit on the attacker’s
ability to alter the traffic. For example, Donohoet al. [6] show
that in principle it is possible to detect transformed Poisson
processes if the transformation satisfies a bounded delay.
Wang and Reeves in [7] propose to correlate relayed streams
with independent and identically distributed, order-preserving
perturbation by introducing watermarks into packet interar-
rival times. Blumet al. [8] present an algorithm “DETECT-
ATTACKS” (DA), the first passive detection algorithm with
guaranteed performance based on the assumption of bounded
delay and bounded peak rate.

When chaff can be inserted to evade detection, many
previous algorithms fail. Blumet al. [8] propose an algorithm
called “DETECT-ATTACKS-CHAFF” (DAC) modified from
their algorithm DA to deal with limited chaff. Algorithm DAC
tolerates a fixed number of chaff packets by sacrificing the
false alarm probability, but a pair of arbitrarily long streams
can still evade detection by adding a constant number of chaff
packets. Penget al. [9] and Zhanget al. [10] separately



propose packet-matching schemes for robust detection; it,
however, turns out that these schemes can not deal with chaff
packets in the incoming process at all.

All of the schemes in [8]–[10] can be defeated by a constant
number of chaff packets. As the traffic size increases, the
fraction of chaff will go to zero. In terms of rate, zero rate chaff
traffic suffices to evade their detection. The only algorithms
that are known to handle chaff traffic of non-zero rate are
algorithms “DETECT-BOUNDED-DELAY-CHAFF” (DBDC)
and “DETECT-BOUNDED-MEMORY-CHAFF” (DBMC) in
[11]. Algorithm DBDC can detect traffic flows with up to
1/(1 + λ∆) fraction of chaff (whereλ is a design parameter)
if packet delays are bounded by∆. Algorithm DBMC is
designed for detecting traffic flows through a host which can
hold at mostM packets, and is robust against up to1/(1+M)
fraction of chaff. The drawback of DBDC and DBMC is that
the false alarm probabilities, although shown to go to zero
eventually, can be large for finite sample size. In this paper,
we want to answer the question whether it is possible to reduce
the false alarm probability by allowing certain miss detection.

B. Summary of Results and Organization

We consider robust detection of stepping-stone connections
in the presence of chaff. To the best of our knowledge, no
existing detector has provable decay rate in the probabilities
of both false alarm and miss detection. The main contribution
of this paper is a quantitive characterization of both false
alarm and miss probabilities by imposing the assumption
that pairs of interarrival times in the incoming and outgoing
processes are independent and identically distributed (i.i.d. ).
The i.i.d. assumption is a limiting assumption in the sense that
even if i.i.d. perturbation is applied to a renewal process, the
generated pair of processes may not havei.i.d. interarrivals;
it is, however, general enough to include a wide range of
relayed processes because we do not assume the processes
to satisfy any other statistical property. The stepping-stone
detector should therefore be nonparametric.

We propose a nonparametric detector to detect renewal
processes with correlated interarrival times based on the
assumption that the pair formed by these renewal processes
is also renewal,i.e., the pairs of interarrival times from the
incoming and outgoing processes arei.i.d. ; the detector does
not assume the knowledge of the interarrival distributions. This
detector applies to general attacking traffic with or without
memory or delay constraints. We show that the probabilities
of miss detection and false alarm both decay exponentially
with the number of packets used in the detection. Explicit
expressions of the error exponents are given using the Vapnik-
Chervonenkis (VC) Theory. Such expressions allow us to
design the detector threshold to satisfy prescribed performance
specifications. The proposed detector is optimal under the
renewal assumption in the sense that if the attacking packets

satisfy the bounded memory or bounded delay constraint, then
the amount of chaff needed to evade detection is proportional
to the traffic size, and the proportion can be arbitrarily close
to what is needed to mimic truly independent processes.
An algorithm is proposed to efficiently implement the de-
tector; it reduces the computation complexity fromO(n6) to
O(n2 log n) wheren is the sample size.

The rest of the paper is organized as follows. Section II
defines the problem. Section III presents a nonparametric
detector to deal with chaff, and analyzes its performance. The
section also presents an efficient algorithm to implement the
detector. Section IV compares the robustness of the proposed
detector with that of existing stepping-stone detectors. Sec-
tion V simulates the proposed detector for pairs of renewal
processes with bivariate exponential interarrival distributions.
Then Section VI concludes the paper with comments on some
practical issues about the application of such a detector.

II. PROBLEM DEFINITION

Denote the packet arrivals on streami as a point process

Si = (s
(i)
1 , s

(i)
2 , s

(i)
3 , . . .), i = 1, 2, . . .

wheres
(i)
k (k ≥ 1) is thekth arrival epoch in streami. LetTi =

{s
(i)
1 , s

(i)
2 , . . .} be the set of the elements inSi. Let (S1, S2)

be a pair of incoming and outgoing streams of interest at a
particular gateway node. Normally,S1 andS2 are independent.
If, however,S2 is a relayed stream ofS1, then they will satisfy
certain relations.

Definition 2.1: A pair of streams(S1, S2) is anormal pair
if S1 andS2 are independent point processes. It is astepping-
stone pair if there exists a bijectiong : T1 → T2 such
that g(s) − s ≥ 0 for any s ∈ T1, and g satisfies certain
communication requirements.

The bijection g, unknown to the detector, is a mapping
between the arrival and the departure epochs of the same
packets, allowing permutation of packets during the relay.The
condition thatg is a bijection imposes apacket conservation
constraint,i.e., no attacking packets are generated or dropped
at the stepping stones. The conditiong(s)−s ≥ 0 is thecausal-
ity constraint, which means that an attacking packet cannot
leave a host before it arrives. Communication requirements
are due to the need of the attacker’s application, the physical
constraints of the relay host, or the communication channel.
Examples include, but are not limited to, bounded memory
constraint and bounded delay constraint; see [11].

If Si (i = 1, 2) is the mixture of attacking packets and chaff,
then the requirements are relaxed, as stated in the following
definition.



Definition 2.2: A pair of streams(S1, S2) is a stepping-
stone pair with chaffif it is the superposition of a stepping-
stone pair(S′

1, S′
2) and a pair of arbitrary streams(C1, C2)

1.

StreamCi (i = 1, 2) consists of dummy packets calledchaff
which do not need to arrive at the destination. Chaff packets
can be generated or dropped at any stepping stones without
affecting the attack.

Let the interarrival times ofS1 be X1, X2, . . ., where
X1 = s

(1)
1 , andXi = s

(1)
i −s

(1)
i−1 (i > 1). Similarly, denote the

interarrival times ofS2 by Y1, Y2, . . .. If all the transmissions
in the network follow renewal processes, thenXi’s andYi’s are
i.i.d. , respectively. The problem is that without any constraint
on stepping-stone pairs,(Xi)i=1, 2,... and (Yi)i=1, 2,... may
correlate arbitrarily; in general, samples of the pairs(Xi, Yi)
(i = 1, 2, . . .) are not sufficient for detection because the
order in which these samples are taken are also relevant. The
hypothesis testing will have the form of

H0 : P (Xn, Y
n) = P (Xn)P (Yn),

H1 : P (Xn, Y
n) 6= P (Xn)P (Yn),

for any X
n, Y

n ∈ R
+n. For arbitrary stepping-stone pairs,

the worst case complexity grows exponentially with the sample
size. If, however, the stepping-stone pairs are renewal as well,
i.e., the pairs(Xi, Yi) (i = 1, 2, . . .) are i.i.d. , then the
detection is reduced to a testing of the following single-lettered
hypotheses2:

H0 : PXY = PX ◦ PY , H1 : PXY 6= PX ◦ PY , (1)

given realizations of((X1, Y1), (X2, Y2), . . .). This is a
nonparametric hypothesis testing problem; no specific assump-
tions on the distributionPXY are imposed.

III. N ONPARAMETRIC DETECTION OFRENEWAL TRAFFIC

Donohoet al. in [6] have noticed that for renewal processes,
local timing perturbation or reshuffling will not destroy the
correlation between processes. Furthermore, they show that
nonzero correlation can be obtained even if the attacker inserts
chaff independent of the attacking traffic. Although Donoho
et al. do not derive specific stepping-stone detectors in [6],
their work shows that, in principle, effective detection can
be achieved in the presence of chaff. Inspired by Donoho
et al. [6], we propose an alternative to existing algorithmic
approaches that check strict memory or delay constraints. We
aim at deriving a detector to test the statistical correlation be-
tween processes. It is desirable that the detector has guaranteed
performance for a wide range of traffic.

1Note thatC1 andC2 may not have equal length, and either of them can
be empty.

2We usePX ◦ PY to denote the joint probability distribution for(X, Y )
in which X andY are independent with marginalsPX andPY , respectively.

In this section, we present a nonparametric detector based
on the statistical learning theory for the hypothesis testing
problem defined in (1). In Section III-A, we introduce a
distance measure, calledA-distance, between probability dis-
tributions, and define a detector based onA-distance. We then
address the computation issues in Section III-B, where an
efficient algorithm is proposed to reduce the complexity in
implementing theA-distance detector.

A. Distance Measure and Detector

To testH0 againstH1, we need to measure the distance
between probability distributions. In a parametric framework,
the conventional distance measure is the Kullback-Leibler
distance [12]. Under the nonparametric framework, however,
the Kullback-Leibler distance cannot be easily replaced byits
finite sample counterpart3 We solve this problem by using the
following pseudo distance measure from [13]:

Definition 3.1 (A-distance and empiricalA-distance):
Given probability spaces4 (X,F , Pi) (i = 1, 2) and a
collection of setsA ⊆ F , theA-distancebetweenP1 andP2

is defined as

dA(P1, P2) = sup
A∈A

|P1(A) − P2(A)|.

Given two collections of samplesS1, S2 drawn independently
and i.i.d. fromP1, P2 respectively, theempirical A-distance
dA(S1, S2) is similarly defined by replacingPi(A) with the
empirical probability

Si(A)
∆
=
|Si

⋂

A|

|Si|
,

where|Si ∩ A| is the number of samples fromSi that are in
the setA.

We see thatdA(S1, S2) ∈ [0, 1]. By Vapnik-Chervonenkis
Inequality [14], it is shown [15] thatdA(S1, S2) can be
arbitrarily close todA(P1, P2) as sample size goes to infinity.

Given samplesS = {(xi, yi)}
n
i=1, let SX = {xi}

n
i=1, and

SY = {yi}
n
i=1. With the distance measure defined, we now

specify the detector as follows:

Definition 3.2: Let A be a collection of measurable subsets
of [0, ∞) × [0, ∞). Given ǫ ∈ (0, 1), the detector usingA-
distance measure to test the hypotheses in (1) is defined as5

δdA
(S, ǫ) =

{

1 if dA(SX ◦ SY , SXY ) > ǫ,
0 o.w.,

3For example, it can be shown that for continuous distribution, the empirical
Kullback-Leibler distance is infinite almost surely.

4We use the convention thatX is the sample space,F the σ-field, andPi

the probability measure.
5We use the convention that the detector gives the value1 for H1, and0

for H0.



wheredA(SX ◦SY , SXY ) is the empiricalA-distance between
SX ◦ SY andSXY , defined as

dA(SX ◦ SY , SXY ) = sup
A∈A

|SX ◦ SY (A) − SXY (A)| ,

with SX ◦ SY (A)
∆
=|(SX × SY ) ∩ A|/|S|2, and

SXY (A)
∆
=|S ∩ A|/|S|.

The definition involves calculating the supremum over a
possibly infinite collection of sets. The computation of the
statistics will be addressed in Section III-B.

B. Efficient Computation of Test Statistics

Here we address the issue of computing the test statistics
dA(SX ◦ SY , SXY ) defined in Definition 3.2. We give an
algorithm to computedA(SX ◦ SY , SXY ) efficiently for the
class of bands tilted to a certain angle.

ConsiderA as the class of bands tilted to45◦ with respect to
thex-axis, i.e., A ∈ A is of the form{(x, y) : y−x ∈ [a, b]}
for somea ≤ b. The rationale for this choice ofA is that in

stepping-stone connections, thenth arrival
n
∑

i=1

Xi and thenth

departure
n
∑

i=1

Yi will not diverge unboundedly, so we expect

Xi ≈ Yi. Thus the samples of interarrival pairs from stepping-
stone traffic often cluster around the unit linex = y with
some noise; bands around the unit line can reveal significant
difference between normal traffic and stepping-stone traffic.

Given a set of samplesS = {(xi, yi)}
n
i=1, the “product

samples”SX×SY are the set of then2 points{(xi, yj)}
n
i, j=1.

Sort the “product samples” into(s′1, s′2, . . . , s′n2), wheres′k =
(x′

k, y′
k), such thatx′

1−y′
1 ≤ x′

2−y′
2 ≤ . . .. Geometrically, this

sorting allows us to scan the “product samples” in the order
they cross the45◦ line as it moves from northwest to southeast,
as illustrated in Fig. 1. LetB(k, l) (k ≤ l) be the45◦ band
with boundaries passing throughs′k and s′l respectively (e.g.,
B(2, 6) in Fig. 1), i.e.,

B(k, l)
∆
={(x, y) : x − y ∈ [x′

k − y′
k, x′

l − y′
l]}.

We have that

dA(SX ◦ SY , SXY )

= max
1≤k≤l≤n2

∣

∣

∣

∣

|(SX × SY ) ∩ B(k, l)|

|S|2
−

|S ∩ B(k, l)|

|S|

∣

∣

∣

∣

.

For |S| = n, an exhaustive search to computedA(SX ◦
SY , SXY ) will take O(n6) time, since there areO(n4)
B(k, l)’s, and the computation for eachB(k, l) takesO(n2)
time. By proper updating, however, we can reduce the com-
plexity to O(n2 log n) as shown in the algorithm below.

x
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Fig. 1. Example:n = 3. •: sample;◦: “product sample”;B(2, 6): the45◦

band betweens′
2

ands′
6
.

1) SEARCH-TILTED-BANDS (STB):Algorithm STB im-
plements theA-distance detector for the class of45◦ bands
efficiently. Define

F (k)
∆
=
|(SX × SY ) ∩ B(1, k)|

|S|2
−

|S ∩ B(1, k)|

|S|
,

for k = 1, . . . , n2, andF (0) = 0. Then we have that

dA(SX ◦ SY , SXY ) = max
0≤k<l≤n2

|F (l) − F (k)|

= max
0≤k≤n2

F (k) − min
0≤k≤n2

F (k).(2)

Algorithm STB computesdA(SX ◦ SY , SXY ) by computing
F (k) efficiently. The algorithm is shown in Table I.

TABLE I

SEARCH-TILTED-BANDS (STB)

SEARCH-TILTED-BANDS(S, ǫ):

for i, j = 1 : n
D((j − 1)n + i) = xi − yj ;

end;
[D̃, I] = sort(D);
Fmin = Fmax = F (0) = 0;
for k = 1 : n2

F (k) =

{

F (k − 1) + 1

n2
−

1

n
if I(k) mod (n + 1) == 1,

F (k − 1) + 1

n2
o.w.

;

Fmin = min(Fmin, F (k));
Fmax = max(Fmax, F (k));

end
if Fmax − Fmin > ǫ return ATTACK;
else return NORMAL;

In STB, I is an index array whereI(k) is the index of
the kth smallest entry inD. If s′k is the “product sample”
corresponding toD(I(k)), we have that

F (k) =

{

F (k − 1) + 1
n2 − 1

n if s′k ∈ S,
F (k − 1) + 1

n2 o.w.

Note that s′k ∈ S if and only if I(k) = (i − 1)n + i =
(i−1)(n+1)+1 for somei ∈ {1, . . . , n}; therefore,s′k ∈ S is



equivalent toI(k) mod (n+1) == 1. Thus, STB can compute
F (k) (k = 1, . . . , n2) by anO(n2) updating. The sorting of
D is the most time-consuming step, and it takesO(n2 log n).
Therefore, STB implements theA-distance detector for the
class of45◦ bands inO(n2 log n) time.

We point out that STB can be easily modified to detect other
forms of linear correlation by changing the order in scanning
the “product samples”.

IV. PERFORMANCE OFA-DISTANCE DETECTOR

We now analyze the performance ofδdA
. We show that

it has exponentially decaying error probabilities on both false
alarm and miss detection. We derive uniform upper bounds on
the error probabilities by applying the Vapnik-Chervonenkis
Theory. It is desirable that the detector is robust against the
insertion of chaff. We characterize the robustness ofδdA

by
deriving the minimum chaff required to have nonzero miss
probability.

A. Error Probabilities

In this section, we characterize the error probabilities ofthe
detectorδdA

as a function of the sample sizen, the threshold
value ǫ, and the searching classA. It is known that each
class of measurable sets is associated with a positive integer
calledVapnik-Chervonenkis dimension (VC-dimension)which
measures the complexity of the class [14]. For a collectionA
with finite VC-dimension, we derive the following exponential
upper bounds on the error probabilities ofδdA

.

Theorem 4.1:Let S = {(xi, yi)}
n
i=1 be drawn i.i.d. from

PXY , andA have finite VC-dimensiond. Then for arbitrary
distributionPXY , the false alarm probability ofδdA

satisfies

PF (δdA
) ≤ 8(2n + 1)de−nǫ2/32.

Moreover, ifdA(PX◦PY , PXY ) > ǫ, then the miss probability
satisfies

PM (δdA
) ≤ 8(2n + 1)de−n(dA(PX◦PY , PXY )−ǫ)2/32.

Proof: See Appendix.

Remark:Theorem 4.1 provides uniform upper bounds on
the error probabilities ofδdA

. It guarantees that under any
distribution,δdA

can perform arbitrarily well with sufficiently
large samples (note that a condition needs to be satisfied
for diminishing miss probability). The error exponent for
false alarm probability increases withǫ, whereas that for
miss probability decreases withǫ. Therefore, the thresholdǫ
represents a tradeoff between false alarm and miss detection.

B. Robustness Against Chaff

It is shown in [16] that it is possible for the attacker to
evade any detector by inserting sufficient chaff. There is,
however, a limit on the minimum amount of chaff needed
to do so. Specifically, it is shown in [16] that the minimum
asymptotic fraction of chaff needed to mimic independent
Poisson processes of rates no more thanλ is 1/(1 + λ∆)
for attacking traffic with bounded delay∆, and 1/(1 + M)
for attacking traffic through a host with bounded memoryM .
This minimum fraction gives fundamental limit on the amount
of chaff that any detector can handle.

In this section, we will show that theA-distance detector
can achieve robustness arbitrarily close to the fundamental
limit for a class of joint distributions called the bivariate
exponential distribution, derived by Marshall and Olkin in
[17]. A pair of nonnegative random variables(X, Y ) satisfies
the bivariate exponential distribution BVE(λ1, λ2, λ12) if its
distribution function is given by

Pr{X > s, Y > t} = e−λ1s−λ2t−λ12 max(s, t), s, t > 0. (3)

The importance of this definition of bivariate exponential
distribution is that it preserves the memoryless property of
the univariate exponential distribution.

For the bivariate exponential distribution defined above, we
characterize the amount of chaff required to evade theA-
distance detector in the following theorem.

Theorem 4.2:Suppose we use theA-distance detector with
thresholdǫ ∈ (0, 1) andA being the class of45◦ bands. If
(S1, S2) is a stepping-stone pair in which the pairs of interar-
rival times (Xi, Yi) (i = 1, 2, . . .) have i.i.d. bivariate expo-
nential distribution, and the rates ofS1 andS2 are bounded by
λ, then the minimum fraction of chaff to have nonzero miss
probability is lower bounded by(1−ǫ)/(1+ M) for stepping-
stone pairs with bounded memoryM , and(1− ǫ)/(1 + λ∆)
for stepping-stone pairs with bounded delay∆.

Proof: See Appendix.

Remark:Theorem 4.2 says that theA-distance detector can
detect any correlation in bivariate exponential distribution.
By Theorem 4.1, we see that by increasing sample size,ǫ
can be made arbitrarily close to0 while keeping the false
alarm probability bounded by certain level. Therefore, forlong
connections, the robustness of theA-distance detector can be
arbitrarily close to the optimal.

For the attacker, the actual value ofǫ may be unknown.
Then the attacker is faced with a tradeoff between the amount
of chaff and the level of protection; he can save100ǫ% of
chaff by taking the risk of havingǫ correlation.



V. SIMULATION

We implement theA-distance detector using STB to verify
the performance. We letPXY be the bivariate exponential
distribution defined in Section IV-B. It is shown in [17] thatthe
correlation coefficientρ between bivariate exponential random
variablesX andY is

ρ = λ12/(λ1 + λ2 + λ12),

whereλi (i = 1, 2, 12) are parameters in the definition (3).
We will test the performance of theA-distance detector on
processes with bivariate exponentially distributed interarrival
times of various correlation levels. In practice, this corresponds
to the case when attacking packets arrive according to a
Poisson process of rateλ12, and are relayed immediately
without delay, but the attacker inserts chaff packets according
to independent Poisson processes of ratesλ1 and λ2 in the
incoming and outgoing streams, respectively.

Before starting the simulation, we have to solve a couple of
implementation problems. The first problem is how to decide
the detection thresholdǫ. In the Neyman-Pearson framework,
we want to set the threshold to the smallest possible value as
long as the false alarm probability is bounded by a prescribed
value α ∈ (0, 1). A common way of setting threshold
in nonparametric detection is to use training. Training is
computation intensive. Furthermore, the training data is not
guaranteed to represent all the normal traffic in a network with
many different traffic types. We propose to set the threshold
by making the false alarm upper bound in Theorem 4.1 equal
to α. Then we can write the threshold as

ǫ(n) =

√

−
32

n
log

α

8(2n + 1)d
,

whered is the VC-dimension ofA. Theorem 4.1 guarantees
that the false alarm probability will be bounded byα under
arbitrary interarrival distributions. For the class of45◦ bands,
it is easy to show by the method of Wenocur and Dudley [18]
that d = 2.

Next, we need to choose the sample size. Since the threshold
ǫ(n) is conservative, the detector often needs a large number
of samples to have reasonably small miss probability. We
need a guideline on approximately how many samples are
needed to have reasonable detection performance. We use the
results in Theorem 4.1 to estimate the minimum sample size.
In Theorem 4.1, it is proved that the miss probability decays
exponentially fast ifdA(PX◦PY , PXY ) > ǫ. Thus we estimate
the minimum sample size as the smallest integern that satisfies
ǫ(n) < dA(PX ◦ PY , PXY ).

In our simulation, we letα = 0.1, and vary the correlation
ρ among 0.85, 0.90, 0.95, and 0.99. The simulated miss
detection probabilities of STB are plotted in Fig. 2. We see
that there is a critical sample size beyond which the miss

probability quickly drops from1 to close to0, and this critical
sample size decreases as the correlation value increases. For
ρ1 = 0.85, ρ2 = 0.90, ρ3 = 0.95, andρ4 = 0.99, our estimates
of the minimum sample sizes aren1 = 854, n2 = 752, n3 =
666, andn4 = 607 respectively (see Fig. 2). We see that our
estimates agree with the simulation curves very well.
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Fig. 2. Simulated miss detection probabilities of STB:α = 0.1; 10000
Monte Carlo runs;ρi (i = 1, . . . , 4): the correlation betweenXi and Yi;
ni: the estimated minimum sample size forρi.

VI. CONCLUSION

In this paper, we have developed a nonparametric method to
detect stepping-stone traffic by correlating the time intervals
between packet arrivals. We point out that thei.i.d. assumption
on pairs of interarrival times is crucial for the proposed
detector to work. It means that not only do the processes in
consideration need to be renewal marginally, but their pair
has to be renewal as well. In practice, this detector should
be combined with a preprocessor to filter out the non-renewal
processes.

VII. A PPENDIX

A. Proof of Theorem 4.1

The proof uses results derived from the Vapnik-
Chervonenkis Theory. In [15], we have proved that for ar-
bitrary distributionP , if S is a collection ofn i.i.d. samples
drawn fromP , andA is a class of measurable sets with VC-
dimensiond, then

Pr{dA(S, P ) > ǫ} ≤ 4(2n + 1)de−nǫ2/8, (4)



where dA(S, P ) is the A-distance between the empirical
distribution according toS andP . Applying (4), we have

Pr{dA(SXY , PXY ) > ǫ} ≤ 4(2n + 1)de−nǫ2/8,

(5)

Pr{dA(SX ◦ SY , PX ◦ PY ) > ǫ} ≤ 4(2n + 1)de−nǫ2/8.

(6)

Now we are ready to bound the error probabilities. Since
dA(·, ·) satisfies triangle inequality, we have

dA(SX ◦ SY , SXY ) ≤ dA(PX ◦ PY , PXY )

+dA(SX ◦ SY , PX ◦ PY )

+dA(SXY , PXY ), (7)

dA(SX ◦ SY , SXY ) ≥ dA(PX ◦ PY , PXY )

−dA(SX ◦ SY , PX ◦ PY )

−dA(SXY , PXY ). (8)

UnderH0, dA(PX ◦ PY , PXY ) = 0. Thus, by (7),

PF (δdA
) = Pr{dA(SX ◦ SY , SXY ) > ǫ}

≤ Pr{dA(SX ◦ SY , PX ◦ PY )

+dA(SXY , PXY ) > ǫ} (9)

≤ Pr{dA(SX ◦ SY , PX ◦ PY ) >
ǫ

2
}

+Pr{dA(SXY , PXY ) >
ǫ

2
}

≤ 8(2n + 1)de−nǫ2/32, (10)

where (10) is obtained by plugging in (5,6).

Under H1, if PXY satisfies the condition
dA(PX ◦ PY , PXY ) > ǫ, then, by (8), we have

PM (δdA
) = Pr{dA(SX ◦ SY , SXY ) ≤ ǫ}

≤ Pr{dA(SX ◦ SY , PX ◦ PY ) + dA(SXY , PXY )

≥ dA(PX ◦ PY , PXY ) − ǫ}.

Following the same derivation as after (9) yields

PM (δdA
) ≤ 8(2n + 1)de−n(dA(PX◦PY , PXY )−ǫ)2/32.

B. Proof of Theorem 4.2

By Theorem 4.1, we see that to have non-vanishing miss
probability, the attacker has to makedA(PX ◦PY , PXY ) ≤ ǫ.
If PXY is the bivariate exponential distribution (BVE) defined
in Section IV-B with correlationρ, then it is shown in [17] that
PXY satisfiesPXY (X = Y ) = ρ. For A being the class of
45◦ bands, we have thatdA(PX ◦PY , PXY ) = PXY (X = Y ).

Thus to evade theA-distance detector, the attacker needs to
mimic Poisson processes with correlationρ ≤ ǫ.

In [8], Blum et al. present an optimal algorithm called
“BOUNDED-GREEDY-MATCH” (BGM) to embed traffic
with bounded delay into a pair of arbitrary processes; they
show that BGM is optimal in that it always inserts the
minimum number of chaff packets. In [16], we propose another
algorithm called “BOUNDED-MEMORY-RELAY” (BMR),
which inserts the minimum number of chaff packets in embed-
ding traffic through a host with bounded memory into arbitrary
processes. Therefore, the best way of making attacking traffic
with bounded delay or memory mimic given(S1, S2) is to
embed packet transmissions by BGM or BMR, respectively.

The rest of the proof directly follows from the performance
of BGM and BMR. It is shown in [16] that the minimum
fractions of chaff inserted by BGM and BMR into a pair
of independent Poisson processes of rate bounded byλ are
1/(1 + λ∆) and 1/(1 + M), respectively. Furthermore, for
BVE distributions, it is shown in [17] thatSi (i = 1, 2) can
be written as a superposition of Poisson processesPi andP3,
whereP1, P2, andP3 are independent, with ratesλ1, λ2, and
λ12, respectively. If we embed packets into(P1, P2) by BGM
or BMR (assumeP3 does not contain any chaff), we obtain a
lower bound on the fraction of chaff as(1−ρ)/(1+λ∆) and
(1− ρ)/(1 + M). Combining these results with the constraint
ρ ≤ ǫ completes the proof.
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